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Contributions of Issai Schur to Analysis

Harry Dym and Victor Katsnelson∗
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The name Schur is associated with many terms and concepts that are widely used in
a number of diverse fields of mathematics and engineering. This survey article focuses
on Schur’s work in analysis. Here too, Schur’s name is commonplace: The Schur test
and Schur-Hadamard multipliers (in the study of estimates for Hermitian forms), Schur
convexity, Schur complements, Schur’s results in summation theory for sequences (in
particular, the fundamental Kojima-Schur theorem), the Schur-Cohn test, the Schur al-
gorithm, Schur parameters and the Schur interpolation problem for functions that are
holomorphic and bounded by one in the unit disk. In this survey, we shall discuss all of
the above mentioned topics and then some, as well as some of the generalizations that
they inspired. There are nine sections of text, each of which is devoted to a separate
theme based on Schur’s work. Each of these sections has an independent bibliography.
There is very little overlap. A tenth section presents a list of the papers of Schur that
focus on topics that are commonly considered to be analysis. We shall begin with a review
of Schur’s less familiar papers on the theory of commuting differential operators.

Acknowledgement: The authors extend their thanks to Bernd Kirstein for carefully
reading the manuscript and spotting a number of misprints.

1 . Permutable differential operators and fractional powers of
differential operators.

Let

P (y) = pn(x)
dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · · + p0(x)y (1.1)

and

Q(y) = qm(x)
dmy

dxm
+ qm−1(x)

dm−1y

dxm−1
+ · · · + q0(x)y, (1.2)
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be formal differential operators, where n ≥ 0 and m ≥ 0 are integers, and pk(x) and qk(x)
are complex valued functions. Then Q commutes with P if (PQ)(y) = (QP )(y). ( It is
assumed that the coefficients pk, ql are are smooth enough, say infinitely differentiable, so
that the product of the two differential expressions is defined according to the usual rule for
differentiating a product. The commutativity PQ−QP = 0 means that the appropriate
differential expressions, that are constructed from the coefficients pk, ql according to the
usual rules for differentiating a product, vanish.)

In [Sch1] Schur proved the following result: Let P , Q1 and Q2 be differential operators
of the form (1.1) and (1.2). Assume that each of the operators Q1 and Q2 commutes with
P : PQ1 = Q1P and PQ2 = Q2P . Then the operators Q1 and Q2 commute with each
other: Q1Q2 = Q2Q1.

This result of Schur was forgotten and was rediscovered by S.Amitsur ([Ami], Theorem
1) and by I.M.Krichever ([Kri1], Corollary 1 of Theorem 1.2). (Amitsur does not mention
the result of Schur, and Krichever does not mention either the result of Schur, or the result
of Amitsur in [Kri1], but does refer to Amitsur in a subsequent paper [Kri2].

The method used by Schur to obtain this result is not less interesting than the result
itself. In modern language, Schur developed the calculus of formal pseudodifferential
operators in [Sch1]: for every integer n (positive, negative or zero), Schur considers the
formal differential “Laurent” series of the form

F =
∑

−∞<k≤n
k an integer

fk(x)D
k, (1.3)

where the coefficients fk(x), −∞ < k ≤ n, are smooth complex-valued functions of x
and D = d

dx
. (He does not discuss the existence of an operator in a space of functions

that corresponds to this formal series.) The sum of two formal “Laurent” series and the
product of such a series and a complex constant are defined in the usual way. To define
the product F ◦G of two such series F and

G =
∑

−∞<l≤m
l an integer

gl(x)D
l, (1.4)

one needs a rule for commuting powers of the operator D with powers of the operator of
multiplication by the function a(x). This rule is defined by the formulas

Da = a(x)D + a′(x)I,

and

D−1a = a(x)D−1 − a′(x)D−2 + a′′(x)D−3 + · · · + (−1)k−1a(k−1)(x)D−k + · · · ,

where a′(x), a′′(x), . . . a(k−1)(x), . . . are the derivatives of the function a(x) of the in-
dicated order. The set of all formal differential “Laurent” series provided with such
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operations becomes an associative (but not commutative) ring over the field of complex
numbers. If the function fn(x) is invertible (in which case we can and will assume that
fn(x) ≡ 1), then the formal Laurent series (1.3) is invertible, and its inverse is of the form

H =
∑

−∞<l≤−n

hl(x)D
l, (1.5)

where h−n(x) = 1, and the coefficients hk(x) are polynomials in the functions fk(x), k <
n, and their derivatives.

In particular, a differential operator P of the form (1.1) may be considered as a formal
“Laurent” series (1.3) whose “positive” part F+ =

∑
0≤k≤n

fk(x)D
k coincides with P and

whose “negative” part F− =
∑

−∞<k<0

fk(x)D
k vanishes. In [Sch1], Schur proved that if each

of two formal differential Laurent series F1 and F2 commutes with a differential operator
P of the form (1.1) : P ◦ F1 = F1 ◦ P and P ◦ F2 = F2 ◦ P , then F1 and F2 commute
with each other : F1 ◦ F2 = F2 ◦ F1. In particular, this result is applicable to polynomial
differential operators Q1 and Q2 of the form (1.2) commuting with P . (Q1 and Q2 are
considered as differential formal Laurent series whose “negative” parts are equal to zero.)
Schur gives an explicit description of the commutant of the differential operator P (and,
even more generally, the description of the commutant of any formal differential Laurent
series). The notion of the fractional power P 1/n of the differential operator P is involved in
this description.

Let n ≥ 0 and let F be a formal differential Laurent series of the form (1.3). The formal
differential Laurent series F 1/n is defined as the formal differential series R for which the
equality

R ◦R ◦ · · · ◦R︸ ︷︷ ︸
n times

= F (1.6)

holds. In [Sch1] it is proved that if the function (fn(x))
1/n exists (in which case we can

and will assume that fn(x) ≡ 1), then such a series R = F 1/n exists and is of the form

R =
∑

−∞<ρ≤1
ρ an integer

rρ(x)D
ρ , (1.7)

where r1(x) ≡ 1. The coefficients r0(x), r−1(x), r−2(x), . . . can be determined in a re-
cursive manner as polynomials of the functions fn−1(x), fn−2(x), . . . , f0(x), . . . and their

derivatives. The differential Laurent series F k/n (k an integer) is defined as F k/n def
=

(F 1/n)k.

For example, if
L = D2 + q(x)I (1.8)

is a Sturm-Liouville differential operator of second order, then

L1/2 = D + s0(x)I + s−1(x)D
−1 + s−2(x)D

−2 + s−3(x)D
−3 + s−4(x)D

−4 + · · · , (1.9)
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where

s0(x) = 0, s−1(x) =
1
2
q(x), s−2(x) = −1

4
q ′, s−3(x) =

1
8
q ′′(x)− 1

8
q2(x),

s−4(x) = − 1
16
q ′′′(x) + 3

8
q(x)q ′(x), . . . .

(1.10)

Furthermore, L3/2 = (L1/2)3 = L · L1/2 = L1/2 · L, and we can calculate

L3/2 = D3 + t2(x)D
2 + t1(x)D + t0(x)I + t−1(x)D

−1 + · · · , (1.11)

where

t2(x) = 0, t1(x) =
3

2
q(x), t0(x) =

3

4
q ′(x), t−1(x) =

1

8
q ′′(x) +

3

8
q2(x), . . . (1.12)

In [Sch1] it is proved that the formal differential Laurent series F commutes with a
differential operator P of the form (1.1) (of order n) if and only if F is of the form

F =
∑

−∞<k≤n

ckP
k/n , (1.13)

where ck are complex constants (ck do not depend on x). In particular, some series of
the form (1.13) can in fact be differential operators (if by some very special choice of the
ck the negative part F− of the series (1.13) vanishes). These and only these differential
operators commute with P . Moreover, it is clear that series of the form (1.13) commute
with each other.

The results of Schur on fractional powers of differential operators were forgotten. The
resurgence of interest in this topic is related to the inverse scattering method for solving
non-linear evolution equations. The inverse scattering method was discovered and applied
to the Korteweg - de Vries equation by C.Gardner, J.Green, M.Kruskal and R.Miura in
their famous paper [GGKM]. This method was then extended to some other important
equations towards the end of the sixties. P. Lax [Lax] developed some machinery (that
is now commonly known as the method of L -A pairs, or Lax pairs) that allows one to
use the inverse scattering formalism in a more organized way. The first step of the Lax
method is to express the given evolution equation in the form

∂L

∂t
= [A, L], (1.14)

where L is a differential operator (with respect to x), some of whose coefficients depends
on t, A is a differential operator with respect to x that does not depend on t and (the
commutator) [A, L] = AL − LA. In subsequent developments, the evolution equation
(1.14) was investigated using various analytic methods drawn from the theory of inverse
spectral and scattering problems and the Riemann-Hilbert problem, among others. In
their article [GeDi], I.M.Gel’fand and L.A.Dikii (=L.Dickey) observed that fractional
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powers of differential operators can help in a systematic search for pairs L and A whose
commutator [A, L] is related to a nonlinear evolution equation. The idea of Gel’fand
and Dikii is to consider the “positive” part (Lα)+ of some fractional power Lα as such
an operator A. Let us explain how the fractional powers of the Sturm-Liouville operator
L of the form (1.8) can be applied to construct the L -A pair for the Korteveg - de
Vries equation. Since an operator L of the form (1.8) is of second order, it suffices to
consider only integer and half-integer powers of L. Integer powers do not lead to anything
useful: the appropriate A just commutes with L. Half-integer powers are more interesting.
According to (1.9)-(1.10), (L1/2)+ = D. The direct computation of the commutator gives:
[A, L] = q′I for A = D. The evolution equation (1.14) is of the form ∂q

∂t
= ∂q

∂x
in this case.

The case A = (L3/2)+ is much more interesting. From (1.11)-(1.12) it follows that

A = D3 +
3

2
q(x)D +

3

4
q ′(x)I . (1.15)

The direct calculation of the commutator of the differential expressions A and L of the
forms (1.15) and (1.8), respectively, gives

[A, L] =
1

4
q ′′′(x) +

3

2
q(x) q′(x). (1.16)

Thus, the evolution equation (1.14) takes the form

∂q

∂t
=

1

4

∂3q

∂x3
+

3

2
q
∂q

∂x
. (1.17)

This is the Korteweg - de Vries equation. In the paper [GeDi] a symplectic structure
was introduced and a Hamiltonian formalism was developed. The approach of Gel’fand
and Dikii was further developed by M.Adler [Adl] and by B.M.Lebedev and Yu.I.Manin
[LebMa]. However, the results of Schur on permutable differential expressions and on frac-
tional powers of differential expressions are not mentioned either in [Adl], or in [LebMa],
nor are they mentioned in the well-known surveys [Man], [Tsuj], dedicated to algebraic
aspects of non-linear differential equations. The fact that these results of Schur were
largely forgotten may be due to the lack of a natural area of application for a long time.
We found only one modern source where this aspect of Schur’s work is mentioned: Tata
Lectures by D.Mumford. Mumford cites the paper [Sch1] in Chapter IIIa , §11 of [Mum]
(Proposition 11.7).

The paper [Sch1] does not discuss the structure of the set of differential expressions
which commute with a given operator P . The answer “the differential expressions which
commute with P are those formal Laurent series in P 1/n for which “negative part” vanishes
is not satisfactory because it just replaces the original question by the question “what
is the structure of formal Laurent series in P 1/n for which “negative part” vanishes. Of
course, if P is a given differential operator and b is a polynomial with constant coefficients
then the differential operator Q = b(P ) commutes with P . More generally, if Z is any
differential operator and a and b are polynomials with constant coefficients then the
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operators P = a(Z) and Q = b(Z) commute each with other. However there exist pairs of
commuting differential operators P, Q which are not representable in the form P = a(Z),
Q = b(Z). (See formula (1) in [BuCh1].) The problem of describing pairs of commuting
differential operators was essentially solved by J.L.Burchnall and T.W.Chaundy [BuCh1],
[BuCh2], [BuCh3] in the twenties. See also [Bak1]. (The complete answer was obtained
for those pairs P, Q whose orders are coprime.) The answer was expressed in terms of
Abelian functions. In particular, it was proved that the commuting pair P, Q satisfy the
equation

r(P, Q) = 0 , (1.18)

where r(λ, µ) is a (non-zero) polynomial of two variables with constant coefficients. (This
result is known as the Burchnall-Chaundy lemma.) The remarkable papers [BuCh1],
[BuCh2], [BuCh3], [Bak1] were forgotten. Their results were rediscovered and further de-
veloped by I.M.Krichever, [Kri1], [Kri2], [Kri3], [Kri4] in the seventies. (When Krichever
started his investigations in this direction, he was not aware of the results of Burchnall
and Chaundy. In his paper [Kri1] he mentioned only the relevant recent works of a group
of Moscow mathematicians. However, in his subsequent papers he referred to [BuCh1],
[BuCh2], [BuCh3] and [Bak1]; see the “Note in Proof” at the end of [Kri2] and references
[2-4] in [Kri3].)

Thus, the history of commuting differential expressions, which began with the work of
Schur [Sch1], is rich in forgotten and rediscovered results.
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[Sch1] Schur, I. Über vertauschbare lineare Differentialausdrücke [On permutable dif-
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2 . Generalized limits of infinite sequences

and their matrix transformations.

One of the basic notions of mathematical analysis is the notion of the limit of a sequence
of real or complex numbers. A sequence {xk}1≤k<∞ of complex numbers for which the
limk→∞ xk exists is said to be convergent. A sequence {xk}1≤k<∞ of complex numbers
for which supk |xk| < ∞ is said to be bounded. Let the set of all convergent sequences
be denoted by c, the set of all bounded sequences be denoted by m, and the set of all
sequences be denoted by s.

It is clear that each of the sets c, m and s is a vector space, and that c ⊂m ⊂ s.

Sometimes one needs to define a generalized limit R - limk→∞ xk (according to some rule
R) for some sequences for which the “usual” limit limk→∞ xk may not exist. Let cR
denote the set of all sequences {xk}1≤k<∞ for which the R - limk→∞ xk is defined (in other
words,“exists”). Usually some natural requirements are imposed on such a rule R. Thus,
for example, it is often required that the set cR be a vector space. In this case, if the
condition

c ⊂ cR and R-lim
k→∞

xk = lim
k→∞

xk for all {xk}1≤k<∞ ∈ c ,

is satisfied, then the generalized limit R- lim is said to be regular.

A familiar example of a generalized limit is the well known (Cèsaro) C -limit: Given a
sequence {xk}1≤k<∞, the sequence {yk}1≤k<∞ is defined as

yn =
x1 + x2 + · · · + xn

n
(n = 1, 2, 3 , . . . )

By definition, the C -limit of the sequence {xk} exists, if usual limit of the sequence {yk}
exists, and

C - lim
k→∞

xk
def
= lim

k→∞
yk .

It is not difficult to prove that the C - limit is regular. There are sequences for which the C -

limit exists, but the “usual” limit does not exist. For example, the sequence xk
def
= 1+(−1)k

2

does not tend to a limit as k →∞ , but the Cèsaro limit exists, and C - lim
k→∞

xk =
1
2
.

Matrix transformations can be used to define generalized limits. Let A be an infinite
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matrix:

A =




a11 a12 · · · a1k · · ·
a21 a22 · · · a2k · · ·
· · · · ·
an1 an2 · · · ank · · ·
· · · · ·




, (2.1)

where the matrix entries ajk are real or complex numbers. The matrix transformation
x → y = Ax is defined for those sequences x = {xk}1≤k<∞ for which all the series∑
1≤k<∞

ankxk, n = 1, 2, 3, . . . , converge. The resulting sequence y = Ax, y = {yk}1≤k<∞

is defined by yn =
∑

1≤k<∞

ankxk, (n = 1, 2, 3, . . . ). It is clear that the domain of definition

DA of the matrix transformation generated by the matrix A is a vector space, DA ⊂ s.
Moreover, there is a natural generalized limit associated with each such infinite matrix
A (that we denote as A-limit and which we shall refer to as the matrix generalized limit
generated by the matrix A ). Namely, by definition, the A-limit of a sequence x =
{xk}1≤k<∞ exists, if x ∈ DA (i.e. the matrix transformation Ax is defined), and the
sequence y = Ax is convergent: y ∈ c. By definition,

A - lim
k→∞

xk = lim
k→∞

yk . (2.2)

The Cèsaro generalized limit (C -limit) can be considered as the matrix generalized limit

generated by the lower triangular matrix A for which ank =
1

n
for k = 1, 2, . . . , n

and ank = 0 for k > n . The systematic investigation of matrix generalized limits
was initiated by O.Toeplitz, [Toep]. A fundamental contribution to the theory of matrix
generalized limits was made by Schur. In [Sch16] he introduced three classes of matrix
transformations: convergence preserving, convergence generating and regular.

A matrix transformation x→ Ax is said to be

1. convergence preserving, if it is defined for every sequence x ∈ c, and for x ∈ c the
sequence y = Ax belongs to c as well.

2. convergence generating, if it is defined for every sequence x ∈m, and for x ∈m the
sequence y = Ax belongs to c.

3. regular, if it is convergence preserving and, moreover, if x ∈ c and y = Ax, then the
equality lim

k→∞
yk = lim

k→∞
xk holds.

Schur obtained necessary and sufficient conditions for a matrix transformation x→ Ax
to belong to each of these three classes. These conditions are presented in the following
three theorems that are taken from [Sch16]. They are formulated in terms of the numbers

σn =
∑

1≤k<∞

ank and ζn =
∑

1≤k<∞

|ank| (2.3)
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for those n, 1 ≤ n < ∞, for which these values exist. The values σn are said to be the
row sums; the values ζn are said to be the row norms.

THEOREM I. The matrix transformation A is convergence preserving if and only if the
following three conditions are satisfied:

1. For every k the following limit exists

ak
def
= lim

n→∞
ank . (2.4)

2. The row sums σk tend to the finite limit σ:

σ = lim
k→∞

σk . (2.5)

3. The sequence of row norms is bounded:

sup
1≤n<∞

ζn <∞. (2.6)

If these conditions are satisfied, then the series
∑

1≤k<∞

ak converges absolutely and, if

α
def
=

∑

1≤k<∞

ak , (2.7)

then for every convergent sequence {xk}

lim
n→∞

∑

1≤k<∞

ankxk = (σ − α) lim
k→∞

xk +
∑

1≤k<∞

akxk . (2.8)

THEOREM II. The convergence preserving matrix transformation A is regular if and
only if all the column limits ak defined in (2.4) are equal to zero:

ak = 0 (k = 1, 2, 3, . . . ) , (2.9)

and the limit σ of the row sums σn defined in (2.5) is equal to 1:

σ = 1 . (2.10)

THEOREM III. The matrix transformation A is convergence generating if and only the
three assumptions of Theorem I are satisfied and the series

∑
1≤k<∞

|ank|, n = 1, 2, 3, . . . ,

converge uniformly with respect to n. In this case

lim
n→∞

∑

1≤k<∞

ankxk =
∑

1≤k<∞

akxk . (2.11)
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Theorem II was formulated and proved by O.Toeplitz in ([Toep]). However, Toeplitz
considered only lower-triangular matrices A . Theorem II is commonly known as the
Toeplitz theorem or as the Silverman-Toeplitz theorem, since part of Theorem II was
obtained also by L.L. Silverman in his PhD thesis, [Silv]. Theorem I is known as the
Schur-Kojima theorem. (Part of Theorem I was also obtained by T.Kojima for lower-
triangular matrices.) The paper [Koj] by Kojima was published earlier than the paper
[Sch16] by Schur. However, in a footnote on the last page of [Sch16], Schur remarks
that he only became aware of the paper [Koj] while reading the proofs of his own paper.
The matrices A which correspond to convergent generated transformations are called
Schur matrices in [Pet]. There is a rich literature dedicated to matrix generalized limits
and to matrix summation methods. (If a considered sequence is a sequence of partial
sums of a series, then the terminology “generalized summation method” is used instead
of “generalized limit” or “generalized limitation method”.) We mention only the books
[Bo], [Coo], [Har], [Pet], [Pey] and [Zel]. In all these books, the sections that deal with
the basic theory of generalized limits and generalized summation methods cite the results
of Schur and refer to him as one of the founders of this theory.

In a footnote near the beginning of his paper [Sch16], Schur notes that his considera-
tions have many points in common with the considerations of H. Lebesgue and H.Hahn,
dedicated to the sequence of integral transformations of the form

yn(r) =

b∫

a

An(r, s) ds .

He also considers some applications of his Theorems I - III to the multiplication of series
and to Tauberian theorems. In particular, he derives the Tauberian therem by Tauber
(about power series) from Theorem II.

In his other paper [Sch6], Schur consider Hölder and Cèsaro limit methods of r-th order
and proves that these limit methods are equivalent.

Given a sequence x1, x2, x3, . . . of real or complex numbers, we form the sequences

h(1)n =
x1 + x2 + · · · + xn

n
, h(2)n =

h
(1)
1 + h

(1)
2 + · · · + h

(1)
n

n
,

h(3)n =
h
(2)
1 + h

(2)
2 + · · · + h

(2)
n

n
, . . . , h(r)n =

h
(r−1)
1 + h

(r−1)
2 + · · · , +h(r−1)

n

n
·

The sequence h
(r)
1 , h

(r)
2 , . . . , h

(r)
k , . . . is said to be the sequence of Hölder means of order

r (constructed from the initial sequence x1, x2, x3, . . . ). Another class of sequences can
be constructed as follows. Let

s(1)n = x1 + x2 + · · · + xn, s(2)n = s
(1)
1 + s

(1)
2 + · · · + s(1)n ,

11



s(3)n = s
(2)
1 + s

(2)
2 + · · · + s(2)n , · · · , s(r)n = s

(r−1)
1 + s

(r−1)
2 + · · · + s(r−1)

n ,

and set

c(r) =
s(r)(

n+r−1
r

)

The sequence c
(r)
1 , c

(r)
2 , . . . , c

(r)
k , . . . is said to be the sequence of Cèsaro means of order r

(constructed from the initial sequence x1, x2, x3, . . . ). The transformations

{x1, x2, . . . , xk, . . . } → {h(r)1 , h
(r)
2 , . . . , h

(r)
k , . . . }

and
{x1, x2, . . . , xk, . . . } → {c(r)1 , c

(r)
2 , . . . , c

(r)
k , . . . }

can be considered as matrix transformations based on appropriately defined matrices
that we denote by H(r) and C(r), respectively. These matrices are lower-triangular. Both
generalized limits H (r)-limit and C (r)-limit are regular. In [Sch6] it is shown that these
generalized limits are equivalent in the following sense:

Let a sequence x1, x2, x3, . . . and a natural number r be given. Then the sequence of
Cèsaro means {c(r)1 , c

(r)
2 , . . . , c

(r)
k , . . . } tends to a finite limit if and only if the sequence

of Hölder means {h(r)1 , h
(r)
2 , . . . , h

(r)
k , . . . } tends to a finite limit. Moreover, in this case,

the two limits must agree.

Schur obtained this result by showing that both the matrices (H(r))−1 ·C(r) and (C(r))−1 ·
H(r) satisfy the assumptions of Theorem II (the Toeplitz regularity criterion). Thus, the
appropriate matrix transformations are regular.

This result by Schur was not new. At the time that the paper [Sch6] was published
proofs of the equivalency of Hölder’s and Cèsaro’s methods had already been obtained by
K.Knopp, by W. Schnee and by W.B.Ford. However, these proofs were very computa-
tional, very involved and not very transparent.
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3 . Estimates for matrix and integral operators,

bilinear forms and related inequalities.

