
ar
X

iv
:0

70
6.

18
89

v1
  [

as
tr

o-
ph

]  
13

 J
un

 2
00

7
Astronomy & Astrophysicsmanuscript no. winds2 c© ESO 2018
November 5, 2018

Super stellar clusters with a bimodal hydrodynamic solutio n: an
Approximate Analytic Approach
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ABSTRACT

Aims. We look for a simple analytic model to distinguish between stellar clusters undergoing a bimodal hydrodynamic solutionfrom
those able to drive only a stationary wind. Clusters in the bimodal regime undergo strong radiative cooling within theirdensest inner
regions, which results in the accumulation of the matter injected by supernovae and stellar winds and eventually in the formation of
further stellar generations, while their outer regions sustain a stationary wind.
Methods. The analytic formulae are derived from the basic hydrodynamic equations. Our main assumption, that the density at the
star cluster surface scales almost linearly with that at thestagnation radius, is based on results from semi-analytic and full numerical
calculations.
Results. The analytic formulation allows for the determination of the threshold mechanical luminosity that separates clustersevolving
in either of the two solutions. It is possible to fix the stagnation radius by simple analytic expressions and thus to determine the fractions
of the deposited matter that clusters evolving in the bimodal regime blow out as a wind or recycle into further stellar generations.
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1. Introduction

The discovery of young massive stellar clusters or super stel-
lar clusters (hereafter SSCs) with typical masses between sev-
eral times 104 M⊙ to several times 106 M⊙ and radii in the
range 1− 10 pc has unveiled the dominant mode of star for-
mation in starburst and interacting galaxies (see, for example,
McCrady et al. 2003; Whitmore 2006 and references therein).
SSCs dominate the structure of the ISM in their host galaxies
via their large UV photon output and their high velocity out-
flows or star cluster winds. Furthermore, the interaction ofthe
winds from nearby SSC may lead to the inner structure of the
large-scale galactic outflows, or super galactic winds, which con-
nect starburst events with the intergalactic medium as in M82
(Tenorio-Tagle et al. 2003).

Here, we center our attention on the hydrodynamics of
the matter reinserted within the SSC volume, particularly in
the case of massive and compact SSCs. The latter have been
shown to be exposed to the strong radiative cooling (see
Silich et al. 2004) that leads to a bimodal hydrodynamic solution
(Tenorio-Tagle et al. 2007). This phenomenon occurs because
the cluster mechanical luminosity and the injected gas density
are nearly linear functions of the cluster mass, while the cooling
rate is proportional to the square of the density, and therefore if
one considers very massive and compact clusters, radiativecool-
ing would always dominate (see Silich et al. 2003 for details).
Radiative cooling depletes the energy in the densest inner re-
gions enclosed within the so-calledstagnation radius. The gas
velocity at the stagnation radius is zero km s−1. Thus the mat-
ter reinserted through stellar winds and supernovae withinthe
central volume is accumulated to become thermally and/or grav-
itationally unstable leading to further episodes of star formation
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(Tenorio-Tagle et al. 2005). On the other hand, the matter in-
jected in the outer layers, between the stagnation radius and the
cluster surface, composes a stationary wind. In the adiabatic so-
lution and for low mass and extended clusters, the stagnation ra-
dius is always found at the star cluster center. However, if radia-
tive cooling is taken into consideration, it progressivelymoves
towards the star cluster surface as one considers more massive
and compact clusters.

In this work, as in Chevalier & Clegg (1985), the density,
temperature and velocity are functions of the radial coordinate
only. Such an approach does not take into account the effects
of the turbulence generated by individual stellar winds andsu-
pernovae within the cluster volume. By changing the density,
velocity and temperature distributions, it is thought to provide
an additional transport of energy towards the smallest condensa-
tions. However it cannot prevent catastrophic cooling within the
densest parts of the flow because it results from the net energy
balance inside the cluster.

The properties of such clusters are described here by an ap-
proximate analytical formulation, in agreement with our former
semi-analytic and numerical calculations (see sections 2 and 3).
We display our results in a series of universal diagrams valid for
all massive and compact SSCs. Section 4 deals with the impact
of different heating efficiencies.

2. Adiabatic vs radiative solutions

The original framework to study the fate of the matter deposited
by supernovae and strong stellar winds within a star clustervol-
ume was developed by Chevalier & Clegg (1985). In their adia-
batic model the kinetic energy released by individual sources is
completely thermalized in situ via direct collisions of thehigh
velocity gaseous streams from neighboring sources. This results
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in a high central temperature (∼ 107 - 108K) and pressure that
exceeds the pressure of the surrounding interstellar medium. The
velocity of the injected matter then acquires a particular distri-
bution, increasing from zero km s−1 at the star cluster center to
the speed of sound (cS C) at the star cluster surface, approaching
rapidly a supersonic value (VA∞) as it moves outside the cluster
volume.cS C is defined as:cS C = [(γ − 1)/(γ + 1)]1/2VA∞; where
VA∞ = [2LS C/ṀS C]1/2 is the adiabatic wind terminal velocity,
LS C is the star cluster mechanical luminosity, andṀS C is the
rate of mass injection provided by supernovae and stellar winds.
The condition for a stationary flow is then:

ṀS C = 4πR2
S CρS CcS C , (1)

whereRS C is the radius of the cluster andρS C is the density of the
outflow at the star cluster surface. The relation holds whenever
ρS C reaches the proper value, which is in direct proportion to the
density at the stagnation radius (i.e. in the center),ρst: ρS C =

[(γ + 1)/(6γ + 2)](3γ+1)/(5γ+1)ρst, whereρst is (Cantó et al. 2000)

ρst =

(

γ + 1
γ − 1

)1/2 (

6γ + 2
γ + 1

)
3γ+1
5γ+1 qmRS C

3VA∞
. (2)

Hereqm = (3ṀS C)/(4πR3
S C) is the mass deposition rate per unit

volume which for a givenRS C scales linearly with the star cluster
mass,MS C , andγ is the ratio of specific heats. Note that in the
adiabatic solution, if one fixes the radius of the cluster,RS C , and
the adiabatic terminal velocity,VA∞, the central density and the
density at the star cluster surface grow linearly with the mass of
the considered cluster, since the stagnation radius is located at
the star cluster center and thus the density profiles remain self-
similar.

It has recently been shown, however, that the adiabatic model
is inadequate for very massive and compact star clusters, as
in these cases radiative cooling becomes a dominant factor
(Silich et al. 2004). The authors demonstrated that in the radia-
tive case the wind density at the stagnation radius changes to

ρst = µiq
1/2
m




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



ηV2
A∞/2− c2
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Λ(T st, Z)













1/2

, (3)

whereµi = 14/11mH is the mean mass per ion (mH is the proton
mass),Λ(T st, Z) is the cooling function (the cooling rate isQ =
neniΛ(T st, Z)), T st andcst are the temperature and speed of sound
at the stagnation radius, andZ is the metallicity of the plasma.
The parameterη describes how much of the deposited energy
is transformed into energy of the outflow (see§4 for a detailed
discussion). We assumeη = 1 everywhere in§2 and§3.

For clusters of a given size, the density at the stagnation ra-
dius grows in all cases with the mass of the cluster. In the case of
low mass clusters it results from a combination of two effects: i)
the mass deposition rate per unit volume,qm, is a linear function
of ṀS C(∼ MS C). ii) the temperature at the stagnation radius,T st,
decreases with increasing cluster massMS C makingcst smaller
and thus the term in brackets in the rhs of Eq. (3) larger. The
combined action of these two factors then causes that the radia-
tive solution proposed by Silich et al. (2004) is almost identical
to the adiabatic solution of Chevalier & Clegg (1985).

However, if one considers more massive clusters (or clusters
with a higher mechanical luminosity,LS C) one would soon reach
a critical value for which strong radiative cooling would set in at
the star cluster center, drastically changing the inner wind struc-
ture (see Tenorio-Tagle et al. 2007). For clusters above this limit,
the temperatureT st at the stagnation radiusRst does not change

any more and remains equal to the value that corresponds to the
highest possible pressure there (see section 3.1 below). Thus the
second term in Eq. (3) remains fixed and the density at the stag-
nation radius,ρst, grows as the square root of the star cluster
mass, whereas the mass deposition rate continues to grow lin-
early with the mass of the considered cluster. This implies that
above the threshold line, the stationary condition Eq. (1) cannot
be fulfilled unless the stagnation radius moves towards the star
cluster surface. Tenorio-Tagle et al. (2007) showed how to ex-
tend the semi-analytic approach proposed in Silich et al. (2004)
for this case. The authors also found the semi-analytic solution
for the outflow beyond the stagnation radius, and compared it
with full numerical calculations performed with the finite dif-
ference hydrodynamic code ZEUS for which the cooling rou-
tine was modified to make it suitable for the modeling of ex-
tremely fast cooling regions. In particular, they include the cool-
ing rate in the computation of the time-step assuming that the
amount of energy that can be radiated away from a given cell
during one time-step must be smaller than 10% of its internal
energy. The time-step is decreased to meet this cooling ratecon-
dition. However, since this could lead to extremely small time-
steps, which would substantially degrade the overall code per-
formance, they do not allow theglobal time-step to decrease
below 0.1 times the ”hydrodynamic” time-step determined by
the Courant-Friedrich-Levi criterion. If a certain cell requires
an even smaller time-step due to the cooling rate condition,the
time-step was subdivided even further and then was used to
numerically integrate the energy equation only in the affected
cell(s). This ”time refinement” was applied onlylocally, so the
CPU time is not wasted in cells where the high time resolution
is not required (see Tenorio-Tagle et al. 2007 for more details).

3. The catastrophic cooling regime

3.1. The temperature at the stagnation radius

Eq. (3) allows one to determine the pressure at the stagnation
radiusPst = ρstkT st/µ wherek is the Boltzmann constant, and
µ = 14/23mH is the mean mass per particle. Tenorio-Tagle et al.
(2007) showed that in the bimodal regime the pressure at the
stagnation radius always attains the maximum value allowedby
the shape of the cooling function, and thus one can find the cor-
responding temperature numerically ifVA∞ and the shape of the
cooling function,Λ(T, Z), are known.

Fig. 1 displaysT st for different values of the adiabatic wind
terminal speed (or different ratios of energy to mass deposition
rates) and different metallicities of the thermalized plasma. The
temperature at the stagnation radius grows approximately as a
quadratic function ofVA∞ and remains always