The terms Schur test, Schur (or Hadamard-Schur) multiplication of matrices, Schur (or
Hadamard-Schur) multipliers are all related to Schur’s contributions to the estimates of
operators and bilinear forms, see [Sch4]. In this section we consider the Schur test. Results
related to the Schur (or Schur-Hadamard) product will be considered in the next section.

Let A = ‖ajk‖ be a matrix, finite or infinite, with real or complex entries. This matrix
generates the bilinear form

A(x, y) =
∑

j,k

ajkxkyj , (3.1)
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where x and y are vectors with entries {xj} and {yk} that are real or complex. The matrix
A also generates the linear operator

x→ Ax, where (Ax)j =
∑

k

ajkxk . (3.2)

If the matrix A is not finite, we consider only finite vectors x and y, i.e., vectors with only
finitely many nonzero entries. This allows us to avoid troubles related to the convergence
of infinite sums. If the sets of vectors x and y are provided with norms, then a problem
of interest is to estimate the bilinear form (3.1) in terms of the norms of the vectors x
and y. In particular, the sets of vectors x and y can be provided with l2 norms:

‖x‖l2 =
{∑

j

|xj |2
}1/2

, ‖y‖l2 =
{∑

k

|yk|2
}1/2

. (3.3)

If the estimate
|A(x, y)| ≤ C‖x‖l2‖y‖l2 (3.4)

holds for every pair of vectors x and y for some constant C <∞, then the bilinear form
(3.1) is said to be bounded. The smallest constant C, for which the inequality (3.4) holds,
is denoted by CA and is termed the norm of the bilinear form A(x, y):

CA = sup
x 6=0, y 6=0

|A(x, y)|
‖x‖l2‖y‖l2

. (3.5)

The norm CA of the bilinear form generated by the matrix A coincides with the norm of
the linear operator generated by this matrix, considered as a linear operator acting from
l2 into l2:

‖A‖l2→l2 = sup
x 6=0

‖Ax‖l2
‖x‖l2

. (3.6)

The cases in which it is possible to express the norm CA in terms of the entries of the
matrix A are very rare. Thus, the problem of estimating the value of CA in terms of the
matrix entries is a very important problem. In particular, if the matrix A is infinite, it
is important to recognize whether the value CA is finite or not. Schur made important
contributions to this circle of problems.

In [Sch4] (§2, Theorem I), the following estimate was obtained.

THEOREM (The Schur test). Let A = ‖ajk‖ be a matrix, and let

ζ(A) = sup
j

∑

k

|ajk| , κ(A) = sup
k

∑

j

|ajk| . (3.7)

Then
CA ≤

√
ζ(A)κ(A) . (3.8)
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It is enough to prove the estimate (3.8) for finite matrices A (of arbitrary size). The
proof of the estimate (3.8) that was obtained in [Sch4] is based on the fact that

CA =
√
λmax, (3.9)

where λmax is the largest eigenvalue of the matrix B = A∗A. Let ξ = {ξk} be the
eigenvector which corresponds to the eigenvalue λmax:

λmaxξ = Bξ .

Let |ξp| = max
k
|ξk|. Then, since λmax|ξp| ≤

(∑
k

|bpk|
)
|ξp| , it is easily seen that

λmax ≤
∑

k

|bpk| ,

where the {bjk} are the entries of the matrix B = A∗A: bjk =
∑
r

arjark . Thus,

∑

k

|bpk| ≤
∑

k

∑

r

|arp||ark| ≤
(∑

r

|arp|
)
·
(
max

r

∑

k

|ark|
)
≤ κ(A) · ζ(A) .

This completes the proof.

Another proof, which does not use the equality (3.9), is even shorter:

∣∣A(x, y)
∣∣ ≤

∑

j,k

|ajk| · |xk| · |yj|

=
∑

j,k

(
|ajk|1/2|xk|

)
·
(
|ajk|1/2|yj|

)

=
(∑

j,k

|ajk||xk|2
)1/2
·
(∑

j,k

|ajk||yj|2
)1/2

(3.10)

≤
(
sup
k

∑

j

|ajk| ·
∑

k

|xk|2
)1/2
·
(
sup
j

∑

k

|ajk| ·
∑

j

|yj|2
)1/2

=
√
κ(A)ζ(A)‖x‖l2‖y‖l2 .

The estimate (3.8) can be considered as a special case of an interpolation theorem that
is obtained by introducing the l1 and l∞ norms. If x = {xk} is a finite sequence of real or
complex numbers, then these norms are defined by the usual rules:

‖x‖l1 =
∑

k

|xk| and ‖x‖l∞ = sup
k
|xk| , (3.11)
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respectively. If A is a matrix, we can consider the linear operator generated by this matrix
as an operator acting in the space l1 as well as an operator acting in the space l∞. The
corresponding norms ‖A‖l1→l1 and ‖A‖l∞→l∞ are defined by the formulas

‖A‖l1→l1 = sup
x 6=0

‖Ax‖l1
‖x‖l1

and ‖A‖l∞→l∞ = sup
x 6=0

‖Ax‖l∞
‖x‖l∞

·

Unlike the norm‖A‖l2→l2, the norms ‖A‖l1→l1 and ‖A‖l∞→l∞ can be expressed explicitly
in terms of the matrix entries {ajk}:

‖A‖l1→l1 = κ(A) and ‖A‖l∞→l∞ = ζ(A) ,

where the numbers ζ(A) and κ(A) are defined in (3.7). The estimate (3.8) takes the form

‖A‖l2→l2 ≤
√
‖A‖l1→l1 · ‖A‖l∞→l∞ . (3.12)

The inequality (3.12) is a direct consequence of the M.Riesz’ Convexity Theorem. To
apply this theorem, let ‖A‖lp→lq denote the norm of the operator, generated by a matrix
A, considered as an operator from lp into lq for 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. Then, Riesz’
theorem states that log ‖A‖lp→lq is a convex function of the variables α = 1/p and β = 1/q
in the square 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. This theorem can be found in [HLP], Chapter VIII,
sec.8.13. G.O.Thorin, [Tho], found a very beautiful and ingenious proof of this theorem
using a new method based on Hadamard’s Three Circles Theorem from complex analysis.
Therefore this theorem is also called the Riesz-Thorin Convexity Theorem. Now this
theorem is presented in many sources, and even in textbooks. The Riesz-Thorin Convexity
Theorem belongs to a general class of interpolation theorems for linear operators. A
typical interpolation theorem for linear operators deals with a linear operator that is
defined by a certain analytic expression, for example by a certain matrix or kernel, but is
considered not in a fixed space, but in a whole “scale” of spaces. A typical interpolation
theorem claims that if the linear operator, generated by the given expression, is bounded
in two spaces of the considered “scale of spaces”, then it also is bounded in all the
“intermediate” spaces. Moreover, the norm of the operator in the “intermediate” spaces
is estimated through the norms of the operators in the original two spaces. The Riesz-
Thorin theorem states that the spaces lp with 1 < p <∞ are “intermediate” for the pair
of spaces l1 and l∞.

The estimate (3.8) can also be considered as a special case of another interpolation
theorem for linear operators, the so-called interpolation theorem for modular spaces. This
theorem is based on quite another circle of ideas that are more geometrical in nature and
was partially inspired by Schur’s work ([Sch18]). We will discuss this in the next section.

For practical application, the “weighted” version of the Schur estimate (3.8) is useful. In
fact, this version was also considered in ([Sch4]) ( but not as explicitly, as the “unweighted”
version). In the weighted version, a positive sequence {rk}, rk > 0, appears and the
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“weighted” l1- and l∞-norms

‖x‖l1,r =
∑

k

|xk| · rk and ‖x‖l∞, r−1 = sup
k

‖xk‖
rk

(3.13)

are considered.

THEOREM (The weighted Schur test). Let A = [ajk] be a matrix and let rk be a sequence
of strictly positive numbers: rk > 0. Let

ζr(A) = sup
j

1

rj
·
∑

k

|ajk| · rk and κr(A) = sup
k

1

rk

∑

j

|ajk| · rj . (3.14)

Then the value CA, defined in (3.5) is subject to the bound

CA ≤
√
ζr(A)κr(A) . (3.15)

It is easy to see that

ζr(A) = sup
x 6=0

‖Ax‖l1, r
‖x‖l1, r

and κr(A) = sup
x 6=0

‖Ax‖l∞, r−1

‖x‖l∞, r−1

.

Thus, the estimate (3.15) can be presented in the form

‖A‖l2→l2 ≤
√
‖A‖l1, r→l1, r · ‖A‖l∞, r−1→l∞, r−1 . (3.16)

The inequality (3.16) is also an “interpolation” inequality. It shows that the space l2 is
an “intermediate” space, between the spaces l1, r and l∞, r−1 .

The inequality (3.15) can be proved in much the same way as the special case (3.8).

As an example, we consider a Toeplitz matrix, i.e., a matrix A of the form ajk = wj−k.
The Schur test leads to the estimate

CA ≤
∑

l

|wl| .

The same bound holds for Hankel matrices, i.e., matrices A of the form ajk = wj+k .

As a second example, let us consider the Hilbert matrix H+ =

[
1

j + k − 1

]∞

j,k=1

. For

this matrix,
∑
k

|h+jk| = ∞, so the “unweighted” Schur test does not work. However, if
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we chose rl = l−α with a fixed α ∈ (0, 1), then sup
1≤j<∞

(
jα

∑
1≤k<∞

k−α

j + k

)
= s(α) < ∞.

Thus, ‖H+‖ ≤ s(α). Then we can optimize the estimate by choosing the “best” α. In the
discrete case the precise value s(α) is unknown. Nevertheless, it is reasonable to choose
α = 1/2, since this is the optimum value for the continuous analogue of the matrix H+:

xα
∞∫

0

1

x+ y
y−αdy =

π

sin πα
, min

α∈(0, 1)

π

sin πα
= π is attained at the point α = 1/2 .

(3.17)
Some other applications of the Schur test can be found in [BiSo], Chapter 2, Section 10.

Schur used the estimate (3.8) in ([Sch4]) to study the infinite Hilbert forms

H− =

∞∑

p,q=1
p 6=q

xpyq
p− q , H+ =

∞∑

p,q=1

xpyq
p+ q − 1

, (3.18)

and the generalized Hilbert forms

H−
λ =

∞∑

p,q=1

xpyq
p− q + λ

, H+
λ =

∞∑

p,q=1

xpyq
p+ q − 1 + λ

, (0 < λ < 1).

For the Hermitian matrices

N = (H+)∗H+ + (H−)∗H− = [npq]
∞
p,q=1 and Nλ = (H+

λ )
∗H+

λ + (H−
λ )

∗H−
λ ,

the conditions

∑

1≤q<∞

|npq| < 3

∞∑

q=−∞
q 6=p

1

(p− q)2 = π2,
∑

1≤q<∞

|(nλ)pq| ≤
∑

−∞<r<∞

1

(r + λ)2
=

π2

sin 2 πλ

are satisfied for every p. According to (3.8), the estimates

CH+ ≤ π, CH− ≤ π, CH+
λ
≤ π

sin πλ
, CH−

λ
≤ π

sin πλ
(3.19)

hold. It turns out that in fact equality prevails in the first two inequalities in (3.19), i.e.,
the method of Schur gives the exact values for the norms of the matrices H+, H−. (See
[HLP], Chapter IX). It should be remarked that an essential part of Chapters VIII and
IX of [HLP] is based on results of the paper [Sch4].

In § 6 of [Sch4], the infinite quadratic form

F (t) =
∞∑

p,q=1
(p 6=q)

sin (p− q)t
p− q xpxq , (3.20)
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is considered, where t,−π < t < π, is a parameter. It is shown that the form F (t) is
bounded and that

− t
∞∑

p=1

x2p ≤ F (t) ≤ (π − t)
∞∑

p=1

x2p . (3.21)

It is also shown that the quadratic form

∞∑

p,q=1
(p 6=q)

∣∣∣∣
sin (p− q)t
p− q

∣∣∣∣ xpxq

is unbounded for t 6= 0. The form (3.20) is interesting because it is an example of a
symmetric infinite matrix

[
apq
]
that corresponds to a bounded bilinear form, whereas the

form related to the matrix
[
|apq|

]
is unbounded. The Hilbert matrix [h−pq], also generates

a bounded bilinear form H− (see (3.18)) and the matrix
[
|h−pq|

]
also corresponds to an

unbounded form. However, the Hilbert matrix H− is antisymmetric.
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4 . The Schur product and Schur multipliers.

Let A and B be matrices of the same size whose entries are either real or complex
numbers (or even belong to some ring R): A = [apq], B = [bpq]. The Schur product A ◦B
of the matrices A and B is the matrix C = [cpq] (of the same size as A and B) for which
cpq = apq · bpq.

The term Schur product is used because the product A◦B was introduced in ([Sch4]) for
matrices, and some basic results about this product were obtained by Schur in that paper.
The most basic of these results states that the cone of positive semidefinite matrices is
closed under the Schur product. We recall that a square matrixM = [mpq] (with complex
entries) is said to be positive semidefinite if the inequality

∑
p,q

mpqxqxp ≥ 0 holds for every

sequence {xk} of complex numbers. (In the case of an infinite matrix M , only sequences
{xk} with finitely many xk different from zero are considered.)

THEOREM (The Schur product theorem, Theorem VII, [Sch4]). If A and B are positive
semidefinite matrices (of the same size), then their Schur product A ◦ B is a positive
semidefinite matrix as well.

For self-evident reasons, the Schur product is sometimes called the entrywise product
or the elementwise product. It is also often referred to as the Hadamard product. The
term Hadamard product seems to have appeared in print for the first time in the 1948
(first) edition of [Hal1]. This may be due to the well known paper of Hadamard [Had], in
which he studied two Maclaurin series f(z) =

∑
n anz

n and g(z) =
∑

n bnz
n with positive

radii of convergence and their composition h(z) =
∑

n anbnz
n, which he defined as the

coefficientwise product. Hadamard showed that h(·) can be obtained from f(·) and g(·)
by an integral convolution. He proved that any singularity z1 of h(·) must be of the form
z1 = z2z3, where z2 is a singularity of f(·) and z3 is a singularity of g(·). (This result is
commonly known as the Hadamard composition theorem.) Even though Hadamard did
not study entrywise products of matrices in this paper, the enduring influence of the cited
result as well as his mathematical eminence seems to have linked his name firmly with
term-by-term products of all kinds, at least for analysts. (Presentations of the Hadamard
composition theorem can be found, for example, in [Bie], Theorem 1.4.1, and in [Tit],
Section 4.6.

PROOF of the Schur product theorem. It is enough to prove this theorem for matrices
of arbitrary finite size. First we prove the theorem for matrices A and B of rank one.
In this case the matrices A and B must be of the form A = a · a∗, B = b · b∗, where
a and b are column vectors. It is evident that the matrix C = A ◦ B is of the form
C = c · c∗ where the column vector c is just the Schur product of the column vectors a
and b: c = a ◦ b. Hence, the matrix C is positive semidefinite. In the general case, we
use the spectral decomposition theorem. This theorem states that every finite positive

20



semidefinite matrix M admits a decomposition of the form M =
∑

λ∈σ(M)

M(λ), where the

summation index λ runs over the spectrum σ(M) of the matrix M , and the matrices
M(λ) are either positive semidefinite matrices of rank one or zero matrices. Decomposing
the given matrices A and B in this way: A =

∑
λ∈σ(A)

A(λ), B =
∑

µ∈σ(B)

B(µ), we see that

A ◦B =
∑

λ∈σ(A)
µ∈σ(B)

A(λ) ◦B(µ) is a sum of positive semidefinite matrices: The Schur product

A(λ) ◦ B(µ) of positive definite matrices of rank one is a positive semidefinite matrix,
whereas, if at least one of the matrices A(λ) or B(µ) is equal to zero, then their Schur
product is equal to zero. Thus, the theorem is proved.

Every matrix H , finite or infinite, generates a linear operator TH acting in the space of
all matrices of the same size as H :

TH : A→ H ◦ A, or THA = H ◦ A.
The linear operator TH is said to be the Schur transformator generated by the matrix
H . (The term transformator is borrowed from [GoKr], who used it to designate a linear
operator that acts in a space of matrices (operators).) If the Schur transformator TH is a
bounded operator in a space of infinite matrices, equipped with a norm, then the matrix
H is said to be the Schur multiplier (with respect to this norm).

The first basic estimate of the norm of the transformator TH was obtained by Schur in
[Sch4] :

THEOREM (The Schur estimate for positive definite Schur transformators). Let H =
[hpq] be a positive semidefinite matrix for which

DH
def
= sup

p
hpp <∞ . (4.1)

Then
‖H ◦ A‖l2→l2 ≤ DH‖A‖l2→l2 . (4.2)

(Here, as before, ‖A‖l2→l2 is the operator norm of the matrix A considered in the ap-
propriate space l2 of sequences).

PROOF of the estimate (4.2). We reproduce here the reasoning of Schur from [Sch4]. It
suffices to consider only finite matrices. The proof is based essentially on the fact that a
positive semidefinite matrix H admits a factorization of the form

H = LL∗, (4.3)

where L = [lpq], i.e.,

hpq =
∑

r

lprlqr (∀ p, q) . (4.4)
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Therefore, the number
∑
p,q

apqhpqyqxp can be rewritten as

∑

p,q

apqhpqyqxp =
∑

p,q

apq

(∑

r

lprlqr

)
yqxp =

∑

r

∑

p,q

apq(lprxp)(lqryq) .

Thus,

∣∣∣
∑
p,q

apqhpqxpyq

∣∣∣ ≤
∑
r

∣∣∣
∑
p,q

apq(lprxp)(lqryq)
∣∣∣ ≤

∑
r

‖A‖
(∑

k

∣∣lkrxk
∣∣2
)1/2(∑

k

∣∣lkryk
∣∣2
)1/2

= ‖A‖∑
r

(∑
k

∣∣lkrxk
∣∣2)1/2

(∑
k

∣∣lkryk
∣∣2
)1/2
≤ ‖A‖

(∑
r

∑
k

∣∣lkrxk
∣∣2)1/2(∑

r

∑
k

∣∣lkryk
∣∣2)1/2

≤ ‖A‖
(∑

k

(∑
r

∣∣lkr
∣∣2)∣∣xk

∣∣2
)1/2(∑

k

(∑
r

∣∣lkr
∣∣2)∣∣yk

∣∣2
)1/2

≤ ‖A‖
(∑

k

(
max

k

∑
r

∣∣lkr
∣∣2)∣∣xk

∣∣2
)1/2(∑

k

(
max

k

∑
r

∣∣lkr
∣∣2)∣∣yk

∣∣2
)1/2

= ‖A‖
(
max

k

∑
r

|lkr|2
)(∑

k

|xk|2
)1/2(∑

k

|yk|2
)1/2

.

According to (4.4),
∑
r

|lkr|2 = hkk. Thus, max
k

(∑
r

|lkr|2
)
= max

k
hkk = DH . Finally,

∣∣∣
∑

p,q

apqhpqxpyq

∣∣∣ ≤ ‖A‖ ·DH ·
(∑

k

|xk|2
)1/2(∑

k

|yk|2
)1/2

, (4.5)

where {xk} and {yk} are arbitrary sequences. This is the estimate (4.2).

In fact, the reasoning of Schur allows us to prove a slightly more general result:

THEOREM (The Schur factorization estimate for Schur transformators). Let H = [hpq]
be a matrix which admits a factorization of the form

H = L ·M∗ , i.e., hpq =
∑

r

lprmqr (∀p, q), (4.6)

where the matrices L = [lpr] and M = [mrq] satisfy the conditions

DL
def
= sup

p

∑

r

|lpr|2 <∞ and DM
def
= sup

q

∑

r

|mqr|2 <∞ . (4.7)

Then for every matrix A (of the same size as H) the following inequality holds:

‖H ◦ A‖l2→l2 ≤
√
DLDM ‖A‖l2→l2 . (4.8)
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REMARK. The matrices L, M and H need not be square. The only restriction is that
the matrix multiplication L,M → L · M∗ is feasible. In fact, the set over which the
summation index r runs in (4.6) need not be a subset of the set of integers. It can be of
a much more general nature. Thus, for example, let X be a measurable space carrying
a sigma-finite non-negative measure dx. Let {lp(x)} and {mq(x)} be sequences of X-
measurable functions defined on X and satisfying the conditions DL < ∞, DM < ∞,
where now

DL = sup
k

∫

X

|lk(x)|2 dx and DM = sup
k

∫

X

|mk(x)|2 dx . (4.9)

Let H be a matrix with entries

hpq =

∫

X

lp(x)mq(x) dx (∀ p, q) (4.10)

(i.e., the matrix H admits a factorization of the form H = L ·M∗, where L and M are
operators acting from the Hilbert space L2(X, dx) into appropriate spaces of l∞ sequences).
Then the inequality (4.8) holds for an arbitrary matrix A (of the appropriate size), where
now DL and DM are defined in (4.9).

The last result (with X = (a, b), a finite or infinite subinterval of R, and Lebesgue
measure dx on (a, b)) appears as Theorem VI in [Sch4].

The matrix

H =
[ 1

λp + µq

]
1≤p,q<∞

,

where λk and µk are sequences of positive numbers that are separated from zero: infk λk >
0, infk µk > 0, serves as an example. Here,

hpq =

∞∫

0

e−λpx · e−µqxdx , i.e., lp(x) = e−λpx , mq(x) = e−µqx , 1 ≤ p, q <∞ ,

and for this H the inequality (4.2):

∥∥∥
[ apq
λp + µq

]∥∥∥
l2→l2

≤ DH

∥∥[apq
]∥∥

l2→l2

holds with

DH =
1

2
· 1√

infk λk
· 1√

infk µk

.

(This example is adopted from [Sch4]; it appears at the end of §4.)

It is remarkable that the existence of a factorization of the form H = L ·M∗ for the
matrix H is not only sufficient but is also a necessary condition for the operator A→ H◦A
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to be a bounded operator in the space of all matrices A (equipped with the operator norm
in l2). This converse result was proved by G.Bennett in [Ben].

THEOREM (The inversion of the Schur factorization estimate). Let a given matrix
H = [hpq] (finite or infinite) satisfy the inequality

‖H ◦ A‖l2→l2 ≤ D‖A‖l2→l2 (4.11)

for all matrices A of the same size asH , for some finite constantD that does not depend on
A. Then for every ǫ > 0, the matrix H can be factored in the form H = L ·M∗, where the
matrices L = [lpr] andM = [mrq] act from l2 to l∞ and satisfy the inequality

√
DL ·DM <

D + ǫ, and the values DL and DM are defined in (4.7), i.e., DL = ‖L‖l2→l∞ and DM =
‖M‖l2→l∞ .

This theorem appears as Theorem 6.4 in [Ben]. It shows that the Schur factorization
gives a result which is in some sense optimal. The proof of this theorem of G.Bennett
is essentially based on results obtained by A.Pietsch on absolute summing operators in
Banach spaces, see [Pie1] and [Pie2] (which, in turn, are based on fundamental results of
A.Grothendieck, see the references in [Pie1] and [Pie2]).

In [Sch4], Schur considers a new class of functions of matrices, namely, the so called
Schur (or Schur-Hadamard) functions of matrices. Let A = [apq] be an infinite matrix
whose entries have a common finite bound: |apq| ≤ R (∀p, q), where R < ∞. Let f( · )
be a function that is defined in the closed disk {z : |z| ≤ R}. The matrix f ◦(A) is defined
“entrywise” as follows:

f ◦(A)
def
= [f(apq)] .

The following result is proved in [Sch4]: Let f(z) =
∞∑
k=1

ckz
k, where

∞∑
k=1

|ck |Rk <∞ and

let the operator generated by the matrix A be bounded, i.e., ‖A‖l2→l2 < ∞. Then the
operator generated by the matrix f ◦(A) is also bounded:

∥∥f ◦(A)
∥∥
l2→l2

<∞.
This result appears as Theorem IV in [Sch4].

The concept of the Schur (Schur-Hadamard) product arises in several different areas of
analysis (complex function theory, Banach spaces, operator theory, multivariate analysis);
see the references in the introduction to [Ben]. The paper [Sty] contains some applications
of the Schur product to multivariate analysis as well as a rich bibliography of books and
articles related to Schur-Hadamard products. The paper [HorR1] contains a lot of facts
about Schur-Hadamard products and Schur-Hadamard functions of matrices as well as
a rich bibliography. In particular, it discusses fractional Schur-Hadamard powers of a
positive matrix, infinite Schur-Hadamard divisibility of a positive matrix and its relation
to the conditional positivity of the logarithmic◦ matrix. Chapter 5 of the book [HorR2]
(about eighty pages) is dedicated to the Schur-Hadamard product of matrices.

A very fruitful generalization of the Schur transformator is the the Stieltjes double-
integral operator. This notion seems to have appeared first in the papers of Yu.L.Daletskii
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and S.G.Krein [DaKr1], [DaKr2], [Da1], [Da2]. Later on, the theory of double-integral
operators was elaborated on in great detail by M.S.Birman and M.Z. Solomyak in [BiSo1]
– [BiSo4].

Let Λ and M be measurable spaces, i.e., sets provided with sigma-algebras of subsets,
and let E(dλ) and F (dµ) be two orthogonal measures in a separable Hilbert space H that
are defined on Λ and M, respectively, i.e., weakly-countably-additive functions taking their
values in the set of orthogonal projectors in H and satisfying the condition E(α)E(β) = 0
if α ∩ β = ∅ and F (γ)F (δ) = 0 if γ ∩ δ = ∅. We assume also that the orthogonal
measures E(dλ) and F (dµ) are spectral measures, i.e., they also satisfy the conditions
E(Λ) = I and F (M) = I, where I is the identity operator in H. If A is a bounded linear
operator in H, then

A =

∫∫

M×Λ

F (dµ)AE(dλ) , (4.12)

where the integral can be understood in any reasonable sense. The equality (4.12) can
be considered as a direct generalization of the matrix representation of an operator in a
Hilbert space with respect to two orthonormal bases. Namely, let the orthogonal spectral
measures E(dλ) and F (dµ) be discrete and let their “atoms” be one-dimensional orthog-
onal projectors, i.e., the atom of the measure E(dλ), located at the point λ ∈ Λ, is of the
form E({λ}) = 〈 · , eλ〉eλ and the atom of the measure F (dµ), located at the point µ ∈ M,
is of the form F ({µ}) = 〈 · , fµ〉fµ, where eλ and fµ are normalized vectors generating the
one-dimensional subspaces E({λ})H and F ({µ})H, respectively. The collection of all the
vectors {eλ} corresponding to all the atoms of the measure E(dλ) forms an orthonormal
basis of the space H. Analogously, the collection of all the vectors {fµ} corresponding
to all the atoms of the measure F (dµ) also forms an orthonormal basis of the space H.
Consequently, the representation (4.12) of the operator A takes the form

A =
∑

λ,µ

fµ aµ,λ 〈 · , eλ 〉 , (4.13)

where aµ,λ = 〈Aeλ , fµ〉 . Thus, in the case of discrete orthogonal spectral measures with
one-dimensional atoms, the representation (4.12) turns into the matrix representation of
a given operator with respect to given orthonormal bases. The matrix [aµ,λ] corresponds
to the operator A. If h(µ, λ) is a measurable function defined on M× Λ, then the sum

ThA
def
=
∑

λ,µ

fµ hµ,λ · aµ,λ 〈 · , eλ 〉 (4.14)

can be pictured as an application of the Schur transformator corresponding to the matrix
[hµ,λ] to the operator A: A 7→ ThA. The sum on the right hand side of the equality (4.14)
can be formally written as an integral:

ThA =

∫∫

M×Λ

h(µ, λ)F (dµ)AE(dλ) . (4.15)
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However, one can consider integrals of the form (4.15) for arbitrary orthogonal spectral
measures E(dλ) on Λ and F (dµ) on M, and more or less arbitrary functions h(µ, λ) on
M × Λ. If the integral (4.15) exists in a reasonable sense (either as a Lebesgue integral,
or a Riemann-Stieltjes integral, or some other integral), it is said to be a Stieltes double-
integral operator. The problem of establishing the existence of a Stieltes double-integral
operator is intimately associated with estimates for it in various norms. In particular, the
estimates ∥∥ThA

∥∥
R→R

≤ C
∥∥A
∥∥
R→R

(4.16)

and ∥∥ThA
∥∥
S1→S1

≤ C
∥∥A
∥∥
S1→S1

(4.17)

are extremely important. Here ‖Φ‖R→R is the “uniform” norm of the operator Φ, acting

in H: ‖Φ‖R→R = supv∈H,v 6=0

‖Φv‖H
‖v‖H

, and ‖Φ‖S1→S1 is its “trace” norm.

In [BiSo4] the estimate (4.16) was obtained for functions h( · , · ) which admit a “factor-
ization” of the form

h(µ, λ) =

∫

X

m(µ, x) · l(λ, x)dx , (4.18)

where X is a measurable space carrying a non-negative sigma-finite measure dx,

Cm = ess sup
µ∈M

∫

X

∣∣m(µ, x)
∣∣2dx , Cl = ess sup

λ∈Λ

∫

X

∣∣l(λ, x)
∣∣2dx (4.19)

and
C =

√
Cm · Cl <∞ . (4.20)

The inequality (4.16) is then obtained (with the same constant C) by invoking the du-
ality between the set R of all bounded operators in H and the set S1 of all trace class
operators. The estimate (4.17) holds with the same constant C (that is given in (4.20)).
Unfortunately, the paper [BiSo4] is not translated into English, but some results of this
paper, in particular, the estimate (4.16), (4.20), are reproduced in [ABF], Section 2.

The estimate (4.16) is a direct analog of the Schur factorization estimate (4.8), (4.7) and
is obtained by the same method that Schur used. However, when Birman and Solomyak
started to develop the theory of Stieltjes double-integral operators, they were not aware
of the paper [Sch4] by Schur. The close relationship between double-integral operators
and the results of Schur was only discovered later. In Section 2 of [Pel], V. Peller obtained
a result that “inverts” the estimate (4.16) by Birman and Solomyak in the same sense
that Theorem 6.4 of [Ben] (that was stated earlier) inverts the factorization estimate by
Schur. Peller proved an even stronger result, a “maximal” version of the inverse result.
Namely, he proved that if the function h is such that the estimate (4.16) holds for every
bounded operator A in H with a finite constant C that is independent of A, then the
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function h( · , · ) admits a factorization of the form (4.18), where the functions m( ·, · )
and ( ·, · ) satisfy the conditions

∫

X

(
ess sup
µ∈M

∣∣m(µ, x)
∣∣
)2
dx <∞ and

∫

X

(
esssup
λ∈Λ

∣∣l(λ, x)
∣∣
)2
dx <∞. (4.21)

The estimate (4.16), (4.20) is “semi-effective”: given the function h(µ, λ), it is not so easy
to see when it admits a factoraization of the form (4.18). To overcome this difficulty,
Birman and Solomyak developed another approach that reduces the study of Stieltes
double-integral operators to the study of integral operators of the form

u(λ)→ v(µ) =

∫

Λ

h(µ, λ)u(λ)ρ(dλ) . (4.22)

This reduction is explained in [BiSo2], Theorem 2, and also in [BiSo4], Lemma 1.1. The
operator (4.22) acts from the space L2(Λ, dρ(λ)) into the space L2(M, dσ(µ)), where
ρ(dλ) = 〈E(dλ)ω, ω〉, σ(dµ) = 〈F (dµ)θ, θ〉 and ω, θ ∈ H . The estimates for the inte-
gral operators (4.22) must be carried out for all vectors ω, θ ∈ H and must be uniform
with respect to the measures ρ(dλ) and σ(dµ). To obtain such estimates, Birman and
Solomyak developed a method that is based on the approximation of functions from
the Sobolev-Slobodetskĭı classes W α

p by piecewise-polynomial functions, [BiSo5], [BiSo6],
[BiSo7], §§ 8 - 9, [BiSo8], Chapter 3, §§ 5 - 7. In the construction of the approximating
functions, a partition of the domain of definition of the approximated function appears.
To achieve the desired uniformity of the approximation with respect to the measures ρ(dλ)
and σ(dµ), this partition must be adapted to these measures.

The approach, based on piecewise-polynomial approximations, allows one to approxi-
mate the kernels of the integral operators (4.22) by finite-dimensional kernels, and thus to
obtain the needed estimates for the singular values of the Stieltjes double-integral opera-
tors. The estimates of the double-integral operators are made not only in the uniform and
trace norms, but also in many other norms. These estimates depend upon the smoothness
of the function h( · , · ) (assuming that Λ and M are smooth manifolds).

Double-integral operators appear in the formula for differentiating functions of Hermi-
tian operators with respect to a parameter. Namely, let τ → H(τ) be a function on some
open subinterval of the real axis R whose values are self-adjoint operators in a Hilbert
space H. Let f : R→ R be a real-valued function that is defined and bounded on R and let
E(dλ, τ) be the spectral measure of the operator H(τ). Under appropriate assumptions,
Yu.L.Daletskii and S.G.Krein, [DaKr1], obtained the formula

∂f(H(τ))

∂τ
=

∫∫

R×R

f(λ)− f(µ)
λ− µ E(dµ, τ)

∂H(τ)

∂τ
E(dλ, τ) . (4.23)

This formula, which expresses the derivative
∂f(H(τ))

∂τ
as a Stieltjes double-integral

operator, seems to be the first recorded application of Stieltjes double-integral operators.
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The paper [Da1] contains a version of Taylor’s formula for operator functions. The paper
[DaKr2] (and, to some extent, the paper [Da2]) contains a more detailed presentation of
the results of the papers [DaKr1] and [Da1] as well as some extensions. Later on, Stielt-
jes double-integral operators were widely used in scattering theory. M.Sh.Birman, [Bi1],
used them to prove the existence of wave operators. ( See also [BiSo2], especially the last
paragraph of this paper.) Double-integral operators are involved in the study of the so
called spectral shift function (see [BiSo10] and [BiYa]). The paper [BiSo11] is devoted to
the application of double-integral operators to the estimation of perturbations and com-
mutators of functions of self-adjoint operators. It is worth noticing that double-integral
operators allow one to make an abstract and symmetric definition of a pseudodifferential
operator with prescribed symbol (see item 3 of the paper [BiSo9]).

Thus, the ideas of Issai Schur on the termwise multiplication of matrices, partially
forgotten and rediscovered, are seen to lead very far from the original setting.
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5 . The Schur Convexity Theorem.

The well known Hadamard inequality states that

detH ≤
∏

1≤k≤n

hkk (5.1)

for every non-negative definite Hermitian matrix H = [hjk]1≤j,k≤n. (There are many
proofs; see, for example, [HoJo], Section 7.8.) In a short but penetrating paper published
in 1923, Issai Schur [Sch18] gave a highly effective method for deriving this inequality.
However the importance of the paper [Sch18] rests primarily on the ideas which are con-
tained there and by the impact which the paper had on various areas of mathematics, some
of which lie very far from the original setting. This paper has generated and continues to
generate many fruitful investigations.
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Given a Hermitian matrix H = [hjk]1≤j,k≤n, it can be reduced to the diagonal form

H = U diag(ω1, . . . , ωn)U
∗, (5.2)

where ω1, . . . , ωn are the eigenvalues of the matrix H , and U = [ujk]1≤j,k≤n is a unitary
matrix. (If the Hermitian matrix H is real, then the matrix U can be chosen real also,
i.e., if H is real and symmetric, then U is orthogonal.) In particular, the equality (5.2)
implies that 


h11
...
hnn


 =



|u11|2 . . . |u1n|2
. . . . . . . . .

|un1|2 . . . |unn|2






ω1
...
ωn


 . (5.3)

Since the matrix U in (5.2) is unitary (orthogonal), the matrix M = [mjk]1≤j,k≤n, with

mjk = |ujk|2, (5.4)

as in (5.3), possesses the properties

i. mjk ≥ 0, 1 ≤ j, k ≤ n;

ii.
∑

1≤k≤n

mjk = 1, 1 ≤ j ≤ n;

iii.
∑

1≤j≤n

mjk = 1, 1 ≤ k ≤ n .

(5.5)

It turns out to be fruitful to consider linear transformations whose matrices M satisfy
the conditions (5.5), without regard to the relations (5.4).

DEFINITION 1. AmatrixM = [mjk]1≤j,k≤n is said to be doubly-stochastic if the conditions
(5.5) are fulfilled.

DEFINITION 2 A matrix M = [mjk]1≤j,k≤n is said to be ortho-stochastic if there exists an
orthogonal matrix U = [ujk]1≤j,k≤n such that the matrix entries mjk are representable in
the form (5.4), i.e., if M is the Schur product of an orthogonal matrix U with itself.

REMARK 1. It is clear that every ortho-stochastic matrix is a doubly-stochastic. How-
ever, not every doubly-stochastic matrix is an ortho-stochastic. For example 1, the matrix

P =
1

6




0 3 3
3 1 2
3 2 1


 is doubly-stochastic, but not ortho-stochastic.

Many well known elementary inequalities can be put in the form

Φ(x, . . . , x) ≤ Φ(x1, . . . , xn), (5.6)

1This example is adopted from [Sch18].
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where x = (x1 + · · · + xn)/n and x1, . . . xn lie in a specified set. For example, the
inequality

ϕ(x) ≤
(
ϕ(x1) + · · · + ϕ(xn)

)
/n (5.7)

for a convex function ϕ of one variable can be written in the form (5.6), with Φ(ξ1, . . . , ξn) =
ϕ(ξ1) + · · · + ϕ(ξn).

We recall, that a real valued function ϕ, defined on a subinterval (α, β) of the real
axis, is said to be convex if ϕ is continuous there and the inequality ϕ

(
(x1 + x2)/2

)
≤(

ϕ(x1) +ϕ(x2)
)
/2 holds for every x1, x2 ∈ (α, β). The inequality (5.7) is a special case of

the so-called

JENSEN INEQUALITY. Let ϕ be a convex function on an interval (α, β), let x1, . . . , xn
be points in the interval (α, β), and let the numbers λ1, . . . , λn satisfy the conditions

i. λk ≥ 0, 1 ≤ k ≤ n;

ii.
∑

1≤k≤n

λk = 1 . (5.8)

Then
ϕ(λ1x1 + · · · + λnxn) ≤ λ1ϕ(x1) + · · · + λnϕ(xn) . (5.9)

The value x = (x1 + . . . + xn)/n that appears in (5.7), the so called arithmetic mean
of the values x1, . . . , xn, is the most commonly used average value for x1, . . . , xn. The
value λ1x1 + . . . + λnxn that appears in (5.9), the so-called weighted arithmetic mean, is
a more general average value for x1, . . . , xn .
In [Sch18], doubly-stochastic matricesM = [mjk]1≤j,k≤n are used to construct an average

sequence y1, . . . , yn from a given sequence of real or complex numbers x1, . . . , xn by the
averaging rule

y =



y1
...
yn


 =



m11 . . . m1n

. . . . . . . . .

mn1 . . . mnn






x1
...
xn


 =Mx. (5.10)

It is intuitively clear that the sequence of “averaged” values {yk} is “less spread out” than
the original sequence {xk}. In [Sch18], inequalities of the form

Φ(y1, . . . , yn) ≤ Φ(x1, . . . , xn), (5.11)

are considered for points (x1, . . . , xn) and (y1, . . . , yn) in the domain of definition of the
function Φ that are related by a doubly stochastic matrix M = [mjk]1≤j,k≤n by means
of the averaging procedure y=Mx given in (5.10). In particular, the inequality (5.11) is
established there for functions Φ of the form Φ(ξ1, . . . , ξn) = ϕ(ξ1) + · · · + ϕ(ξn):

THEOREM I. Let ϕ be a convex function defined on a subinterval (α, β) of the real axis, let
x1, . . . , xn be arbitrary numbers from (α, β), letM =

[
mjk

]
1≤j,k≤n

be a doubly stochastic
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matrix and let the numbers y1, . . . , yn be obtained from the averaging procedure y =Mx.
Then

ϕ(y1) + · · · + ϕ(yn) ≤ ϕ(x1) + · · · + ϕ(xn) . (5.12)

PROOF of Theorem I. In view of the conditions (5.5.i) and (5.5.ii), Jensen’s inequality is
applicable with λk = mjk, k = 1, . . . , n, and implies that

mj1ϕ(x1) + · · · +mjnϕ(xn) ≤ ϕ(mj1x1 + · · · +mjnxn) = ϕ(yj).

The desired conclusion is now obtained by summing the last inequality over j from
1, . . . , n and invoking the condition (5.5.iii).

The preceding theorem appears as Theorem V in [Sch18] and is used there to derive the
(Hadamard) inequality ∏

1≤k≤n

ωk ≤
∏

1≤k≤n

hkk

for a positive definite Hermitian matrix H =
[
hjk
]
1≤j,k≤n

with eigenvalues ω1, . . . , ωn.

The latter is equivalent to the inequality

∑

1≤k≤n

(− log hkk) ≤
∑

1≤k≤n

(− log ωk), (5.13)

which is of the form (5.12), with the convex function ϕ(ξ) = − log ξ. In this case, the
averaging doubly-stochastic matrix M =

[
mjk

]
1≤j,k≤n

is the ortho-stochastic one, with

entries mjk of the form (5.4), as in (5.3).

In [Sch18], functions Φ of several variables for which inequalities of the form (5.11) hold
are also considered.

DEFINITION 3. A function Φ of n variables x1, . . . , xn. is said to be S-convex (i.e.,
convex in the sense of Schur) if for every doubly-stochastic matrix M and every pair
of points x = (x1, . . . , xn) and y = Mx in the domain of Φ, the inequality (5.11)
holds. The function Φ is said to be S-concave if the opposite inequality holds, i.e., if
Φ(x1, . . . , xn) ≤ Φ(y1, . . . , yn), holds for every pair of points x and y = Mx in the
domain of Φ. A function Φ is S-concave if and only if the function −Φ is S-convex.

Let π be a permutation of the set {1, . . . , n}. Then the corresponding operator on
Rn that permutes coordinates according to the rule (x1, . . . , xn) → (xπ(1), . . . , xπ(n)) is
linear. Its matrix Pπ with respect to the standard basis in Rn is termed a permutation
matrix and is of the form

Pπ =
[
(pπ)jk

]
1≤j,k≤n

, where, for k = 1, . . . , n , (pπ)jk =

{
1, if j = π(k);
0, if j 6= π(k).

(5.14)
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There are n! permutation matrices of size n× n. Every permutation matrix is a doubly-
stochastic one. The inverse of a permutation matrix is a permutation matrix as well, and
hence it is also doubly-stochastic. Therefore,

Every S-convex function Φ of n variables is a symmetric function:

Φ(x1, . . . , xn) ≡ Φ(xπ(1), . . . , xπ(n)), for every permutation π . (5.15)

THEOREM II. Let Φ be a S-convex function of n variables, n ≥ 2, and let all its partial
derivatives of the first order exist and be continuous. Then the function Φ satisfies the
condition

∂Φ

∂x1
(x1, x2, . . . , xn)−

∂Φ

∂x2
(x1, x2, . . . , xn) ≥ 0, if x1 > x2 . (5.16)

This theorem provides a necessary condition for a symmetric function Φ be S-convex. It
appears as Theorem I in [Sch18]. Theorem II in [Sch18] also contains a sufficient condition
for a symmetric function Φ be S-convex.

THEOREM III. Let Φ be a symmetric function of n variables, n ≥ 2, that satisfies the
condition

(
∂2Φ

∂x21
+
∂2Φ

∂x22
− 2

∂ 2Φ

∂x1∂x2

)
(x1, x2, . . . , xn) ≥ 0 for all x1, x2, . . . , xn . (5.17)

Then the function Φ is S-convex.

However, A.Ostrowski showed that condition (5.16) is both necessary and sufficient for
a symmetric function Φ to be S-convex; see Theorem VIII in [Ostr]. The reasoning in
[Ostr] is based essentially on the the reasoning in [Sch18], but is more precise.

In [Sch18] it is shown that the elementary symmetric functions ck(x1, . . . , xn), k =

1, . . . , n, are S-concave, and that the functions Φk(x1, . . . , xn) =
ck+1(x1, . . . , xn)

ck(x1, . . . , xn)
, k =

1, . . . , n− 1 , are S-concave.

To this point, we have reviewed almost all the main results of the short paper [Sch18].
The significance of this paper is not confined to these results, important as they are,
but rests primarily on the fact that linear transformations with doubly-stochastic ma-
trices were introduced there. This paper attracted the attention of mathematicians to
doubly-stochastic matrices. (In [BeBe] the term “Schur transformation” is used for linear
transformations with such matrices; see [BeBe], Chapter I, § 29.) Schur himself did not
use the term doubly-stochastic matrix. He just referred to “a matrix M that satisfies the
conditions (5.5).” The term “doubly-stochastic matrix” seems to have appeared first in
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the first edition of the book [Fel] by W.Feller, in 1950 2.

Many results were influenced by the paper [Sch18]. We shall begin with the theorems
of Hardy-Littlewood-Polya and Birkhoff.

To formulate the Hardy-Littlewood-Polya Theorem, we have to introduce the notion of
majorization. Let ξ1, ξ2, . . . , ξn be a sequence of real numbers. By ξ∗1 , ξ

∗
2, . . . , ξ

∗
n we

denote the reaarangement of this sequence in non-increasing order:

ξ∗1 ≥ ξ∗2 ≥ . . . ≥ ξ∗n, ξ∗k = ξπ(k) for some permutation π of the set of indices 1, 2 . . . , n .

DEFINITION 4. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two sequences of
real numbers. Then we say that the sequence y is majorized by the sequence x (or that
the sequence x majorizes the sequence y) if the following conditions are satisfied:

y∗1 + y∗2 + . . . + y∗k ≤ x∗1 + x∗2 + . . . + x∗k, (k = 1, 2, . . . , n− 1 ) ;

y∗1 + y∗2 + . . . + y∗n−1 + y∗n = x∗1 + x∗2 + . . . + x∗n−1 + x∗n .
(5.18)

A relation of the form (5.18) is said to be a majorization relation and is denoted by the
symbol

y ≺ x, or (y1, y2, . . . , yn) ≺ (x1, x2, . . . , xn), (5.19)

The relations (5.18) were considered by R.F.Muirhed [Muir] and by M.O. Lorenz [Lor]
in the beginning of 20th century. Muirhead introduced these relations (with integer xk, yk
only) to study inequalities for homogeneous symmetric functions (Muirhead’s result is also
presented in [HLP], Chapter II, sec. 2.18). Lorenz used the relations (5.18) to describe
the non-uniformity of the distribution of wealth in a population. However, the nota-
tion (5.19) and the term “majorization” were introduced by G.H.Hardy, J.W.Littlewood
and G.Polya in 1934; see [HLP], Sec.2.18. Chapter II of the book [HLP], in which
majorization is introduced and discussed, contains a number of references to private com-
munications by Schur.

THEOREM (G.H.Hardy, J.W.Littlewood and G.Polya, [HLP], sec.2.20)
I. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sequences of real numbers and let

matrix M be a doubly-stochastic matrix such that x =My. Then y ≺ x.
II. Let x = (x1, . . . , xn), and y = (y1, . . . , yn) be two sequences of real numbers such

that y ≺ x. Then there exists a doubly stochastic matrix M such that x = My. (In
general such a matrix M is not unique.)

2 However, the term “stochastic matrix” was used as early as 1931 in [Rom1] (see also [Rom2]) for
matrices satisfying the conditions (5.5.i) and (5.5.ii) only (but not necessarily the condition (5.5.iii)).
Such matrices play a crucial role in the theory of Markov chains.
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Part II of this theorem and the first cited theorem of Schur (which appears as Theorem
I in this section) implies the following result:

THEOREM I ′. Let a sequence y = (y1, . . . , yn) be majorized by a sequence x = (x1, . . . , xn),
let xk, yk ∈ (α, β) ⊂ R for k = 1, . . . , n), and let ϕ be a convex function on the interval
(α, β). Then the inequality (5.12) holds.

It turns out that the converse statement is true ([HLP1], Theorem 8; [HLP], Theorem
108):

Let xk, yk ∈ (α, β) for k = 1, . . . , n and ssume that the inequality (5.12) holds for
every function ϕ which is convex on the interval (α, β). Then x = My for some doubly-
stochastic matrix M .

This means that Schur’s result (which appears as Theorem I in this section) is sharp in
some sense.

In [GoKr1], Chapt. II, Lemma 3.5, a very elementary proof of the following fact is
presented: Let Φ be a symmetric function of n variables which has continuous derivatives
of the first order. Assume that the condition (5.16) is satisfied. If a sequence x =
(x1, . . . , xn) of real numbers majorizes a sequence y = (y1, . . . , yn), then the inequality
(5.11) holds.

The last result combined with the Hardy-Littlewood-Polya theorem that was discussed
earlier yields an independent proof of the fact that a symmetric function Φ that satisfies
the condition (5.16) is S-convex.

The theorem by G.Birkhoff sheds light on geometric aspects of majorization and Schur
averaging. It is clear that the set of all doubly-stochastic matrices is compact and convex.
Therefore, it is of interest to find the extreme points of this set. It is clear that permutation
matrices are doubly-stochastic and that they are extreme points. It turns out that they
are the only extreme points.

THEOREM (G.Birkhoff). Every doubly-stochastic matrix M =
[
mjk

]
1≤j,k≤n

is repre-

sentable as a convex combination of permutation matrices:

M =
∑

π∈Sn

λπPπ , (5.20)

where π runs over the set Sn of all permutations of the set {1, . . . , n}, Pπ are the cor-
responding permutation matrices (5.14), and the coefficients λπ = λπ(M) satisfy the
conditions

λπ ≥ 0 (∀ π ∈ Sn) ,
∑

π∈Sn

λπ = 1 . (5.21)

REMARK 2. In general, the coefficients λπ(M) in the representation (5.20) are not
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uniquely determined from the matrix M .

This theorem was formulated and proved in 1946 in the paper [Birk1]. (This formula-
tion also appeared in Example 4∗ in [Birk2], p.266.) The original proof due to Birkhoff is
based on a theorem by Ph.Hall on representatives of subsets, [HalP]. (The latter theorem
can also be found in [HalM], sec.5.1). G.B.Dantzig [Dan] gives an algorithm for solving
a transportation problem, the solution of which leads to Birkhoff’s theorem. An inde-
pendent proof of Birkhoff’s theorem was given by J. vonNeumann [NeuJ1] in the setting
of game theory. “Combinatorial” proofs of Birkhoff’s theorem (based on Ph.Hall’s the-
orem), are presented in the books of M.Hall [HalM] (see Theorem 5.1.9), and C.Berge
[Ber] (see Theorem 11 in Chapt. 10). A geometric proof (based on a direct investigation of
extreme points) is presented in [HoJo], Theorem 8.7.1. Two different proofs of Birkhoff’s
theorem are presented in [MaOl], Chapt.2, Sect. F. The paper [Mir] is a good survey
of doubly-stochastic matrices. In particular, it contains a proof of Birkhoff’s theorem.
See also the problem book by I.M.Glazman and Yu.I. Lyubich [GlLy], Ch. 7, § 4, where
Birkhoff’s theorem is presented in problem form.

Let x = (x1, . . . , xn) be a sequence of real numbers and, for a permutation π of the
set {1, . . . , n}, let xπ = (xπ(1), . . . , xπ(n)). (Thus, for given x there are n! sequences xπ,
some of which can coincide.) We consider these sequences as vectors in Rn. Let Cx denote
the convex hull of all the vectors xπ where π ∈ Sn.

THEOREM (R.Rado) Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sequences of real
numbers. Then

y ∈ Cx ⇐⇒ y ≺ x.

PROOF. The implication ⇒ is easy. The converse can be obtained by combining the
cited theorems of Hardy-Littlewood-Polya and Birkhoff.

This theorem seems to have been established first by R.Rado [Rad]. His proof was based
on a theorem on the separation of convex sets by hyperplanes. A.Horn ([HorA1], Theorem
2) observed it can also be obtained by combining the results of Hardy-Littlewood-Polya
and Birkhoff that were cited earlier. A short proof of Rado’s theorem, which does not use
the Birkhoff theorem, can be found in [Mark] (see Theorem 1.1).

The circle of ideas related to Schur averaging, majorization and Birkhoff’s theorem is
well represented in the literature. The whole book [MaOl] (of more than 550 pages) is
dedicated to this circle. It includes applications to combinatorial analysis, matrix theory,
numerical analysis and statistics. The books [ArnB] and [PPT] are also relevant. There
are generalizations of Birkhoff’s theorem to the infinite dimensional case, see [Mir] and
[NeuA].

One generalization of Birkhoff’s theorem leads to an interpolation theorem for linear
operators. Let B be the linear space Rn provided with a norm ‖ . ‖B such that ‖x‖B =
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‖xπ‖B for every x ∈ Rn and for every permutation π ∈ Sn, where, as usual, xπ =
(xπ(1), . . . , xπ(n)). In other words, this property of the norm ‖ . ‖B can be expressed as
‖Pπ‖B→B = 1 for every permutation π ∈ Sn where the permutation operator Pπ is defined
by the permutation matrix Pπ, (5.14), in the natural basis of the space Rn. A norm ‖ . ‖B
with this property is said to be a symmetric norm. A Banach space B with a symmetric
norm is said to be a symmetric Banach space.

Let an operator A in the space Rn be defined by its matrix A =
[
ajk
]
1≤k≤n

in the natural
basis of the space Rn and assume that it satisfies the norm estimates

‖A‖l1→l1 ≤ 1 and ‖A‖l∞→l∞ ≤ 1 . (5.22)

Then, as noted earlier in Section 4,

∑

1≤j≤n

|ajk| ≤ 1, 1 ≤ k ≤ n and
∑

1≤k≤n

|ajk| ≤ 1, 1 ≤ j ≤ n . (5.23)

According to one generalization of Birkhoff’s theorem, a matrix A satisfying the conditions
(5.23) admits a representation of the form

A =
∑

π∈Sn

λπPπ

where the λπ are real (not necessarily non-negative) numbers satisfying the conditions

∑

π∈Sn

|λπ| ≤ 1 .

Therefore, since ‖Pπ‖B→B = 1, the operator A must be a contraction in this norm:

‖A‖B→B ≤ 1 . (5.24)

Thus, the following result holds:

THEOREM (Interpolation theorem for symmetric Banach spaces). Let an operator A
acting in the space Rn be a contraction in the l1 and l∞ norms, i.e., let the estimates
(5.22) hold. Then the operator A is a contraction in every symmetric norm ‖ · ‖B on Rn,
i.e., the estimate (5.24) holds.

Here we presented the simplest interpolation result for symmetric spaces. A more ad-
vanced result can be found in [Mit]. Thus, the development of ideas initiated by Schur
leads to interpolation theorems for Banach spaces with symmetric norms.

The last topic which we discuss here is the Schur-Horn convexity theorem. A.Horn
([HorA1], Theorem 4) obtained the following strengthening of the second part of the
Hardy-Littlewood-Polya theorem:
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THEOREM (A.Horn). Let x = (x1, . . . , xn and y = (y1, . . . , yn) be any two points in Rn

such that y ≺ x. Then there exists an ortho-stochastic matrix M such that y =Mx.

The following result is a direct consequence of the cited theorems of Rado and A.Horn:

Given x = (x1, . . . , xn) ∈ Rn, the following two sets are coincide:

1. The set Cx

def
= the convex hull of the family of vectors {xπ}π∈Sn .

2. The set {Mx}, where M runs over the set of all ortho-stochastic matrices .

In view of the relations (5.2) and (5.3), the last statement can be reformulated in terms
of eigenvalues and diagonal entries: Let us associate with every real symmetric n × n
matrix H =

[
hjk
]
1≤j,k≤n

the n-tuple h(H) = (h11, . . . , hnn) of its diagonal entries and

the n-tuple ω(H) = (ω1(H), . . . , ωn(H)) of its eigenvalues arranged in non-increasing
order: ω1(H) ≥, . . . ,≥ ωn(H). We consider these n-tuples as vectors in Rn. Given an n-
tuple ω = (ω1, . . . , ωn) of real numbers, arranged in non-increasing order: ω1 ≥ . . . , ωn,
let

Hω =
{
H : H is real symmetric and ω(H) = ω

}
.

THEOREM (Schur-Horn convexity theorem). Given an n-tuple ω = (ω1, . . . , ωn) of real
numbers: ω1 ≥ . . . ,≥ ωn, the set

{
h(H)

}
H∈Hω

of all “diagonals” of matrices from Hω

is convex. Moreover, {
h(H)

}
H∈Hω

= Cω, (5.25)

where Cω is the convex hull of the family of n! vectors ωπ = (ωπ(1), . . . , ωπ(n)), as π runs
over the set Cn of all permutations of the set {1, . . . , n}:

Cω = Conv
{
ωπ : π ∈ Sn

}
. (5.26)

Schur himself established the formula
{
h(H)

}
H∈Hω

= {Mω :M is ortho-stochastic}.
He did not described the set on the right geometrically as a convex hull. The term “convex
set” does not appear in the paper [Sch18]) at all. The “Schur-Horn convexity theorem”
appeared only in the paper by A. Horn [HorA2] ( which used in an essential way the cited
results by Hardy-Littlewood-Polya and Birkhoff.) However, the influence of Issai Schur
on the area was so great that the term “Schur-Horn convexity theorem” is now common.

In the last thirty years, the Schur-Horn convexity theorem has been generalized signifi-
cantly. In 1973 (fifty years after the publication of [Sch18]) B.Kostant published a seminal
paper [Kos] in which he interpreted the Schur-Horn result as a property af adjoint orbits of
the unitary group and generalized it to arbitrary compact Lie groups. More precisely, he
proved (see especially [Kos], sect. 8) that for an element x in a maximal abelian subspace
t in the Lie algebra k of a compact Lie group K one has

prt(AdK·x) = ConvW·x ,
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where prt : k → t is the orthogonal projection (with respect to the Killing form) and W
is the Weyl group associated with the pair (kC, tC). Subsequently, M.F.Atiyah [Ati] and,
independently, V.Guillemin and S. Sternberg [GuSt1], [GuSt2] gave an interpretation of
Kostant’s theorem as a special case of a theorem on the image of the momentum map
of a Hamiltonian torus action. Atiyah’s proofs depend on some ideas from Morse theory.
Subsequently, the results of Kostant, Atiyah, Guillemin and Sternberg were extended to
the setting of symmetric spaces. See, for example, the paper [HNP], where more references
can be found, the paper [BFR] and the book [HiOl], sections 4.3 and 5.5.

In yet another direction, the relevance of doubly-stochastic matrices and Schur averaging
to operator algebras and quantum physics is discussed in the book [AlU].

Thus, once again a relatively short paper of Issai Schur is seen to have had significant
influence on the development of a number of diverse areas of mathematics. In particular,
[Sch18] paved the way to important results in matrix theory, statistics, the theory of Lie
groups and symmetric spaces, symplectic geometry and Hamiltonian mechanics. Many of
these areas are very far from the original setting.
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fied by convex functions. Messenger of Mathematics, 58, pp. 145-152. Reprinted in
[Har:Col], pp. 500-508.

42



[HNP] Hilgert, J., K.-H.Neeb, and W.Plank. Symplectic convexity theorems and coad-
joint orbits. Compos. Math., 94 (1994), pp.129-180.

[HoJo] Horn,R.A., and Ch.R. Johnson. Matrix Analysis. Cambrigde University Press,
Cambridge·London·NewYork 1986.

[HorA1] Horn,A. Doubly stochastic matrices and the diagonal of the rotation matrix. Amer.
J. Math. 76 (1954), 620 - 630.

[HorA2] Horn,A. On the eigenvalues of a matrix with prescribed singular values. Proc. Amer.
Math. Soc., 5:1 (1954), pp. 4-7.

[Kos] Kostant,B. On convexity, the Weyl group and the Iwasawa decomposition. Ann.
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[Sch18] Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determi-
nantentheorie. [On a class of averaging mappings with applications to the theory of de-
terminants - in German]. Sitzungsberichte der Berliner Mathematischen Gesellschaft,
22 (1923), pp. 9 - 20. Reprinted in: [Sch:Ges], Vol. II, pp. 416 - 427.

[Sch:Ges] Schur, I.: Gesammelte Abhandlungen [Collected Works]. Vol. I, II, III. Springer-
Verlag, Berlin·Heidelberg·NewYork, 1973.

6 . Inequalities between the eigenvalues and the singular
values of a linear operator.

Let A =
[
ajk
]
1≤j,k≤n

be an n× n matrix with eigenvalues λ1, . . . , λn ∈ C. In Theorem

II of [Sch2], Schur proved the inequality

n∑

ℓ=1

|λℓ|2 ≤
n∑

j,k=1

|ajk|2. (6.1)

Schur’s proof was based on Theorem I of that paper, in which he established the fun-
damental fact that every square matrix A with complex entries is unitarily equivalent to
an upper triangular matrix, i.e., there exists a unitary matrix U such that

T = U∗AU = U−1AU (6.2)

is upper triangular: tjk = 0 for j > k. Therefore, the set of eigenvalues of the matrix
A is equal to the set of eigenvalues of the matrix T , which in turn is equal to the set of
diagonal entries of T . Thus,

n∑

ℓ=1

|λℓ|2 =
n∑

j=1

|tjj|2 ≤
n∑

j,k=1

|tjk|2 = traceT ∗T = traceA∗A =
n∑

j,k=1

|ajk|2.
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Apart from its use in the proof of the inequality (6.1), Theorem I serves as a model for
some important constructions in operator theory that will be discussed below.

In [Sch2], Schur used (6.1) to obtain simple proofs of the estimates

|λl| ≤ n · max
1≤j,k≤n

|ajk| (1 ≤ l ≤ n) (6.3)

∣∣Reλl
∣∣ ≤ n · max

1≤j,k≤n
|bjk| and

∣∣Imλl
∣∣ ≤ n · max

1≤j,k≤n
|cjk| (1 ≤ l ≤ n) , (6.4)

for the eigenvalues λl of a general n × n matrix A =
[
ajk
]
, where, B =

[
bjk
]
= (A +

A∗)/2 and C =
[
cjk
]
= (A−A∗)/(2i) . The estimates (6.4) were first obtained by A.Hirsch

[Hir]. They were improved to

∣∣Imλl
∣∣ ≤

√
n(n− 1)

2
· max
1≤j,k≤n

|cjk| (1 ≤ l ≤ n) (6.5)

for real matrices A by F.Bendixson [Bend] and reproved in [Sch2]. In §7 of ([Sch2]), the
interesting inequality

∑

j<k

|λj − λk|2 ≤
∑

j<k

|ajj − akk|2 + n
∑

j 6=k

|ajk|2 (6.6)

is derived and then used to obtain the following estimate for the discriminant

d =
∏

j,k

(λj − λk)2 ,

of the characteristic equation det (λIn − A) = 0:

|d| 2
n(n−1) ≤ 2

n(n− 1)

∑

j<k

|ajj − akk|2 +
2

n− 1

∑

j 6=k

|ajk|2 . (6.7)

In §5 of [Sch2], the well known Hadamard bound

| detA| ≤
(

max
1≤j,k≤n

|ajk|
)n · nn/2 . (6.8)

on the maximal value of the determinant of a matrix is derived from the inequality (6.1)
with the help of the inequality between the geometric and the arithmetic means:

| detA|2 = |λ1|2 · · · · · |λn|2 ≤
( |λ1|2 + · · · + |λn|2

n

)n

≤
(∑n

j,k=1 |ajk|2
n

)n

.

The challenge of obtaining simple new proofs of various Hadamard inequalities seems to
have been one of Issai Schur’s favorite occupations.

45



In [Sch2], Schur also considers integral operators x(t)→ (Kx)(t) in L2(a, b),

(Kx)(t) =

b∫

a

K(t, τ)x(τ) dτ (a ≤ t ≤ b) , (6.9)

with kernels K(t, τ) that satisfy the condition

b∫

a

b∫

a

|K(t, τ)|2 dt dτ <∞ . (6.10)

Today, such operators are commonly called Hilbert-Schmidt integral operators. Schur
extended the inequality (6.1) to these operators:

∑

l

|λl(K)|2 ≤
b∫

a

b∫

a

|K(t, τ)|2 dt dτ , (6.11)

where the summation on the left hand side is extended over the set of all eigenvalues
λl(K) of the integral operator K. In particular, the series on the left hand side of (6.11)
converges.

One of the fundamental results of the Fredholm theory of integral equations [Fred] is
the identification of the nonzero eigenvalues λl(K) of an integral operator (6.9) with
a continuous kernel as the reciprocals of the zeros of an entire function DK(λ) (that
is constructed from the kernel K(t, τ) of this operator). This function is termed the
Fredholm denominator (or the Fredholm determinant) of the operator (6.9). It is defined
by the Taylor series

DK(λ) =

∞∑

n=0

cnλ
n , (6.12)

with coefficients

cn =
(−1)n
n!

b∫

a

. . .

b∫

a

det



K(t1, t1) · · · K(t1, tn)
· · · · · · · · ·

K(tn, t1) · · · K(tn, tn)


 dt1 · · · dtn . (6.13)

From (6.13) and the Hadamard inequality (6.8), it follows that if

σ = (b− a)( max
a≤t,τ≤b

|K(t, τ)|) <∞ ,

then
|cn| ≤ σn · nn/2/n! . (6.14)

Consequently, the series (6.12) converges for every complex λ, and its sum DK(λ) is an
entire function that is subject to the bound

ln |DK(λ)| ≤ σ2|λ|2(1 + o(1)) (|λ| → ∞). (6.15)
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Thus, the counting function of the zeros µ1, µ2, . . . of DK(λ):

nK(r) = #{µℓ(K) : |µℓ(K)| ≤ r} = #{λℓ(K) : |λℓ(K)|−1 ≤ r} ,
satisfies the condition

nK(r) = O(r2), as r →∞ . (6.16)

The estimates (6.15) and its consequence (6.16) were known [Lal] before the Schur paper
[Sch2] appeared. However, the estimate (6.11) is stronger than the estimate (6.16). From
the convergence of the series

∑
l

|λl(K)|2 and from the estimate (6.15) it follows that the

Fredholm denominator (6.12)-(6.13) admits the multiplicative decomposition

DK(λ) = ecλ+dλ2
∏

l

(
1− λ λl(K)

)
eλλl(K) , (6.17)

for some choice of constants c and d. The fact that the Fredholm denominator of the
integral operator (6.9) with a continuous kernel admits a representation of the form (6.17)
was first noted by Schur in § 14 of [Sch2]. (It is important to note that the kernel K(t, τ)
is not assumed to be symmetric or Hermitian.) This result of Schur is sharp in the sense
that there exists a continuous kernel K on a finite interval [a, b] whose eigenvalues satisfies
the condition ∑

ℓ

|λℓ(K)|2−ǫ =∞ for every ǫ > 0.

To construct an example, let K(t, τ) = ϕ(t − τ) for 0 ≤ t, τ ≤ 1, where ϕ(t + 1) = ϕ(t)
is a continuous periodic function on R with Fourier expansion ϕ(t) ∼ ∑l cℓe

2πiℓt. Then
the functions e2πiℓt are eigenfunctions of the kernel K, and the Fourier coefficients cℓ are
eigenvalues of this kernel. A kernel with the desired properties is obtained by choos-
ing a continuous periodic function ϕ whose Fourier coefficients cℓ satisfy the condition∑

ℓ |cℓ|2−ǫ =∞ for every ǫ > 0. The first example of such a function was constructed by
T.Carleman [Carl2]. Other examples can be found in [Bar], Chapt. 4, § 16, or in [Zyg],
Chapt. 5., (4.9). In his first publication [Carl1], Carleman proved that in fact d = 0 in
(6.17). Thus, the scientific career of this outstanding analyst started with an improvement
of a result of Issai Schur.

The inequality (6.1) can also be presented in the form

n∑

l=1

|λl(A)|2 ≤
n∑

l=1

sl(A)
2 , (6.18)

where the λl(A) are the eigenvalues of the matrix A and the numbers sl(A) are the singular
values of A.

The auxiliary inequality
n∑

l=1

|λl(A)| ≤
n∑

l=1

sl(A) (6.19)
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can also be proved 3 in an elementary way by using the Schur transformation (6.2) to
reduce the matrix A to upper triangular form. In fact, it suffices to prove (6.19) for
upper triangular matrices A, since the transformation (6.2) does not change either the
eigenvalues or the singular values of the matrix. But then, if {el}1≤l≤n is the natural basis
of the space Cn,

all = 〈Ael, el〉 = λl(A), l = 1, . . . , n,

up to a reindexing of the eigenvalues, if need be. Now let A = S · V be the polar
decomposition of the matrix A: S ≥ 0, V ∗V = V V ∗ = In and let hl = V el. Then the
vectors {hl}1≤l≤n form an orthonormal basis of the space Cn and, by the Cauchy-Schwarz
inequality,

|〈Ael, el〉| = |〈Shl, el〉| ≤
√
〈Shl, hl〉 ·

√
〈Sel, el〉 .

Therefore,

n∑

l=1

|λl(A)| =
n∑

l=1

|〈Ael, el〉| ≤

√√√√
n∑

l=1

〈Shl, hl〉 ·

√√√√
n∑

l=1

〈Sel, el〉 =
n∑

l=1

λl(S) =
n∑

l=1

sl(A) ,

since
n∑

l=1

〈Shl, hl〉 =
n∑

l=1

〈Sel, el〉 = traceS =

n∑

l=1

λl(S),

and, by the definition of singular values, {λl(S)}nl=1 = {sl(A)}nl=1.

The inequalities (6.1), written in the form (6.18), and (6.19) were significantly general-
ized by H. Weyl [Wey] in 1949. The generalization is based on the concept of majorization
that was discussed in the previous section. A crucial role is played by the inequalities

| λ1(A) ·λ2(A) · · · · ·λk(A) | ≤ s1(A) · s2(A) · · · · · sk(A) (k = 1, 2, . . . , n− 1) , (6.20)

which are valid when the eigenvalues λk(A) and the singular values |sk(A)| are indexed in
such a way that |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)| and s1(A) ≥ s2(A) ≥ · · · ≥ sn(A).
The equality

| λ1(A) · λ2(A) · · · · · λn(A) | = s1(A) · s2(A) · · · · · sn(A) (6.21)

holds because both sides are equal to
∣∣detA

∣∣. The relations (6.20) and (6.21) mean that
the sequence {ln |λk(A)|}nk=1 is majorized by the sequence {ln sk(A)}nk=1:

{ ln |λk(A)| }nk=1 ≺ { ln sk(A) }nk=1 . (6.22)

In [Wey], Weyl derived the inequalities (6.20) and then applied the inequality

n∑

k=1

ψ(yk) ≤
n∑

k=1

ψ(xk) , (6.23)

3This proof is adopted from [GoKr1], Chapt. IV, § 8. See Theorem 8.1, especially the footnote 7 on
p. 128 of the Russian original or on p. 98 of the English translation.
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which holds for any convex function ψ( · ) on (−∞, ∞) and any pair of sequences {yk}
and {xk} such that {yk} ≺ {xk}, to the sequences yk = ln |λk(A)| and xk = ln sk(A).
The inequality (6.23) is a direct consequence of the result4 by Schur (which states that
the inequality (6.23) holds for sequences x and y = Mx that are related by a doubly-
stochastic matrix M), and of the result4 by Hardy, Littlewood and Polya, who proved
that

y ≺ x =⇒ y =Mx

for some doubly-stochastic matrix M . However, Weyl was not aware of these results and
gave an independent proof of the implication

y ≺ x =⇒ (6.23) (6.24)

in Lemma 1 of [Wey]. The inequalities (6.20) were known before the paper [Wey] was
published. (See, for example, Exercise 17 on page 110 of the book [TuAi].) However, it
was Hermann Weyl who first combined the inequalities (6.20) with the implication (6.24)
to obtain the following

THEOREM. Let A be an n × n matrix with eigenvalues {λk(A)}nk=1 and singular values
{sk(A)}nk=1 (counting multiplicities) and let ϕ( · ) be a function on (0, ∞) such that the
function ψ(t) = ϕ(et) is convex on (−∞, ∞). Then

n∑

k=1

ϕ(λk(A)) ≤
n∑

k=1

ϕ(sk(A)) . (6.25)

Weyl invoked the inequality (6.25) with ϕ(t) = tp and p > 0 to obtain the following
generalization of Schur’s inequality (6.18):

n∑

l=1

|λl(A)|p ≤
n∑

l=1

sl(A)
p (0 < p <∞). (6.26)

Analogous inequalities hold for linear operators A in a Hilbert space H that belong to the
classSp, i.e., for which

∑
l sl(A)

p <∞ , where the sl(A) are the eigenvalues of the operator√
A∗A. (Usually the singular values sl(A) are enumerated by the indices l = 0, 1, 2, . . ..)

The summation in the last inequality is then extended over all eigenvalues and over all
singular values of the operator A. The resulting inequality is very useful in the theory
of integral equations. The point is that it is difficult to calculate the eigenvalues and
singular values of an integral operator in terms of its kernel. However, the singular values
can be effectively estimated from above by approximating the kernel K(t, τ) by degenerate

kernels of the form Kn(t, τ) =
n∑

l=1

ϕl(t)ψl(τ) and invoking the fact that

sn(K) = inf ‖K −Kn‖
4These results were discussed in the previous section; see Theorems I, II and I′.
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as Kn(t, τ) runs over the set of all degenerate kernels of the indicated form. (See [GoKr1],
Chapt. 2, § 2, item 3.) The smoother the kernel K, the more rapid the rate of decay of the
sequence ‖K −Kn‖ and thus, the rate of decay of the sequence |snK)|. The inequality

∑

l

|λl(K)|p ≤
∞∑

l=0

sl(K)p (6.27)

is then used to derive the rate of decay of the eigenvalues λn(K). This is the “modern”
way to derive the rate of decay of the eigenvalues λn(K) of an integral operator from
the smoothness of its kernel K(t, τ). The theory of spline approximation is often used to
construct good approximating kernels. (See, for example, the papers by M. Sh.Birman
and M.Z. Solomyak mentioned in Section 4.)

The “classical” approach, which does not exploit the Weyl inequalities, is more com-
plicated and gives weaker results. Chang, in a paper [Chang] that appeared before the
paper [Wey], proved that

∞∑

l=0

sl(K)p <∞ =⇒
∑

l

|λl(K)p <∞ (6.28)

for integral operators (6.9) of Hilbert-Schmidt class, i.e., with kernels K(t, τ) satisfying
the condition (6.10). The “classical” methods of the paper [Chang] are involved and
rather difficult.

The Weyl inequalities are also useful in “abstract” operator theory. Taking ϕ(t) =
ln(1 + |λ|t) (which is admissible, since the function ψ(t) = ln(1 + |λ|et) is convex), one
can obtain the inequality

∣∣∣
∏

l

(
1− λ λl(A)

) ∣∣∣ ≤
∏

l

(
1 + |λ| sl(A)

)
(∀λ ∈ C) , (6.29)

for linear operators A from the class S1 of trace class operators in a Hilbert space. This
inequality is useful in the study of the so-called characteristic determinants of trace class
operators and related analytic considerations. (See Chapter IV of [GoKr1].) In particular,
the inequality (6.29) plays an important role in the proof of a theorem by V.B. Lidskĭı,
which states that the matricial trace and the spectral trace of a trace class operator
coincide. (See [Lid], and [GoKr1], Chapt. III, § 8, Theorem 8.1.) This theorem is of
principal importance in operator theory.

The Weyl inequality (6.25) is one of the central tools in the toolbox of modern operator
theory. However, as Weyl himself wrote [Wey], the first step was taken by Schur:

”Long ago I. Schur proved (6.26) for 5 p = 1. Recently S.H. Chang showed in his thesis

that, in the case of integral equations, the convergence of
∑
spl implies the convergence of

5 This reference by Weyl is not accurate. Schur proved the inequality (6.26) for p = 2, but not for
p = 1.
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∑ |λl|p. These two facts led me to conjecture the relation (6.26), at least for p ≤ 1. After
having conceived a simple idea for the proof, I discussed the matter with C.L. Siegel and

J. von Neumann; their remarks have contributed to the final form and generality in which

the results are presented here.”

Thus, the paper [Sch2] served as source of inspiration for both T.Carleman and H.Weyl.
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7 . Triangular representations of matrices
and linear operators.

One of the important theorems of Schur that was discussed in the preceding section
states that every square matrix is unitarily equivalent to a triangular matrix. In the
early fifties, stimulated by this theorem of Schur, Moshe (Mikhail Samuılovich) Livšic
(=Livshits ) obtained an analogue of this result for a class of bounded linear operators
in a separable Hilbert space.

To explain his results, let us first recall that every bounded operator A in a Hilbert
space H is representable in the form

A = BA + iCA, (7.1)

where

BA = ReA =
A+ A∗

2
= (BA)

∗ and CA = ImA =
A− A∗

2i
= (CA)

∗. (7.2)

Livšic obtained his conclusions in the class iΩ of bounded linear operators A for which
CA is of of trace class. In the simplest case of this setting,

rank(CA) = 1 , (7.3)
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and hence CA must be be definite: either CA ≥ 0, or CA ≤ 0. Thus,

CA = j |CA|, where |CA| =
√

(CA)∗CA, j = +1 or j = −1 (7.4)

and the imaginary parts βk of the eigenvalues λk = αk + iβk of the operator A are of the
form βk = j|βk|.

Without loss of generality, we may assume that the the operator A is completely non-
selfadjoint: There is no invariant subspace for the operator A on which A induces a
self-adjoint operator. Indeed, if the operator A is not completely non-selfadjoint, then it
splits into the orthogonal sum A = S ⊕ A cns, where S is a selfadjoint operator and A cns

is a completely non-selfadjoint operator. Moreover, ImA = ImA cns.

The eigenvalues λk = αk + iβk of a completely non-selfadjoint operator A with non-
negative (non-positive) imaginary part are never real: either βk > 0 for all k (if CA ≥ 0),
or βk < 0 for all k (if CA ≤ 0).

The triangular model T for an operator A satisfying the condition (7.3) acts in the model
Hilbert spaceHmod = l2⊕L2 that is the orthogonal sum of the space l2 of square summable
one-sided infinite sequences (ξ1, ξ2, . . . , ) of complex numbers of dimension n ≤ ∞, where
n is equal to the number of eigenvalues of the operator A (counting multiplicities), and
L2 is the space of all square summable complex-valued functions on a finite interval [0, l],
where the number l is determined uniquely by the operator A. The spaces l2 and L2 are
equipped with the standard scalar products. The block decomposition of the operator T
that corresponds to the decomposition Hmod = l2 ⊕ L2 of the space Hmod, is of the form

T =

[
T dis T cou

0 T con

]
, (7.5)

where Tdis : l
2 → l2, Tcon : L2 → L2 and Tcou : L2 → l2.

The operator Tdis, the discrete part of the operator T , is defined by its matrix
[
tkm
]
in

the natural basis of the space l2. This matrix is upper triangular, i.e., with j as in (7.4),

tkm = 0 for k > m, tkk = λk, tkm = i |βk|1/2 j |βm|1/2 for k < m . (7.6)

The operator Tdis is bounded, since A is bounded and
∑
k

|βk| ≤ trace |CA| < ∞ . The

operator Tcon, the continuous part of the operator T , is an integral operator of the form

(Tconξ)(t) = λ(t)ξ(t) + i

l∫

t

K(t, s) ξ(s) ds 0 ≤ t ≤ l , (7.7)

where λ(t) is a non-decreasing bounded real-valued function on the interval [0, l] which is
determined by the operator A. The kernel K(t, s) of the integral operator (7.7) is of the
form

K(t, s) = 0 for 0 ≤ s < t ≤ l, K(t, s) = i j for 0 ≤ t < s ≤ l , (7.8)
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i.e., the operator (7.7) can be considered as upper triangular. The summand λ(t)ξ(t)
corresponds to the “main diagonal” of this operator. For the operator Tcou, the so called
coupling operator, an explicit formula can be obtained. Thus, the whole6 operator T can
be naturally considered as an upper triangular operator.

DEFINITION. Let A be an operator which acts in a Hilbert space H. An operator Ã acting
in a larger Hilbert space H̃ , H̃ ⊇ H, is said to be an inessential extension of the operator
A, if Ã = A⊕ S, where S is a selfadjoint operator acting in the space H̃ ⊖ H.

THEOREM I ′ (M. Livšic). Let A be a bounded completely non-selfadjoint linear operator
in a Hilbert space H such that CA is one-dimensional. Then there exists an inessential
extension Ã : H̃ → H̃ of the operator A that is unitarily equivalent to an “upper triangu-
lar” model operator T of the form (7.5): There exists a unitary operator U acting from

Hmod = l2 ⊕ L2 onto H̃ such that

T = U∗ÃU = U−1ÃU . (7.9)

Triangular models of the same general form (7.5)-(7.6)-(7.7) can also be constructed for
bounded linear operators A in a separable Hilbert space H when CA is only assumed to
be of trace class. They are, however, a bit more complicated.

For an operator A in a separable Hilbert space H, let us introduce the non-hermitian
subspace NA as the closure of the image of its imaginary part CA:

NA = CAH . (7.10)

The dimension nA of the non-hermitian subspace NA is said to be the non-hermitian rank
of the operator A:

nA = dimNA . (7.11)

The restriction CA|NA
of the operator CA on the subspace NA, considered as an operator in

the Hilbert space NA, is a selfadjoint operator for which the point {0} is not an eigenvalue.
Therefore, the polar decomposition of this operator is of the form

CA|NA
= JA ·MA, (7.12)

where

JA : NA → NA, JA = J ∗
A , J 2

A = INA
and MA : NA → NA, MA ≥ 0. (7.13)

(In this polar decomposition, JA is the unitary operator andMA is the operator modulus.)

6The operator T will not contain a discrete part Tdis if the operator A has no eigenvalues. It will not
contain a continuous part Tcon if l = 0.
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To construct the triangular model of the operator A, let us choose a Hilbert space E of
the same dimension as the non-hermitian subspace NA: dim E = dimNA. Let JE be an
operator in E ,

JE : E → E , JE = J ∗
E , J 2

E = IE , (7.14)

of the same signature 7 as that of the operator JA. For the sake of brevity, we shall restrict
our attention to the case of operators with real spectrum only. The model space Hmod

in this case is the space L2
E([0, l]), i.e., the space of all square-integrable functions on a

finite interval [0, l] ⊂ R, whose values are elements of the Hilbert space E , with the scalar
product:

〈ξ,η〉Hmod
=

l∫

0

〈ξ(t), η(t)〉E dt , for ξ = ξ(t), η = η(t) ∈ L2
E([0, l].

The model operator T acts in the space Hmod according the rule

(Tξ)(t) = λ(t)ξ(t) + i

l∫

t

Π(t)J
E
Π(s)∗ξ(s) ds, (7.15)

where λ(t) is a non-decreasing real-valued function on the interval [0, l] and Π(t) is a
function on the interval [0, l] whose values are Hilbert-Schmidt operators in E that satisfy
the normalization condition

trace
E
Π(t)∗Π(t) ≡ 1 , 0 ≤ t ≤ l . (7.16)

THEOREM I ′′ (M. Livšic). Let A be a bounded completely non-selfadjoint linear operator
in a Hilbert space H such that CA is of trace class and the spectrum of A is real. Then
there exists an inessential extension Ã : H̃ → H̃, H̃ ⊇ H, of the operator A that is
unitarily equivalent to an “upper triangular” model operator T of the form (7.15) : There

exists a unitary operator U acting from Hmod = L2
E
([0, l]) onto H̃ such that

T = U∗ÃU = U−1ÃU . (7.17)

REMARK. Direct calculation shows that

(
(T − T ∗)ξ

)
(t) = i

l∫

0

Π(t)J
E
Π(s)∗ ξ(s) ds (7.18)

7The spectrum of an operator J which posses the properties J = J∗, J2 = I can consist of the points
{+1} and {−1} only. These points are eigenvalues of J . Let pJ and qJ denote the dimensions of the
corresponding eigenspaces, 0 ≤ pJ , qJ ≤ ∞. The signature of the operator J is the pair (pJ , qJ).
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Thus, the model operator (7.15) is of the form

(Tξ)(t) = λ(t)ξ(t) + 2i

l∫

0

χ(t, s)H(t, s)ξ(s) ds , (7.19)

where
χ(t, s) = 1 for s > t, χ(t, s) = 0 for s < t ,

and the kernel H(t, s) = Π(t)J
E
Π(s)∗ represents the imaginary part of the operator T :

(
(T − T ∗)ξ

)
(t) = 2i

l∫

0

H(t, s)ξ(s) ds . (7.20)

In other words, the kernel K(t, s) that represents the operator T can be obtained from
the kernel H(t, s) that represents the imaginary part of T , by means of “ truncation to
the upper triangle”: K(t, s) = χ(t, s)H(t, s).

For operators whose imaginary part is of trace class but whose spectrum is not necessary
real, the triangular model has a more complicated form; see e.g., [Liv5] and in [BroLi].

Moshe Livšic introduced the machinery of characteristic functions of linear operators in
the mid forties in order to solve a number of problems connected with theory of extensions
of linear operators, see [Liv1] and [Liv2]. He then applied this machinery to establish the
unitary equivalence of an operator of the class iΩ to a triangular model in the early fifties.
See [Liv3],[Liv4] for the first results and [Liv5] for a detailed presentation.

The characteristic function of a non-selfadjoint linear operator A acting in a Hilbert
space H is defined as follows: Choose a Hilbert space E of the same dimension as the
non-hermitian subspace CAH of the operator A and then factor the operator CA in the
form

CA = ΓJ
E
Γ∗ , (7.21)

where Γ, J
E
are linear operators,

Γ : E → H , J
E
: E → E , J2

E
= I

E
(I

E
denotes the identity operator in E). (7.22)

The characteristic function WA(z) of the operator A is the operator valued function of
the complex variable z that is defined for z out of the spectrum of A by the rule

WA(z) = I
E
+ 2iΓ∗(zI − A)−1ΓJ

E
. (7.23)

Notice that WA(z) acts in the Hilbert space E , which, in many problems of interest, is
a finite dimensional space. In Livšic’s terminology, the space E is said to be the channel
space and the operator Γ is said to be the channel operator.
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Livšic showed that the characteristic function is a unitary invariant of a completely
non-selfadjoint operator: Let A1 and A2 be two completely non-selfadjoint operators such
that their characteristic functions WA1(z) and WA2(z) (with the same channel space E)
are equal: WA1(z) ≡WA2(z). Then the operators A1 and A2 are unitarily equivalent. To
reduce a non-selfadjoint operator to triangular form, Livšic calculated its characteristic
functionWA(z) and then constructed a model operator T in such a way that its character-
istic function WT (z) coincides with WA(z). Subsequently, triangular models of operators
were partially superceded by functional models, see [SzNFo], [Bran], [NiVa].

There is also a very important correspondence between the invariant subspaces of an
operator A and certain divisors of its characteristic function. However, the importance
of the notion of a characteristic function is not confined to its applications in operator
theory. Livšic related the theory of stationary linear dynamical systems to the theory
of linear non-selfadjoint operators and showed that the characteristic matrix function of
a linear operator that serves as an “inner operator” for the dynamical system can be
identified with the scattering matrix of this system. Examples are furnished in 8 [Liv6],
[Liv7] and [BroLi]. A detailed presentation of the early stages 9 of the theory of open
systems (as Livšic termed them) can be found in [Liv8]. In particular, as he noted in
the first sentence of Section 2.2 of that source: “The resolution of a system into a chain
of elementary systems is closely related to the reduction of the operator ... to triangular
form.”

The results of Livšic on reducing operators to triangular form are similar in form to
the result of Schur. However, the methods that he used are absolutely different from the
method of Schur. Schur’s result implies that there exists an orthonormal basis e1, . . . , en
of the space C

n such that the given matrix A is upper-triangular in this basis. Thus, if

H0 = 0, Hk = span {e1, . . . , ek} , k = 1, 2, . . . , n , (7.24)

then this collection
{
Hk

}
0≤k≤n

of subspaces of Cn possesses the following properties:

i. 0 = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hn = Cn ,

ii. dim
(
Hk ⊖Hk−1

)
= 1 ,

iii. Every subspace Hk is invariant for the operator A .

(7.25)

Conversely, let an operator A in Cn and a collection of subspaces
{
Hk

}
0≤k≤n

satisfying

the conditions (7.25. i)–(7.25. iii) be given, and let ek ∈ Hk ⊖ Hk−1 be unit vectors for
k = 1, 2, . . . , n . Then the set of vectors {ek} forms an orthonormal basis of Cn and the
matrix of the operator A in this basis is upper-triangular. It turns out that this strategy

8For more information on the characteristic function of a linear operator, see also the M.S. Livšic
Anniversary Volume [OTSTR], in particular, the Preface and the paper [Kats].

9 A more elaborate presentation of scattering theory for linear stationary dynamical systems (with
emphasis on applications to the wave equation in Rn) was carried out in [LaPhi].

57



can be adapted to obtain analogues of Schur’s theorem in infinite dimensional Hilbert
spaces. The first step in this direction was taken by L.A. Sakhnovich [Sakh1] who noticed
that although the proof of Schur is based on the fact that every operator A in a finite
dimensional linear space over C has an eigenvector, that really the proof only depended
upon following property of the operator A:

Property I S . For every pair of closed invariant subspaces H1 and H2 of the operator A
such that H1 ⊂ H2 and dim (H2⊖H1) > 1, there exists a third closed invariant subspace
H3 of the operator A such that H1 ⊂ H3 ⊂ H2 , H3 6= H1, H3 6= H2.

A theorem of J. vonNeumann (unpublished) and of N. Aronszajn and K. Smith [ArSm],
guarantees that every compact operator in a Hilbert space possesses the property I S.
In [Sakh1], Sakhnovich proved that if the imaginary part CA of the operator A is of
Hilbert-Schmidt class, i.e., if ∑

k

(
sk(CA)

)2
<∞ , (7.26)

then the operator A possesses the property I S . From later results of V.I.Matsaev it follows
that this condition can be relaxed: if

∑

k

sk(CA)

k + 1
<∞, (7.27)

then A possesses the property I S.

Let H be a Hilbert space and let PH denote the collection of orthoprojectors onto
all possible closed subspaces of H. The set PH is partially ordered: P1 ≤ P2 if the
corresponding ranges are ordered by inclusion, i.e., if RP1 ⊆ RP2 , and P1 < P2 if the
inclusion of the ranges is proper. A subset P of the set PH that contains at least two
orthoprojectors is said to be a chain if it is fully ordered, i.e., if the conditions P1 ∈
P, P2 ∈ P, P1 6= P2 imply that either P1 < P2 , or P2 < P1.

If a chain P contains orthoprojectors P− and P+ (P− < P+) such that every orthopro-
jector P ∈ P distinct from them satisfies either the inequality P < P− or the inequality
P > P+, then the pair (P−, P+) is said to be a jump in the chain P, and the dimension
of the subspace P+H ⊖ P−H is said to be the dimension of the jump. A chain without
jumps is said to be continuous.

The set of all chains in H can be ordered by inclusion: the chain P1 is said to precede
the chain P2 (and we writeP1 ≺ P2) if every orthoprojector in P1 also lies in P2. A chain
P is said to be maximal with respect to this ordering if there is no chain P′ satisfying
the conditions P ≺ P′, P 6= P′.

Let A be a bounded operator in a Hilbert spaceH and letP be a chain of orthoprojectors
in H. Then the chain P is said to be an eigenchain for the operator A if for every P ∈ P
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the subspace PH is invariant under A, i.e., if the equality AP = PAP holds for every
P ∈ P.

The following result is established by transfinite induction in [Brod2] and in [Brod4],
where it appears as Theorem 15.2.

THEOREM II [M.S. Livšic-M.S.Brodskĭı; L.A. Sakhnovich]. Let A be a bounded linear
operator in a Hilbert space H that satisfies the condition IS. Then there exists a maximal
chain of orthoprojectors that is an eigenchain for A.

The idea for the proof of this theorem arose in a conversation between M.S. Livšic and
M.S.Brodskii. (See the historical remark in the book [Brod4], p. 278 of the Russian
original or p. 234 of the English translation.) L.A. Sakhnovich gave an independent proof
in [Sakh1]. This theorem can be considered as a first step in extending the Schur theorem
on reducing a matrix to triangular form to the setting of a more general class of operators
in Hilbert space. Based on it, Sakhnovich obtained the following result in [Sakh1]:

Every bounded linear operator A in a a separable Hilbert space that satisfies the condi-
tion I S has an inessential extension Ã which is unitarily equivalent to an integral operator
of the form

x(t)→ (Kx)(t) =
d

dt

1∫

t

K(t, s)x(s) ds , (7.28)

acting in a space L2
E
([0, 1]) of vector functions x(t) defined on the interval [0, 1] whose

values belong to a Hilbert space E , dim E ≤ ∞, provided with the scalar product:

〈x,y〉L2
E
=

1∫

0

〈x(t), y(t)〉
E
dt, for x = x(t) and y = y(t) . (7.29)

The kernel K(t, s) is a function defined for 0 ≤ t, s ≤ 1 whose values are bounded linear
operators acting in E .

A limitation of this last result is that the class of kernels K(t, s) is not described.
However, starting from this theorem, Sakhnovich obtained the following result in [Sakh2]:

Every bounded operator A in a Hilbert space H whose spectrum is real and whose
imaginary part CA is of Hilbert-Schmidt class has an inessential extension Ã which is
unitarily equivalent to an operator of the form

x(t)→ H(t)x(t) +

1∫

t

K(t, s)x(s) ds , (7.30)

acting in the space L2
E
([0, 1]) of functions defined on the interval [0, 1] whose values belong

to a Hilbert space E , provided with the scalar product (7.29). H(t) is a function defined
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on [0, 1] whose values are bounded self-adjoint operators in E : H(t) = H∗(t) for t ∈ [0, 1].
The kernel K(t, s) is a function defined for 0 ≤ t, s ≤ 1 whose values are operators acting
in the Hilbert space E that are of Hilbert-Schmidt class. The kernel K satisfies the
condition

1∫

0

trace
E
{(K∗K)(t, t)} dt <∞ . (7.31)

This result of Sakhnovich is on the one hand more general than the corresponding result
of Livšic (because the condition (7.26) is less restrictive than requiring CA to be of trace
class), but on the other hand it is less concrete, since it provides less information on the
form of the kernel K than the other theorem.

Further developments in this area are related to the theory of the abstract triangular
representation of operators in a Hilbert space by means of an integral with respect to
a chain. This integral appeared in the papers of M.S.Brodskĭı at the end of the fifties,
[Brod1], [Brod2], [Brod3]. In a short time the theory of this new integral and its applica-
tions were developed considerably. Important contributions to this theory were made by
V.I.Matsaev, [Mats1], and by I.Ts.Gohberg and M.G.Krein, [GoKr3], [GoKr4], [GoKr5].
The development of this theory stimulated new analytic investigations of the spectral
properties of both selfadjoint and non-selfadjoint operators.

To explain the definition of this integral, we begin with a finite-dimensional example.
Let H be a complex n-dimensional Hilbert space, n < ∞. Let A be an operator in H,
and let {ek}1≤k≤n be an orthonormal basis in H. Then the operator A can be written in
the form

A =

n∑

j,k=1

ej ajk 〈 · , ek〉 , (7.32)

where ajk = 〈Aek, ej〉 are the entries of the matrix of the operator A in this basis. Let
the subspaces Hk be defined by (7.24), and let Pk be the orthoprojector onto Hk. The
collection P of the orthoprojectors

0 = P0 < P1 < · · · < Pn−1 < Pn = I (7.33)

forms a maximal chain in H. This chain is an eigenchain for A. Let

∆Pk = Pk − Pk−1, k = 1, 2, . . . , n . (7.34)

Then, since

Pk − Pk−1 = ek 〈 · , ek〉 and ej ajk 〈 . , ek〉 = ∆Pj A ∆Pk , (7.35)

formula (7.32) can be written in the form

A =
n∑

j,k=1

∆Pj A∆Pk . (7.36)
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Moreover, if ajk = 0 for some choice of j, k, then, by (7.35), ∆Pj A∆Pk = 0 in (4.12).
Thus, if the matrix ajk is upper triangular, i.e., if ajk = 0 for j > k, and if akk = λk (an
eigenvalue of the matrix A), then the representation (7.36) takes the form

A =

n∑

k=1

λk ∆Pk +

n∑

k=2

k−1∑

j=1

∆Pj A∆Pk . (7.37)

Since
k−1∑
j=1

∆Pj = Pk−1, (7.37) can be rewritten in the form

A =
n∑

k=1

λk ∆Pk +
n∑

k=1

Pk−1A∆Pk . (7.38)

The first sum on the right hand side of (7.38) represents the “diagonal part” of A,
the second sum represents the “super-diagonal” part with respect to the Schur basis
{ek}1≤k≤n. (Everything here depends on the choice of the basis.) Since the matrix of the
adjoint operator A∗ (with respect to the same orthonormal basis) is lower triangular, i.e.,
∆Pj A

∗∆Pk = 0 for j < k, and Pk−1A
∗ Pk = 0, the Schur result can be expressed as

follows:

For every operator A in a finite-dimensional Hilbert space there exists at least one
maximal eigenchain P = {Pk}0≤k≤n. For every such eigenchain, the operator A admits
two representations: (7.38) and (with appropriate indexing) the representation

A =
n∑

k=1

λk∆Pk + 2i
n∑

k=1

Pk−1CA∆Pk , (7.39)

where ∆Pk is defined by (7.34) and CA =
A− A∗

2i
.

The sums in (7.39) can be considered as “integrals” over the chain P:

A =

∫

P

λ(P ) dP + 2i

∫

P

P CA dP . (7.40)

In the case of the finite-dimensional H that was just discussed, the “integrals” in (7.40)
are no more than a notation for the finite sums in (7.39). It is not a problem to generalize
integrals of the form

∫
P

λ(P ) dP to the infinite-dimensional case. This is the usual integral

of a scalar function with respect to an orthogonal spectral measure. Integrals of this kind
are well understood, because of their connection with needs of the theory of selfadjoint
operators. However, integrals of the form

I(X, P)
def
=

∫

P

P X dP . (7.41)
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for an arbitrary chain P of orthoprojectors and a more or less general bounded linear
operator X in an infinite dimensional Hilbert space H are more difficult to handle.10. An
integral of the form (7.41) can be defined by means of a very natural limiting process that
was introduced by M.S.Brodskĭı 11: as usual, certain integral sums should be constructed
and then the passage to limit should be performed. The condition

(P+ − P−)X(P+ − P−) = 0 for every jump (P − P+) of the chain P (7.42)

is an evident necessary condition for the existence of the integral (7.41). However, the
problem of obtaining sufficient conditions for the existence of such an integral turned out
to be far more difficult. The theory of such integrals, the so called integral of triangular
truncation, was created mainly in the works of M.S.Brodskĭı, I.Ts.Gohberg, M.G.Krein
and V.I.Matsaev and served to complete a program that was initiated by M.S. Livšic
(see the remark to Theorem II′′ of this section). A detailed exposition of this theory
is presented in [Brod4], [GoKr2] and [GoGoK]. Brodskii proved that under condition
(7.42), the integral (7.41) exists, if the operator X is of trace class S1.

12 V.I.Matsaev,
[Mats1], sharpened this result. He proved, that under the condition (7.42), the integral
(7.41) exists (in the sense of the convergence of integral sums with respect to the uniform
operator norm), if the compact operator X belongs to the class Sω, i.e., if the condition∑
1≤k<∞

sk(X) · k−1 < ∞ holds. The latter result is precise in some sense. If a compact

operator X does not belong to the class Sω, then there exists a continuous maximal chain
P such that the integral (7.41) does not exist even in the sense of weak convergence; see
[Brod4], Lemma 22.2. In any case, if the operator X is compact and if the integral
(7.41) exists (in the sense of the convergence of integral sums with respect to the uniform
operator norm), then this integral represents a Volterra operator. We recall, that a linear
operator in a Hilbert space is said to be a Volterra operator if it is compact and if its
spectrum consists of only one point, the point zero.

The representation (7.40) of an operator A by means of the integral of triangular trunca-

10 Integrals of scalar valued functions with respect to operator valued measures and integrals of operator
valued functions with respect to a scalar valued measure are usually much easier to deal with than integrals
of operator valued functions with respect to operator valued measures. In the integral (7.41), both the
function PX and “the measure” dP are operator valued.

11 An integral of the form (7.41) can be considered (under appropriate parametrisation of the chain P )
as a special case of a double integral operator of the form

1∫

0

1∫

0

χ(t, s) dP (t)X dP (s) , with χ(t, s) = 1 for s > t, χ(t, s) = 0 for s < t ,

We already met such integrals in Section 4. However, here the function χ is of a very special form, and
the results which can be obtained for double operator integrals with this function are much more precise
than the results which follow from the general theory of double integral operators.

12 Recall that singular values of a compact operator X are the eigenvalues of the operator
√
X∗X

indexed in such a way that s1(X) ≥ s2(X) ≥ s3(X) ≥ . . . and that X ∈ S1 if
∞∑
k=1

sk(X) <∞.
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tion can be considered as a coordinate-free representation ofA from its maximal eigenchain
and its imaginary part. On the one hand, this representation generalizes the results of
Livšic (see Theorem I′′ and the Remark following it that focuses attention on the formulas
(7.19) and (7.20)). On the other hand, the representation (7.40) is “coordinate free”, i.e.,
it represents the operator A itself in the original Hilbert space H, rather than a “model”
operator T that acts in the “model” space L2

E
and which is only unitarily equivalent to

the original operator A (or even to an inessential extension Ã of A acting in a larger

space H̃ ⊃ H). In spirit, the representation (7.40) is much closer to the original work
of Schur [Sch2] than the triangular model (7.15) of Livšic. The integral representation
(7.40) for a bounded linear operator A with imaginary part CA ∈ S1 was first obtained
by Brodskii in [Brod1] using the representation (7.19)-(7.20) as a model. Brodskĭı just
transformed this representation to the coordinate free form (7.40). This proof used the
theory of characteristic functions. Later, in [Brod2] and [Brod3], the representation (7.40)
was obtained for arbitrary Volterra operators A in a Hilbert space (in which case λ(t) ≡ 0
in (7.40)), and also for bounded linear operators A with real spectrum and CA ∈ Sω, in-
dependently of the theory of characteristic functions, by methods based on consideration
of the eigenchains of the operators A, i.e., by generalizing the reasoning of Issai Schur.

The study of the integral of triangular truncation has led to unexpected and deep con-
nections between the spectra of the real and imaginary components of Volterra operators.
In certain cases the clarification of these connections has required the development of new
analytic tools, see Chapter III of the book [GoKr2]. As an example of the application
of the general results obtained in the setting of the integral of triangular truncation, we
consider the Volterra operator A = B+iC, B = B∗, C = C∗ in the Hilbert space L2([0, 1])
that is defined by the equality

Ax(t) = 2i

1∫

t

h(t− s)x(s) ds ,

where the function h( · ) is periodic: h(t + 1) = h(t), Hermitian: h(−t) = h(t), and
summable on [0, 1]. It is easily checked that the eigenvalues {ξj}∞−∞ and {ηj}∞−∞ of the
operators B and C (appropriately indexed) are related by the discrete Hilbert transform:

ηk =
1

π

∞∑

l=−∞

ξl
l − k + 1

2

, −∞ < k <∞ . (7.43)

Consequently, it is possible to obtain estimates for the discrete Hilbert transform by
applying some results on the spectra of the Hermitian components of Volterra operators
(7.43).

Thus, the Schur paper [Sch2], which is elementary and purely algebraic, stimulated the
creation of several deep and rich analytic theories.
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pryazhennykh operatorov i promezhutochnye sistemy(Russian). Uspehi Mat. Nauk
(N.S.) 13:1 (1958), pp.3̇ - 85. English transl.: Spectral analysis of non-selfadjoint op-
erators and intermediate systems. Amer. Math. Soc. Transl. (2) 13 (1960), pp. 265 -
346.

[Dav] Davidson,K.R. Nest Algebras.Triangular forms for operator algebras on Hilbert space.

(Pitman Research Notes in Mathematics Series, 191). Longman, Harlow & Wiley
NewYork 1988.

[GoGoK] Gohberg, I.Ts., S.Goldberg and M.Kaashoek. Classes of Linear Operators.
Vol. II. (Operator Theory: Advances and Applications. OT63). Birkhäuser Verlag,
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[Liv3] Livšic, M.S. (=Livshits,M.S.) O privedenii linĕınykf ermitovykh operatorov k
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[Liv8] Livšic, M.S.. (=Livshits,M.S.) Operatory, Kolebanija, Volny (Otkrytye sistemy),
Nauka, Moscow, 1966 (Russian). English transl.: Operators, oscillations, waves (open
systems). (Translations of Mathematical Monographs, Vol. 34.) American Mathemat-
ical Society, Providence, R.I., 1973.

[Mats1] Matsaev,V.I. (=Macaev,V.I.) Ob odnom klasse vpolne nepreryvnykh operat-
prov (Russian). Doklady Akad. Nauk SSSR, 139:3 (1961), pp. 548 - 551. English
transl.: On a class of completely continuous operators. Soviet Math., Doklady, 2

(1961), pp. 972 - 975.

[Mats2] Matsaev,V.I. (=Macaev,V.I.) O vol’terrovykh operatorakh, poluchaemykh voz-
mushcheniem samosopryazhennykh (Russian). Doklady Akad. Nauk SSSR, 139:4
(1961), pp. 810 - 813. English transl.: Volterra operators produced by perturbation of
self-adjoint operators. English thransl.: Soviet Math., Doklady, 2 (1961), pp. 1013 -
1016.
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8 . Sequences of multipliers that preserve

the class of polynomials with only real zeros,
and entire functions of the Laguerre-Polya-Schur class.

Problems related to the distribution of the zeros of polynomials have attracted the
attention of mathematicians for a long time. In particular, the following question has
generated considerable interest. How many real zeros does a given a polynomial with
real coefficients have? There are several methods for either estimating or determining
precisely the number of zeros of such a polynomial that belong to a given interval (a, b) of
the real axis. These include the Descartes’ rule of signs, the Budan-Fourier algorithm, the
Sturm algorithm and methods based on Hermitian forms. These methods are presented
in old books on algebra ([Web], Vol. I, [Kur]), as well as in books devoted to the zeros
of polynomials, [Obr], [Mar], [Dieu]. The article [KrNa] contains a detailed survey of
the method of Hermitian forms for the separation of the zeros of polynomials. A lot of
additional material on the distribution of roots of polynomials can be found in [PoSz],
Part V.

In this section we shall focus on a different class of results that deal with transformations
that preserve the class of polynomials P (t) = p0+p1t+p2t

2 · · · +pntn with real coefficients
for which

#nr(P ) = the number of non real roots of the polynomial P (t)

is equal to zero. The simplest result of this kind states that if P (t) is a polynomial with
real coefficients and α ∈ R, then

#nr(P ) = 0 =⇒ #nr(αP + P ′) = 0.

If the roots of P (t) are distinct, then this follows easily from Rolle’s theorem applied to
e−αtP (t).

THEOREM Let P (t) = p0+p1t+p2t
2 · · · +pntn and Q(t) = q0+q1t+q2t

2+ · · · +qmtm
be polynomials with real coefficients and assume that #nr(Q) = 0. Then the following
conclusions hold:

(1) [Hermite] #nr(Q(
d
dt
)P ) ≤ #nr(P ).

(2) [Laguerre] If also the roots of Q(t) fall outside the interval [0, n], then

#nr(Q(0)p0 +Q(1)p1t +Q(2)a2t
2 + · · · + Q(n)pnt

n) ≤ #nr(P ).
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(3) [Malo] If also the roots ofQ(t) are either all positive or all negative and l = min(n,m),
then

#nr(P ) = 0 =⇒ #nr(p0q0 + p1q1t + · · · + plqlt
l) = 0.

(4) [Schur] If also the roots of Q(t) are either all positive or all negative and l =
min(n,m), then

#nr(P ) = 0 =⇒ #nr(p0q0 + 1!p1q1t + 2!p2q2t
2 + · · · + l!plqlt

l) = 0.

The cited results may be found in [Obr], [Lag1]), [Mal] and [Sch7], respectively; see also
[PoSz], PartV, Chapter 1, § 5, no.63 and 67 for the first two.

The last three three statements of the theorem deal with an operation of the form

p0 + p1t + · · · + pnt
n −→ γ0p0 + γ1p1t+ · · · + γnpnt

n. (8.1)

In the particular case considered by Schur, γk = qk for k ≤ m, and γk = 0 for k > m,
where the qk are obtained from the coefficients of a polynomial Q(t) with only negative
roots that we now write as Q(t) = q0 +

q1
1!
t+ q2

2!
t2 + · · · + qm

m!
tm. The importance of this

result is that it admits a converse: Every sequences {γk}0≤k<∞ for which the operation
(8.1) preserves the class of polynomials with real coefficients and #nr(P ) = 0 is either
generated by a polynomial Q(t) = q0+

q1
1!
t+ q2

2!
t2+ · · · + qm

m!
tm with only negative zeros, or

belongs to the closure of sequences generated by such polynomials. A full description of
this class of sequences {γk}0≤k<∞ is presented in the paper [PS] by G.Polya and I. Schur
and will now be described briefly below.

Given an infinite unilateral sequence

Γ = {γ0, γ1, γ2 . . . γk, . . . } (8.2)

of real numbers, let Φ(t) denote the (formal) power series

Φ(t) =
∞∑

k=0

γk
k!
tk (8.3)

and, for any polynomial
P (t) = p0 + p1t+ · · · + pnt

n , (8.4)

let Γ[P (t)] denote the new polynomial:

Γ[P (t)] = γ0a0 + γ1a1t + γ2a2t
2 + · · · + γnant

n . (8.5)

DEFINITION I ([PS]). I.The sequence (8.2) is said to be a sequence of multipliers of the

first type if for every polynomial P (t) with real coefficients (of arbitrary degree n),

#nr(P ) = 0 =⇒ #nr(Γ[P ]) = 0.
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II. The sequence (8.2) is said to be a sequence of multipliers of the second type if for every
polynomial P (t) with real coefficients (of arbitrary degree n) and only negative zeros,
#nr(Γ[P ]) = 0.

DEFINITION II ([PS]). I. An entire function Φ(t) 6≡ 0 is an entire function of the first

type, if it admits a multiplicative representation of the form

Φ(t) = c tl eαt
∏

k

(1 + t δk) , (8.6)

where c 6= 0 is a real number, l is a non-negative integer, α is a non-negative real number,
and the δk are non-negative numbers that satisfy the condition

∑
k

δk <∞.

II. An entire function Φ(t) 6≡ 0 is an entire function of the second type, if it admits a
multiplicative representation of the form

Φ(t) = c tl e−βt2+αt
∏

k

(1 + t δk) e
−δkt , (8.7)

where c 6= 0 is a real number, l is a non-negative integer, β is a non-negative number, α
is a real number, and the δk are real numbers that satisfy the condition

∑
k

(δk)
2 <∞.

THEOREM (G.Polya and I. Schur, [PS]). I. If the sequence γ0, γ1, . . . , γk, . . . is a
sequence of multipliers of the first (respectively the second) type, then the series (8.3)
converges in the whole complex plane, and the entire function Φ(t) which is represented
by this series is an entire function of the first (respectively the second) type.

II. If Φ(t) is an entire function of the first (respectively the second) type, and (8.3) is
its Taylor expansion, then the sequence γ0, γ1, . . . , γk, . . . is a sequence of multipliers
of the first (respectively the second) type.

This theorem gives a full description of the sequences of multipliers of both the first and
second type. The appearance of two types of multipliers (and two types of entire functions)
corresponds to the fact that in the Schur theorem from [Sch7] that was stated above,
the polynomials P (t) and Q(t) appear in a symmetric way : if one of the polynomials
P (t) = p0+p1t+p2t

2+ · · · or Q(t) = q0+q1+q2t
2+ · · · has only real zeros, and the other

has only negative zeros, then all the zeros of the polynomial p0q0+1!p1q1t+2!p2q2t
2+ · · ·

are real. Thus, roughly speaking, sequences of the first (respectively second) type act
on polynomials that are entire functions of the second (respectively first) type. The two
types of entire functions arise as limits of the two classes of polynomials:

THEOREM (E. Laguerre, [Lag2]; G.Pólya, [Pol1]).

I. Let Φ(t) be an entire function of the first type (respectively the second type). Then
there exists a sequence {Φn(t)}n=1, 2, ... of polynomials such that the zeros of {Φn(t)} lie
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in the negative half-axis (respectively the real axis) and {Φn(t)} converges to Φ(t) locally
uniformly in the whole complex plane.

II. If a sequence of polynomials {Φn(t)}n=1, 2, ... converges uniformly in a neighborhood
of the origin to a function that is not identically equal to zero and if all the zeros of
every polynomial Φn lie in the negative half-axis (respectively the real axis), then the
sequence {Φn}n=1, 2, ... converges locally uniformly in the whole complex plane and the
limit function Φ(t) is an entire function of the first (respectively second) type.

Part I of this theorem was obtained by Laguerre, [Lag2]; part II was obtained by Polya,
[Pol1]. Laguerre obtained a weak version of part II. Namely, he assumed that the sequences
of polynomials {Φn} considered above converge in the whole complex plane, not just in
a neighborhood of the origin, and deduced the same properties of the limiting function
that are stated in part II of the preceding theorem. This result of Laguerre is not strong
enough to obtain a description of the multiplier sequences, the stronger result by Pólya
is needed. The theorems of Laguerre and Polya, and some generalizations, can be found
in [HiWi], Chapter III, § 3, and in [Lev], Chapter VIII.

The paper [PS] by Pólya and Schur served as a source of inspiration for the investigations
of I.J. Schoenberg on the representation of totally positive functions and sequences. The
notion of total positivity was introduced by Schoenberg in [Scho1].

DEFINITION III. A real function (or, in other terms, kernel) K(t, s) of two variables
ranging over linearly ordered sets T and S, respectively, is said to be totally positive if for
every13 m and for every

t1 < t2 < · · · < tm, s1 < s2 < · · · < sm ti ∈ T , tj ∈ S, (8.8)

the inequalities

K

(
t1, t2, . . . , tm

s1, s2, . . . , sm

)
≥ 0 (8.9)

hold, where

K

(
t1, t2, . . . , tm

s1, s2, . . . , sm

)
= det




K(t1, s1) K(t1, s2) · · · K(t1, sm)

K(t2, s1) K(t2, s2) · · · K(t2, sm)

...
...

...

K(tm, s1) K(tm, s2) · · · K(tm, sm)



. (8.10)

Usually T and S are either subintervals of the real axis (that may coincide with the
full axis), or countable sets of real numbers such as the set of all integers or the set of all

13If both sets T and S are infinite, then m can be an arbitrary natural number; if at least one of the sets
T or S is finite then m can be an arbitrary natural number satisfying the restriction m ≤ min{|T |, |S|},
where |M| denotes the cardinality of the setM.
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non-negative integers, or even finite sets of integers. If T and S are sets of integers, then
K can be viewed as a matrix; in this case, K is referred to as a totally positive matrix.

A concept that is more general than total positivity is sign regularity.

A function K(t, s) is said to be sign regular if there exists a sequence of numbers εm,
each of which is equal to either +1 or −1, such that in the setting of (8.8), the inequalities

εm K

(
t1, t2, . . . , tm

s1, s2, . . . , sm

)
≥ 0 (8.11)

hold.

Totally positive matrices (and kernels) have very interesting spectral properties that
were discovered by F.R.Gantmacher and M.G.Krein, [GaKr1], [GaKr2], [GaKr3]. All
the eigenvalues of a totally positive matrix are positive and distinct14. Moreover, its
eigenvectors posses oscillatory properties that are analogous to the oscillatory properties
of the eigenfunctions of Sturm-Liouville differential equations. A presentation of the
spectral properties of totally positive matrices and kernels can also be found in the survey
article [Pink] by A. Pinkus. However, the notion of total positivity was introduced by
Schoenberg [Scho1] in his study of variation-diminishing kernels. Strictly speaking, in
[Scho1], the definitions of total positivity and sign regularity were formulated for the case
of finite matrices; generalizations to wider settings were developed later by Schoenberg
himself and by S.Karlin. (See the book [Kar] for the references and for the history.)

Let V[z1, z2, . . . , zl] denote the number of sign changes of a given sequence [z1, z2, . . . , zl]
of real numbers, when the zero terms are discarded. For example, V[1, 0, 1, 0, −1] = 1
and V[1, −1, 1, 1, −1, 1] = 3.

DEFINITION IV. Let K =
[
kij
]
be a p × q matrix with real entries kij, 1 ≤ i ≤ p, 1 ≤

j ≤ q; p, q < ∞. The matrix K is said to be variation-diminishing, if for every sequence
x = [x1, x2, . . . , xq] of real numbers, the sequence

yi =
∑

1≤j≤q

kijxj , (1 ≤ i ≤ p) , (8.12)

enjoys the property
V[y1, y2, . . . , yp] ≤ V[x1, x2, . . . , xq] . (8.13)

THEOREM (I.J. Schoenberg, [Scho1]). Let K be a p× q matrix with real entries.

I. If the matrix K is sign-regular (in particular, if K is totally positive), then K is
variation-diminishing.

14Under the assumption that all its minors are strictly positive
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II. If the matrix K is variation-diminishing, and

rankK = q , (8.14)

then K is sign-regular.

Under the additional restriction (8.14), this theorem gives necessary and sufficient condi-
tions for a p×q matrix K with real entries to be variation-diminishing. A characterization
of variation-diminishing matrices without any restrictions was obtained by Th.Motzkin
in his PhD Thesis (Basel, 1934). His thesis was published in 1936, [Mot1]; see also [Mot2].
Additional characterizations of matrix variation diminishing transforms can also be found
in Chapter 4, § 8 of [HiWi], and Chapter 5, §§ 1, 2 of [Kar]. The latter is a storehouse of
wisdom on total positivity, variation diminishing transformations and related issues and
applications.

For a function x(t) which is defined on a linearly ordered set T , the number of sign
changes V[x(t)] is defined as V[x(t)] = supV[x(t1), x(t2), . . . , x(tl)], where the supremum

is taken over all t1, t2, . . . , tl from T such that t1 < t2 < . . . < tl. (It is possible that
V[x(t)] =∞).

For a real-valued kernel K(t, s) defined for t ∈ T , s ∈ S, where T and S are subin-
tervals (finite or infinite) of the real axis, the variation diminishing property also can be
formulated in the form

V[y(t)] ≤ V[x(s)] (t ∈ T , s ∈ S), (8.15)

where

y(t) =

d∫

c

K(t, s) x(s) ds , a ≤ t ≤ b . (8.16)

Of course some restrictions have to be imposed on the class of functions x(s) and on the
kernel K(t, s) to ensure the existence of the transformation (8.16) and the possibility of
counting uniquely15 the number of changes of sign of the functions x(s) and y(t).

The preceding theorem of Schoenberg that characterizes matrices with variation-diminishing
properties in terms of their sign-regularity, can be extended to continuous kernels K(t, s),.

It should be mentioned that as early as 1912, in order to estimate the number of real
zeros of polynomials with real coefficients, M.Fekete considered formal power series with
real coefficients

∑
0≤i<∞

cit
i that possess the following property: for a given natural number

r, all the determinants (8.18) with m = 1, 2, . . . , r are non-negative. Power series with
this property are called r -time positive. Multiplication by such a power series

∑
0≤i<∞

cit
i,

15 Since the number of changes of sign of a function is defined pointwise, the functions x(s) and y(t)
must be defined everywhere, not just almost everywhere on the appropriate intervals.
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transforms the power series
∑

0≤k≤r

xkt
k into the power series

∑
0≤j<∞

yjt
j according to the

rule ∑

0≤j<∞

yjt
j =

( ∑

0≤i<∞

cit
i

)
·
( ∑

0≤k<∞

xkt
k

)
,

or, equivalently,

yj =
∑

0≤k≤j

cj−kxk , 0 ≤ j <∞.

Fekete formulated the following statement (see footnote number six in [Fek]):

Let
∑

0≤i<∞

cit
i be an r-time positive (formal) power series, and let

∑
0≤k<∞

xkt
k be a poly-

nomial of degree r (i.e., xk = 0 for k > r) with real coefficients. Then

V[y0, y1, y2, . . . , yj, . . . ] ≤ V[x0, x1, . . . , xr].

Totally positive matrices and kernels that depend on the difference of their arguments
are of special interest. Let {ci}−∞<i<∞ be an infinite bilateral sequence and let the infinite
Toeplitz matrix K be defined in terms of this sequence by the rule

K =
[
kp,q
]
0≤p,q<∞

, kp,q
def
= cp−q. (8.17)

If the sequence ci is unilateral: ci are defined only for i ≥ 0, we first extend the original

sequence to the set of all integers by setting ci
def
= 0 for i < 0 and then define the Toeplitz

matrix K by rule (8.17) applied to the extended sequence.

DEFINITION V ( I.J. Schoenberg, [Scho2] ). The real valued infinite sequence {ci}, bilateral
or unilateral, is said to be totally positive if the matrix (8.17) is totally positive, i.e., if for
every naturalm and for every choice of integers p1 < p2 < . . . < pm, q1 < q2 < . . . < qm
the inequality

det




cp1−q1 cp1−q2 · · · cp1−qm

cp2−q1 cp2−q2 · · · cp2−qm

· · · ·
cpm−q1 cpm−q2 · · · cpm−qm


 ≥ 0 (8.18)

holds.

DEFINITION VI ( I.J. Schoenberg, [Scho2] ). A real valued function Λ(t) that is defined for
all t ∈ (−∞, ∞) is said to be totally positive if it satisfies the following three conditions:

i. The kernel K(t, s)
def
= Λ(t− s), −∞ < t, s < ∞, is totally positive, i.e., for every

natural number m and for every t1 < t2 < · · · < tm, s1 < s2 < · · · < sm the
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inequality

det




Λ(t1 − s1) Λ(t1 − s2) · · · Λ(t1 − sm)
Λ(t2 − s1) Λ(t2 − s2) · · · Λ(t2 − sm)
· · · ·

Λ(tm − s1) Λ(tm − s2) · · · Λ(tm − sm)


 ≥ 0 (8.19)

holds.

ii. The function Λ(t) is measurable.

iii. The function Λ(t) is positive for at least two distinct values of t.

It is not difficult to prove that if a function Λ(t) is defined on R and is nonnegative
there, and if the inequalities (8.19) hold for m = 2 and for all t1 < t2, s1 < s2, then the
function ψ(t) = − ln Λ(t) is convex (in the wide sense 16) on R. In particular, if a function
Λ(t) is totally positive, then the function − ln Λ(t) is convex (in the wide sense) on R.
Therefore, for every totally positive function Λ(t) the limits

α = lim
t→−∞

− ln Λ(t)

t
, β = lim

t→+∞

− ln Λ(t)

t
, (8.20)

exist and −∞ ≤ α ≤ β ≤ ∞ . The equality α = β holds if and only if Λ(t) is of the form

Λ(t) = ekt+l , −∞ < t <∞ , for some real constants k and l. (8.21)

(A function of the form (8.21) is easily seen to be totally positive since all the determi-
nants (8.19) vanish, if m ≥ 2.) Thus, if a function Λ(t) is totally positive, but not of the
form (8.21), then α < β and hence the two-sided Laplace transform

∫
R

Λ(t)eztdt exists for

all points z in the open strip α < Re z < β of the complex z-plane and represents a holo-
morphic function there. Moreover, the function, represented by this Laplace transform,
takes strictly positive values for z ∈ (α, β) ⊂ R. Hence, the reciprocal function Ψ(z):

Ψ(z)
def
=

(∫

R

Λ(t) eztdt

)−1

, α < Re z < β , (8.22)

is meromorphic in the strip α < Re z < β, holomorphic in all points of the interval
(α, β) ∈ R , and takes strictly positive finite values in this interval: 0 < Ψ(x) < ∞ ,
α < x < β .

16 A function defined on Ris said to be convex in the wide sense if it is convex in the usual sense on
some subinterval of R, which can coincide with R, can be finite or semi-infinite. and is equal to +∞ on
the complement of this interval. A non-negative function Λ(t) on R is convex in the wide sense if and
only if the inequalities (8.19) hold for m = 2 and for all t1 < t2, s1 < s2.
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THEOREM I (I.J. Schoenberg, Theorem 1 in [Scho2]).

I. Let Λ(t) be a totally positive function that is not of the form (8.21) and let the function
Ψ(z) be defined by means of (8.22) as a meromorphic function in the strip α < Re z < β
(see (8.20)).

Then Ψ(z) is holomorphic in this strip and admits an analytic continuation to the whole
complex plane C. The continued function (denoted by Ψ(z) as well) is an entire function
of the second type, 17which is not of the form

Ψ(z) = ceaz , where a and c are real constants, c 6= 0 . (8.23)

The function Λ(t) can be recovered from Ψ(z) by mean of the inversion formula

Λ(t) =
1

2πi

γ+i∞∫

γ−i∞

1

Ψ(z)
e−ztdz , −∞ < t <∞ , (8.24)

where γ is an arbitrary 18 real number from (α, β).

II. Let Ψ(z) be an entire function of the second type that is not of the form (8.23), and
let Ψ(x) be strictly positive on an interval (α, β) ∈ R (so that the reciprocal function
1

Ψ(z)
is holomorphic in the vertical strip α < Re z < β). Let the function Λ(t) be defined

from this Ψ(z) by means of the integral. 19 Then the function Λ(t) is totally positive, and
if the interval (α, β) is the maximal interval on which the function Ψ(x) is positive, 20then
the endpoints α and β of this interval coincide with the limits α and β in (8.20).

The proof of this theorem is based essentially on methods and results from the paper
[PS]. Indeed, the names of Polya and Schur (and Laguerre) appear in the title of [Scho2],
and as Schoenberg himself writes “A proof of Theorem 1 is essentially based on the results
and methods developed by Polya and Schur. The only additional element required is a set
of sufficient conditions insuring that a linear transformation be variation diminishing.”

For the sake of added perspective, we shall sketch the proof of part II, which is not
difficult (once the theorem has been formulated), but shall omit the proof of part I, which
is not so simple and straightforward. If the function Ψ(z) is “a linear factor”, i.e., if
Ψ(z) = (1 + δz), δ 6= 0 when 1 + δγ > 0 and Ψ(z) = −(1 + δz), δ 6= 0 when 1 + δγ < 0,

17 In the sense of the paper [PS], see Definition II above in this section.
18 The value of the integral in (8.24) does not depend on the choice of γ ∈ (α, β).
19The integral (8.24) converges absolutely for every entire function Ψ(z) of the second type, except

when Ψ(z) is of the form ceat(1+ δz), where c 6= 0, δ 6= 0, c, δ, a are real, in which case the integral (8.24)
converges in the sense of principal values.

20 That is, if either Ψ(α) = 0, or α = −∞, and if either Ψ(β) = 0, or β =∞ .
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then

Λ(t) =

{
δ−1et/δ, t < 0
0 , t > 0

, if γ > −1/δ ; Λ(t) =

{
0 , t < 0
δ−1et/δ, t > 0

, if γ < −1/δ .
(8.25)

This function Λ(t) is totally positive. If the formula (8.24) is used to construct the function
Λj(t) from Ψj(z), j = 1, 2, and the function Λ(t) from the product Ψ(z) = Ψ1(z)Ψ2(z),
and if the same γ is used for all three constructions, then

Λ(t) =

∞∫

−∞

Λ1(t− ξ)Λ2(ξ) dξ . (8.26)

Moreover, if Λ1 and Λ2 are totally positive, then the function Λ is totally positive as
well. Therefore, if Ψ(z) = ± ∏

1≤k≤n

(1 + δkz) is a polynomial with real roots, then the

function Λ(t) defined by (8.24) is totally positive. Finally, if Ψ(z) is an entire function
of the second type, then there exists a sequence of polynomials Ψn(z) with real roots
such that Ψn(z) → Ψ(z) and, correspondingly, Λn(t) → Λ(t). Therefore, if Ψ(z) is an
entire function of the second type, then the corresponding function Λ(t) that is defined
by formula (8.24) is totally positive. Thus, part II of the theorem is proved.

The statement that the difference kernel K(t, τ) = Λ(y − τ) is variation diminishing
if and only if the function Λ(t) is of the form (8.24), where Ψ(z) is an entire function of
the second type, was formulated explicitly in [Scho3]. In particular, a difference kernel
K is variation diminishing if and only if either the kernel K or the kernel −K is totally
positive. 21 Many results related to totally positive and variation diminishing difference
kernels can be found in [HiWi], Chapter IV, and especially in [Kar], Chapter 7.

Discrete totally positive difference kernels were first considered in [AESW], [ASW] and
[Edr]. The formulations are analogous to the formulations for continuous difference ker-
nels, but the proofs are more difficult and use tools from value distribution theory for
meromorphic functions.

THEOREM(A.Aissen,A.Edrei, I.J. Schoenberg,A.Whitney, [AESW], [ASW], [Edr]).

I. Let {sk}0≤k<∞ be a totally positive (unilateral) sequence with s0 = 1. Then the series

F (z) =
∑

0≤k<∞

skz
k (8.27)

21 This agrees with the results of Schoenberg and Motzkin on general variation diminishing transforms
since a difference kernels K(t, τ) = Λ(t− τ) is sign regular if and only if either the kernel K(t, τ) or the
kernel −K(t, τ) is totally positive.
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converges in a neighborhood of the origin to a function of the form

F (z) = eγz

∏
k

(1 + αkz)

∏
k

(1− βkz)
(αk ≥ 0, βk ≥ 0, γ ≥ 0,

∑
(αk + βk) <∞). (8.28)

II. Let F (z) be a function of the form (8.28) and let (8.27) be its Taylor expansion in
the vicinity of the origin. Then the sequence {sk}0≤k<∞ is totally positive.

This theorem provides a parametrization of the set of all totally positive unilateral
sequences (under the normalizing condition s0 = 1). The sequences αk, βk and the number
γ serve as independent parameters. Various results related to unilateral and bilateral
totally positive sequences can be found in [Kar], Chapter 8.

This parametrization of totally positive sequences plays an essential role in the theory
of representations of the infinite symmetric group. It appears in the description of non-
decomposable positive definite functions. This was discovered by Elmar Thoma in [Tho],
where some earlier results on totally positive sequences were rediscovered. The generating
function of the sequences that appear there are of the form (8.28), with γ = 0, and∑
k

αk +
∑
k

βk ≤ 1. The theory of totally positive functions and sequences is used in

approximation theory, mathematical statistics and in other fields. References can be
found in [Kar] and in [GaMic]. Recently, a surprising connection between total positivity
and canonical bases for quantum groups was discovered by G. Lusztig; see [FoZe].

The methods and especially the ideology of the paper [PS] underly some of the work
of B.Ya. Levin that is considered in Chapter IX of his monograph [Lev]. The famous
S.N.Bernstein inequality can be formulated in the following form: Let f(z) be an en-
tire function of exponential type σf . If the inequality |f(x)| ≤ |eσx| holds for all real
x, −∞ < x < ∞ and if σf ≤ σ, then the derivative f ′(x) satisfies the inequality∣∣f ′(x)

∣∣ ≤
∣∣(eσx) ′

∣∣ (−∞ < x <∞).
In other words, the operator d

dx
preserves inequalities on the real axis for some classes

of entire functions. Levin has investigated the general form of linear operators which
preserve inequalities of this sort. In this investigation, the linear operators that preserve
the class of entire functions that is obtained as the closure of polynomials with zeros in
the open right half plane play a crucial role. The operators of the form (8.1), which were
introduced and investigated in the paper [PS], are precisely those that commute with the
operator z d

dz
.
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et Oscillatoires (French). [On completely non-negative and oscillatory matrices] Com-
positio Math., 4 (1937), pp. 445 - 476.

[GaKr3] Gantmacher,F.R. and M.G.Krein. Ostsillyatsionnye Matritsy i Yadra i Malye
Kolyebaniya Mekhanicheskikh Sistem (Russian) [Oscillatory Matrices and Kernels
and small Vibrations of Mechanical systems]. GITTL, Moskow 1950. English transl:
German transl.:

[GaMic] Gasca,M. and C.A.Micchelli (eds). Total Positivity and its Applications. (Math-
ematics and its Applications, 359). Kluver Academic Publishers, Dordrecht, 1996.
x+518 pp.

[HiWi] Hirschman, I.I. and D.V.Widder. The Convolution Transform. Princeton Univ.
Press, Princeton, NJ, 1955, x+ 268 pp. Russian transl.: Preobrazovaniya Tipa
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Math, 4 (1864). Reprinted in [LagO], pp. 184 - 206.

[Lag2] Laguerre,E. Ser les fonctions du genre zéro et du genre un.
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Boston, MA,1983. xxvi+530

[Obr] Obreschkoff,N. Verteilung und Berechnung der Nullstellen reeller Polynome.
Deutscher Verlag der Wissenschaften, Berlin 1963, viii, 298 p.

[Pink] Pinkus, A. Spectral properties of totally positive kernels and matrices. In [GaMic],
pp. 457 - 511.
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9 . The Schur class of holomorphic functions,

and the Schur algorithm.

The papers [Sch9]-[Sch10] are probably the best known contributions of Issai Schur
to analysis. In these papers Schur introduced a new parametrization of functions that
are holomorphic and bounded by one in the open unit disk D and an algorithm for
calculating these parameters. These ideas and their subsequent generalizations to matrix
and operator valued functions are widely used in a variety of applications that range from
signal processing to the study of Pisot and Salem numbers.
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DEFINITION 1. A function s(z) that is holomorphic in the open unit disk D and satisfies
the inequality

|s(z)| ≤ 1 for all points z ∈ D (9.1)

is said to belong to the Schur class S. A function s ∈ S will be referred to as a Schur

function. A Schur function s ∈ S is said to be inner if the absolute value of the radial limit

s(t)
def

= lim
r→1−0

s(rt) (9.2)

is equal to one a.e. with respect to Lebesgue measure. The set of inner functions will be
denoted by the symbol Sin. The set of rational inner functions will be denoted Srin.

The simplest inner functions are finite Blaschke products:

s(z) = czκ
d∏

k=1

αk − z
1− αkz

, (9.3)

where c is a constant of modulus one, κ is a non-negative integer and αk ∈ D.

The Schur algorithm was introduced by I. Schur in Section 1 of [Sch9]. It exploits the
fact that if γ ∈ D, then the linear fractional transformation

ζ → ζ − γ
1− ζ γ (9.4)

is a one to one mapping of the open unit disk D onto itself and a one to one mapping of
the unit circle T , i.e., the boundary of D , onto itself. If |γ| = 1 the transformation (9.4)
maps the set C \ {γ} into the point {−γ} and is not defined at the point γ.

Let f ∈ S be a Schur function that is not a constant of modulus one. Then |f(0)| < 1
and hence, in view of the properties of (9.4), the transformation

f(z)→ f(z)− f(0)
1− f(z) f(0)

(9.5)

maps S into {s ∈ S : s(0) = 0}. Therefore, by the Schwarz Lemma, the transformation

f(z)→ f(z)− f(0)
1− f(z) f(0)

· 1
z

(9.6)

maps {s ∈ S : |s(0)| 6= 1} onto the class S of all Schur functions. In particular if
f ∈ S \Srin, then |f(0)| < 1 and the transformation (9.6) is well defined. It is easy to see
that:

PROPOSITION 1. The transformation (9.6) maps f ∈ S \ Srin into itself.
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PROPOSITION 2. The transformation (9.6 maps rational inner functions f ∈ Srin of
degree n, n ≥ 1, into rational inner functions of degree n− 1.

DESCRIPTION OF THE SCHUR ALGORITHM. The Schur algorithm defines a sequence of
Schur functions {sk(z)}0≤k<∞ starting from a given Schur function s(z) that is assigned
the index zero:

s0(z)
def
= s(z), (9.7)

sk(z)
def
=

sk−1(z)− sk−1(0)

1− sk−1(z) sk−1(0)
· 1
z

(k = 1, 2, 3 , . . . ) . (9.8)

SCHUR PARAMETERS. Let s ∈ S and let {sk} be the sequence (finite or infinite) of
functions generated by the Schur algorithm with s0(z) = s(z). The numbers

γk
def
= sk(0) (9.9)

are termed the Schur parameters of the function s.

If the starting function s /∈ Srin, then, by Proposition 1, the algorithm continues in-
definitely and produces infinitely many Schur functions sk(z), k = 0, 1, 2, 3, . . . and
generates an infinite sequence of Schur parameters {γk}0≤k<∞. In this case

|γk| < 1 , k = 0, 1, 2, . . . . (9.10)

If the starting function s ∈ Srin is is a rational inner function of degree n, then, by
Proposition 2, the algorithm terminates after n steps. In this case, it generates a finite
sequence of Schur parameters

|γk| < 1 , k = 0, 1, 2, . . . , n− 1 and |γn| = 1. (9.11)

The Schur parameter γk(s) of a Schur function

s(z) =

∞∑

k=0

ck(s)z
k (9.12)

depends only on the Taylor coefficients c0(s), c1(s), . . . , ck(s) of the function s:

γk(s) = Φk(c0(s), c1(s), . . . , ck(s)) , (9.13)

where Φk(c0, c1, . . . , ck) is a rational function of the variables c0, c0, c1, c1, . . . , ck−1, ck−1, ck .

Conversely, the Taylor coefficient ck(s) of a Schur function s depends only on the Schur
parameters γ0(s), γ1(s), . . . , γk(s) of this function:

ck(s) = Ψk(γ0(s), γ1(s), . . . , γk(s)) , (9.14)
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where Ψk(γ0, γ1, . . . , γk) is a polynomial in γ0, γ0, γ1, γ1, . . . , γk−1, γk−1, γk .

Explicit expressions for Φk and Ψk are given in [Sch9].

DEFINITION 4. A sequence {γk}0≤k<∞ of complex numbers is said to be strictly contrac-

tive if |γk| < 1 for every k.

Thus, the sequence of Schur parameters of a Schur function s ∈ S\Srin is strictly contrac-
tive. Moreover, every preassigned strictly contractive sequence {γ0, γ1, γ2, . . . , γk, . . . }
is the sequence of Schur parameters for some unique Schur function s ∈ S \ Srin. Such a
function can be constructed by means of a continued fraction algorithm.

SCHUR CONTINUED FRACTIONS. Given an arbitrary strictly contractive sequence
{γ0, γ1, . . . , γk, . . . } of complex numbers, one can construct a sequence of rational Schur
functions which converge to a Schur function s with Schur parameters {γ0(s), γ1(s), . . . ,
γk(s), . . . } that coincide with the preassigned sequence. The construction is based on the
inverse of the transformation

f(z)→ f(z)− γ
1− f(z) γ ·

1

z
, (9.15)

i.e., on the transformation

f(z)→ γ + zf(z)

1 + γzf(z)
, (9.16)

which also maps S into S. We use the ‘inverse Schur algorithm’ recursively to construct
the n-th Schur approximant, which (following Schur) we will denote by [z; γ0, γ1, . . . , γn].
Namely, we write

[z; γn] = γn;

[z; γk, γk+1, γk+2, . . . , γn] =
γk + z · [z; γk+1, γk+2, . . . , γn]

1 + γk · z · [z; γk+1, γk+2, . . . , γn]
,

k = n− 1, n− 2, . . . , 1, 0 .

(9.17)

The function [z; γ0, γ1, . . . , γn] is a rational Schur function whose Schur parameters
γk
(
[z; γ0, γ1, . . . , γn]

)
are equal to

γk
(
[z; γ0, γ1, . . . , γn]

)
= γk for k = 0, 1, . . . , n;

γk
(
[z; γ0, γ1, . . . , γn]

)
= 0 for k > n .

Let n1 and n2 be two nonnegative integers. Since the Schur parameters with index
k : 0 ≤ k ≤ min(n1, n2) for the functions [z; γ0, γ1, . . . , γn1] and [z; γ0, γ1, . . . , γn2]
coincide, the Taylor coefficients c1k and c2k (0 ≤ k ≤ min(n1, n2)) for these two functions
coincide as well. Hence,

[z; γ0, γ1, . . . , γn1]− [z; γ0, γ1, . . . , γn2] =
∑

min(n1,n2)<k<∞

(c1k − c2k) zk .
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Using the estimates
∣∣[z; γ0, γ1, . . . , γn1]

∣∣ ≤ 1,
∣∣[z; γ0, γ1, . . . , γn2]

∣∣ ≤ 1 for z ∈ D and the
Schwarz Lemma, we obtain the inequality

∣∣[z; γ0, γ1, . . . , γn1]− [z; γ0, γ1, . . . , γn2]
∣∣ ≤ 2 |z| 1+min(n1, n2) for z ∈ D . (9.18)

From (9.18) it follows that the limit

[z; γ0, γ1, . . . , γk, . . . ]
def
= lim

n→∞
[z; γ0, γ1, . . . , γn] (9.19)

exists in D. The function [z; γ0, γ1, . . . , γk, . . . ] is said to be the Schur continued fraction

constructed from the sequence {γ0, γ1, . . . , γk, . . . }.

The function [z; γ0, γ1, . . . , γk, . . . ] ∈ S\Srin. Its Schur parameters γk
(
[z; γ0, γ1, . . . , γk, . . . ]

)

coincide with the numbers γk:

γk
(
[z; γ0, γ1, . . . , γk, . . . ]

)
= γk, 0 ≤ k <∞.

Given s ∈ S \Srin, we can form the sequence {γ0(s), γ1(s), . . . , γk(s), . . . } of its Schur
parameters and then construct the Schur continued fraction [z; γ0(s), γ1(s), . . . , γk(s), . . . ].
The function represented by this fraction is a Schur function whose Schur parameters co-
incide with the sequence of Schur parameters of the original function s. Hence,the Taylor
coefficients of these two functions coincide as well. Thus, we are led to following result:

THEOREM (I. Schur, [Sch9]).

I. Every s ∈ S \ Srin admits the continued fraction expansion

s(z) = [z; γ0(s), γ1(s), . . . , γk(s), . . . ]. (9.20)

II. A Schur function s ∈ Srin of degree n admits the representation

s(z) = [z; γ0(s), γ1(s), . . . , γn(s)] . (9.21)

DEFINITION 5. Let s ∈ S \ Srin, let n be a non-negative integer and let (9.20) be the
Schur continued fraction expansion of the function s. Then the function

pn(s; z)
def
= [z; γ0(s), γ1(s), . . . , γn(s) ] (9.22)

is said to be the n-th Schur approximant of the function s.

REMARK 1. The n-th Schur approximant is a rational function of z whose numerator and
denominator are polynomials of degree not greater than n. In fact the n-th Schur approx-
imant of a s ∈ S \ Srin is the n-th convergent of its Schur continued fraction expansion
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(9.20).

The estimate ∣∣s(z)− pn(s; z)
∣∣ ≤ 2 |z|n+1, (9.23)

which follows from the Schwarz Lemma, holds for every s ∈ S \ Srin and implies that the
sequence of the Schur approximants of such an s converges to it locally uniformly in the
open unit disk D. This result on the locally uniform convergence of the approximants
pn(s; z) to s(z) in the open unit disc D appears in [Sch9] (with the rougher estimate∣∣s(z)−pn(s; z)

∣∣ ≤ 2|z|n+1(1−|z|)−1). The problem of convergence of Schur approximants
to s on the unit circle T is much more difficult. This problem was studied in [Nja] and
[Khru2].

The preceding results imply that the correspondence

{γ0, γ1, . . . , γk, . . . } ←→ [z; γ0, γ1, . . . , γk, . . . ] (9.24)

is a free parametrization of the class of all s ∈ S \ Srin by means of the set of all strictly
contractive sequences {γ0, γ1, γ2, . . . , γk, . . . }. where sequences serve as free parameters
of this class, This is important because the geometry of the set of all Taylor coefficients
of functions of this class is rather complicated, whereas the geometry of the set of all
Schur parameters is very simple: it is just the direct product of the open unit disks. This
geometry is compatible with probabilistic structures and is well suited for probabilistic
study. Some results on Schur functions with random Schur parameters are obtained in
[Kats].

REMARK 2. It is not easy to express the properties of a concrete Schur function s in
terms of its Schur parameters 22 γk(s). In particular, it is not easy to recognize whether
the function s is inner or not. Not much is known about this.

If
∑

0≤k<∞

|γk(s)| < ∞, then the function s is continuous in the closed unit disk D, and

max
z∈D
|s(z)| < 1. (Of course, s is not inner.) This result was obtained by I. Schur, [Sch10],

§15, Theorem XVIII.

If
∑

0≤k<∞

|γk(s)|2 <∞, then again the function s is not inner, as follows from the identity

∏

0≤k<∞

(1− |γk(s)|2) = exp
{∫

T

ln
(
1− | s(t)| 2

)
m(dt)

}
.

(See [Boy] and also formula (8.14) in [Ger3], which expresses a similar result for polyno-
mials that are orthogonal on T.)

22 However, to express the properties of a Schur function in terms of its Taylor coefficients is, as a rule,
even more difficult.
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If lim
k→∞
|γk(s)| = 1, then the function s is inner. An equivalent result was obtained by

E.A.Rakhmanov in the setting of orthogonal polynomials on the unit circle, [Rakh]. It
is known as Rakhmanov’s Lemma. A simple function-theoretic proof of the Rakhmanov
lemma in the setting of Schur functions can be found in [Kats].

If the sequence of Schur parameters {γk(s)}0≤k<∞ satisfies the Maté–Nevai condition

lim
k→∞

γkγk+n = 0 for n = 1, 2, 3, . . . , but lim
k→∞
|γk| > 0, then s is an inner function. This is

Theorem 5 and Corollary 9.1 in [Khru2].

It is also known that there exists infinite Blaschke product s such that
∑

0≤k<∞

|γk(s)|p <
∞ for every p > 2. (This is shown in [Khru3].)

The following question is both natural and important:

QUESTION 1: Given a sequence c = {c0, c1, . . .}, does there exist a function s ∈ S such
that

s(j)(0)

j!
= cj for j = 0, 1, . . .?

Schur obtained an answer to this question by using the algorithm (9.7) - (9.8) starting
with

s0(z) = f(z) =

∞∑

j=0

cjz
j , (9.25)

to calculate the parameters γj. All the series are formal. However, since the Schur param-
eters γ0, . . . , γk only depend upon c0, . . . , ck, this does not present a problem. Proceeding
this way, Schur obtained the following answer to Question 1.

In order for the series (9.25) to be the Taylor series of a Schur function, it is necessary
and sufficient that either |γk(f)| < 1 for every integer k : 0 ≤ k < ∞, or |γk(f)| < 1 for
k : 0 ≤ k < n, and |γn(f)| = 1. In the second case the coefficients ck of the series (9.25)
coincide with the k-th Taylor coefficients of the function

[
z; γ0(f), γ1(f), . . . γn(f)

]
for

every 23 k : 0 ≤ k <∞.

Schur also considered the following related question:

QUESTION 2. Given a finite set of complex numbers {c0, . . . , cm}, does there exist a
function s ∈ S such that

s(j)(0)

j!
= cj for j = 0, 1, . . . , m? (9.26)

Moreover, if such functions exist, how can one describe them?

23For k = 0, 1, . . . , n this coincidence holds automatically since the Schur parameters
γ0(f), γ1(f), . . . , γn(f) are built from c0, c1, . . . , cn; the remaining coefficients ck for k > n are de-
termined by c0, c1, . . . , cn.
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Schur answered Question 2 in terms of the Schur parameters generated by the algorithm
(9.7) - (9.8) starting with

s0(z) = g(z) =
m∑

j=0

cjz
j . (9.27)

THEOREM 1 (I. Schur, [Sch9]). There exists a function s ∈ S that meets the interpolation
condition (9.26) if and only if: either |γk(g)| < 1 for every integer k : 0 ≤ k ≤ m, or
|γk(g)| < 1 for k : 0 ≤ k < n, and |γn(g)| = 1 for some n, n ≤ m. In the second case, the
interpolating Schur function s(z) is unique, namely, s(z) =

[
z; γ0(g)), γ1(g), . . . γn(g)

]
.

In the first case, there are infinitely many interpolating functions s(z). Moreover, the first
m+ 1 Schur parameters γk(s), k = 0, 1, . . . , m, of every interpolant s coincide with the
Schur parameters γk(g) of the given polynomial. The remaining parameters γk(s) with
k > m are either an infinite sequence of arbitrary strictly contractive complex numbers
if s ∈ S \ Srin, or a finite sequence of strictly contractive numbers that terminates with
|γn(s)| = 1 for some m < n. Moreover, all interpolants are obtained this way.

Schur also formulated another criterion for the solvability of the interpolation problem
(9.26) in terms of an (m+1)× (m+1) upper triangular Toeplitz matrix based on the the
coefficients of the given polynomial:

Cm =




c0 c1 c2 · · · cm

0 c0 c1 · · · cm−1

0 0 c0 · · · cm−2

· · · · · · ·
0 0 0 · · · c0




(9.28)

THEOREM 2 (I. Schur, [Sch9]). The given polynomial g(z) = c0 + c1z + · · · + cmz
m can

be interpolated by a function s ∈ S if and only the Hermitian form based on the matrix
I -C ∗

mCm is non-negative:

〈(I - C ∗
mCm) x, x〉 ≥ 0, ∀x ∈ C

m+1 , (9.29)

where I is the identity matrix in Cm+1 and 〈 , 〉 is the standard scalar product in Cm+1.
The Hermitian form is strictly positive if and only if there exist more than one interpo-
lating function s ∈ S.

We remark that the matrix Cm and an analogous matrix Dm based on the coefficients
of the reflected polynomial zmg(1/z) = cm + cm−1z + · · ·+ c0z

m figure in the well known
Schur-Cohn test:

The roots of the polynomial g(z) lie in D if and only if D∗
mDm − C∗

mCm > 0.
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A nice proof of this result based on Schur parameters may be found in the first chapter
of [FoFr].

Schur derived the criterion (9.29) for the solvability of the interpolation problem (9.26)
from the criterion for solvability in terms of Schur parameters (that was formulated as
Theorem 1). As a by product of this derivation, he obtained a formula for the factorization
of a 2× 2 square block matrix

M =

[
A B
C D

]

with square block diagonal entries A and C (not necessarily of the same size) when the
matrix A is invertible, which in turn leads easily to the identity

[
A B
C D

]
=

[
I 0

CA−1 I

]
·
[
A 0
0 D − CA−1B

]
·
[
I A−1B
0 I

]
. (9.30)

The matrix D−CA−1B is termed the Schur complement of the block entry A with respect
to M . If it is also invertible, then M is invertible and the last formula leads easily to a
formula for the inverse matrix M−1, since each of the three factors on the right hand side
of (9.30) are easily inverted. The same formula implies that

detM = detA · det(D − CA−1B),

as was also noted in [Sch9]. Schur complements are widely used in the applied linear
algebra and operator theory; see e.g., the long survey (of more then hundred pages) [Oue]
and [Sm], respectively.

The k-th step (9.8) of the Schur algorithm can also be presented in the form
[
sk(z)

1

]
=

[
z−1 −γk−1 z

−1

−γk−1 1

]
·
[
sk−1(z)

1

]
· 1

−γk−1 sk−1(z) + 1
,

where γk−1 = sk−1(0). Thus, it is natural to associate the matrix

[
z−1 −γk−1 z

−1

−γk−1 1

]

with the k-th step of Schur algorithm. However, it turns out to be more fruitful to deal
with the matrix mγk−1

, where

mγ(z) =

[
z−1 −γ · z−1

−γ 1

]
· 1√

1− |γ|2
, when |γ| < 1. (9.31)

The matrixmγ is also a matrix of coefficients of the linear fractional transformation (9.15),
which is the basic step (9.6) of the Schur algorithm, whereas the matrix

mγ(z)
−1 =

[
z γ

z · γ 1

]
· 1√

1− |γ|2
(9.32)
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is the coefficient matrix of the linear fractional transformation (9.16) corresponding to
the basic step of the inverse Schur algorithm.

The coefficient matrix of a linear fractional transformation is determined up to a nonzero
scalar factor. The matrix of the linear fractional transformation (9.15) is chosen to be of
the form (9.31) because then mγ is j - inner with respect to the signature matrix

j =

[ −1 0

0 1

]
, (9.33)

i.e.,

(mγ (z)
∗)−1 j (mγ (z))

−1 − j = (1− |z|2) ·
[
1
0

] [
1 0

]
. (9.34)

DEFINITION. Let ωm = {γk}0≤k≤m be a strictly contractive sequence of complex numbers
and let the entries of the matrix valued function

Mωm(z)
def

= m γm (z) ·m γm−1
(z) · . . . ·m γ1

(z) ·m γ0
(z) , m = 0, 1, 2, . . . (9.35)

be denoted as

Mωm(z) =

[
aωm(z) bωm(z)

cωm(z) dωm(z)

]
· (9.36)

For s(z) ∈ S \ Srin, let ω = {γk}0≤k<∞ be the sequence of its Schur parameters and let
{sk(z)}0≤k<∞ be the sequence of Schur functions generated by the Schur algorithm (so
that γk = sk(0)). Then

Mωm(z)

[
s(z)

1

]
=

[
sm+1 (z)

1

]
· (cωm(z) s(z) + dωm(z)) , (9.37)

and hence
aωm(z) s(z) + bωm(z)

cωm(z) s(z) + dωm(z)
= sm+1 (z) . (9.38)

Moreover,

s(z) =
w11(z) sm+1(z) + w12(z)

w21(z) sm+1(z) + w22(z)
, (9.39)

where the matrix W (z) =

[
w11(z) w12(z)

w21(z) w22(z)

]
= M−1

ωm
(z) can be expressed in the term

of the entries of the matrix Mωm(z):

W (z) =

[
dωm(z) −bωm(z)

−cωm(z) aωm(z)

]
· 1

aωm(z)dωm(z)− bωm(z)cωm(z)
· (9.40)
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Furthermore, since

W (z) = m−1
γ0
(z) ·m−1

γ1
(z) · . . . ·m−1

γ
m−1

(z) ·m−1
γm

(z) , (9.41)

and the matrix m−1
γ is linear with respect to z, the entries of the matrix W (z) are poly-

nomials with respect to z of degree m (or less). In view of (9.34), the matrix function
W (z) satisfies the condition

W ∗(z)jW (z)− j ≥ 0 for z ∈ D , (9.42)

W ∗(t)jW (t)− j = 0 for t ∈ T . (9.43)

Formula (9.39) (in other notation) appears in § 14 of [Sch10]. It expresses the Schur
function s(z) with Schur parameters γk(s) that satisfy the condition |γk(s)| < 1, k =
0, 1, . . . , n, as a linear fractional transformation of the function sn+1(z). It is important
to note that the matrix W (z) of this fractional-linear transformation can be constructed
from only the first n+ 1 Schur parameters γk(s), k = 0, 1, . . . , n .

The Schur parameters of the functions s(z) and sm+1(z) are related: γk(sm+1) =
γm+k(s) , k = 0, 1, 2, . . . . Thus, the following result holds:

THEOREM 3. The set of all functions s(z) ∈ S, whose Schur parameters γk(s) coincide
with a prescribed set of numbers γk, |γk| < 1, k = 0, 1, · · · , m , can be parametrized by
means of the linear fractional transformation

s(z) =
w11(z)ω(z) + w12(z)

w21(z)ω(z) + w22(z)
, (9.44)

where the coefficient matrix W (z) of this transformation can be constructed from only
these γk, and the free parameter ω(z) is an arbitrary function from the class S.

Schur did not mention either formula (9.39) or formula (9.44) explicitly in his description
of the solutions of the interpolation problem of the form

γk(s) = γk, k = 0, 1, . . . , m . (9.45)

Nor do the properties (9.42) and (9.43) of the matrix W (z) in (9.44) appear in Schur’s
work. But this was the starting point of subsequent research on interpolation problems
with constraints in various classes of analytic functions, particularly that of M.Riesz
and R.Nevanlinna. The work [Sch9]-[Sch10] stimulated interest in obtaining matrices
of linear fractional transformations that appear in descriptions of the sets of solutions
of such problems. The methods described above are recursive and depend essentially
upon formulas involving the Schur parameters. V.P. Potapov showed how to obtain an
expression for the matrix W (z) that appears in the description of the set of all solutions
of the problem (9.45) in the class S directly in terms of the data c0, c1, . . . , cm, without
first calculating the Schur parameters. This method of V.P.Potapov, as applied to the the
interpolation problem (9.26), is elaborated on in great detail in the monograph [DFK].
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Considerations related to formula (9.39) were used by Schur to obtain the following
result:

In order that the function s(z) =
p(z)

q(z)
∈ S, where p(z) and q(z) are coprime polynomials,

be representable in the form s(z) = [z; γ0, γ1, . . . , γm], with m <∞, it is necessary and
sufficient that the following two conditions are satisfied:

1. The polynomial q(z) does not vanish in the closed unit disc D;

2. The factorization identity |q(t)|2 − |p(t)|2 = r, where r is a positive number, holds
for t ∈ T.

The circle of problems related to Schur functions and the Schur algorithm is closely
related to the theory of polynomials that are orthogonal on the unit circle. Note that

ζ → 1 + ζ

1− ζ
is one-to-one mapping of the unit disk {ζ : | ζ | < 1} onto the right half-plane {ζ : Re ζ >
0}. Therefore, if s(z) is a Schur function, then the function

w(z) =
1 + zs(z)

1− zs(z) (9.46)

is a Carathéodory function, i.e., a function which is holomorphic and has non-negative
real part in the unit disk:

Rew(z) ≥ 0 for z ∈ D . (9.47)

The factor z in (9.46) leads to the normalization

w(0) = 1 . (9.48)

Conversely, if w(z) is a Carathéodory function that satisfies the normalization condition
(9.48), then it can be uniquely represented in the form (9.46), where s(z) is a Schur
function. Every Carathéodory function w(z) which satisfies the normalization condition
(9.48) admits the Herglotz representation

w(z) =

∫

T

t+ z

t− z σ(dt) , (9.49)

where σ is a probability measure on T. Conversely, if σ is a probability measure on
T, then formula (9.49) defines a normalized Carathéodory functiom w(z). Thus, the
transformation (9.46) together with the representation (9.49), establishes a one-to-one
correspondence between Schur functions and probability measures on T. It is easy to see
that

S ∈ Srin ⇐⇒ σ has finite support⇐⇒ w(z) is rational with all its poles on T.
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Let σ be a probability measure on T with infinitely many points of support and let
{ϕk}0≤k<∞ be a sequence of polynomials that is orthonormal, with respect to σ. Such
a sequence can be obtained by applying the Gram-Schmidt orthogonalization procedure
to the sequence {zk}0≤k<∞. Let ϕ

∗
k(z)

def
= zkϕk(1/z) denote the reciprocal polynomial. It

turns out that the system of polynomials {ϕk, ϕ
∗
k}0≤k<∞ satisfy linear recurrence relations

that can be written in the form:
[
ϕk+1(z)

ϕ∗
k+1(z)

]
=

1√
1− | ak|2

[
z −ak
−z ak 1

]
·
[
ϕk(z)

ϕ∗
k(z)

]
, 0 ≤ k <∞ , (9.50)

with the initial condition [
ϕ0(z)

ϕ∗
0(z)

]
=

[
1

1

]
. (9.51)

Here {ak}0≤k<∞ is a strictly contractive sequence of complex numbers that is determined
uniquely by the probability measure σ that generates the sequence {ϕk}0≤k<∞ of orthogo-
nal polynomials. The numbers ak(σ) are termed the reflection coefficients of the measure
σ or of the sequence {ϕk} of orthogonal polynomials.

THEOREM [Ya.L.Geronimus]. Let s ∈ S \ Srin and let the normalized Carathéodory
function w(z) be related to s by (9.46). Then the Schur parameters of s coincide with
the reflection coefficients of the measure sigma:

γk(s) = ak(σ) for 0 ≤ k <∞ .

This theorem first appears in [Ger1]. It also appears as Theorem 18.2 in [Ger2]. Unfor-
tunately, these papers are not easily accessible. However, an English translation of the
second one is available. A simplified presentation of the cited theorem by Geronimus can
be found in [Khru1] and in [PiNe].

Many (but not all) properties of a Schur function s(z) can be naturally reformulated
in terms of the related function w(z), i.e., in terms of the related sequence of orthogonal
polynomials. In particular: a Schur function s(z) is inner if and only if the related
measure σ(dt) is singular. Indeed, | s(t)| = 1 if and only if Rew(t) = 0. On the other
hand, Rew(t) = σ′(t) for m almost every t ∈ T. (Here s(t) and w(t) are the boundary
values of the appropriate functions and σ′(t) is the derivative of the measure σ with
respect to the normalized Lebesgue measure m.) Some other connections between Schur
functions and orthogonal polynomials can be found in [Gol1], [Gol2] and [Khru2].

There is a rich literature dedicated to the Schur algorithm and related topics. The
volume [Ausg] containes a selection of basic early papers on Schur analysis written in
German (by G.Herglotz, I. Schur, G.Pick, R.Nevanlinna, H.Weyl), as well as the After-
word written by B.Fritzsche and B.Kirstein, the editors of this volume. See also their
survey [FrKi]. The last several years have witnessed an explosion of interest in generaliza-
tions of the Schur algorithm and the associated parametrization to matrix and operator
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valued functions. In particular, a p × q matrix valued function s(z) that is holomorphic
in D and satisfies the inequality

|ξ∗s(z)η| ≤ 1 for every point z ∈ D and every pair of unit vectors ξ ∈ C
p and η ∈ C

q

is said to belong to the Schur class Sp×q. The Schur algorithm is developed in detail for
this class of functions in [DeDy]; see also [AlDy] for a reproducing kernel Hilbert space
interpretation and additional generalizations to Pontryagin spaces and the references to
both of these papers. There are also many papers by the team P.Delsarte, Y.Genin and
Y.Kamp that are devoted to generalizations of a number of the the themes discussed in
this section; see e.g., [DeGeK] for a start. The books [Alp], [Con], [DFK] and [FoFr] are
dedicated to function theoretic questions related to the Schur algorithm and its applica-
tions to operator theory. Applications of the Schur algorithm to Pisot and Salem numbers
are considered in the book [BDGPS]. The Schur algorithm is also useful in the setting
of fast numerical algorithms for systems of linear equations with structured matrices 24

(Toeplitz, Hankel, etc.); see the book [S:Meth] (and in particular the papers [Kail] and
[LevKai]). The terminology ”I. Schur methods in signal processing” is now widely used in
this connection. See the survey [KaSa1] and the volume [KaSa2] for further references in
this direction.
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viii+150pp.

[AlDy] Alpay,D. and H. Dym, On applications of reproducing kernel spaces to the Schur
algorithm and rational J unitary factorization. In [S:Meth], pp. 89 - 159.
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Vértesi, P., L. Leindler, F.Móricz, Sz.Révész, J. Szabados and V.Totik -
editors. János Bolyai Mathematical Society, Budapest 1996.

[Rakh] Rahmanov, E.A.(=Rakhmanov, E.A.) Ob asimptotike otnosheniya ortogo-
nal’nykh polinomov. II. Matem. Sbornik. Nov.ser. 118 (160), no. 1 (1982), pp.104-117
(In Russian). English transl.: On the asymptotics of the ratio of orthogonal polyno-
mials. II. Math. USSR Sbornik 46 (1983), pp. 105-117.

95



[Sch:Ges] Schur, I.: Gesammelte Abhandlungen [Collected Works ]. Vol. I, II, III. Springer-
Verlag, Berlin·Heidelberg·NewYork 1973.
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[Sch8] Schur, I. Über die Entwicklung einer gegebenen Funktion nach den Eigenfunktionen
eines positiv definiten Kerns (German) [On the expansion of a given function in
eigenfunctions of a positive definite kernel]. Schwarz-Festschrift (1914), pp. 392 - 409.
Reprinted in: [Sch:Ges], Vol. II, pp. 70 - 87.
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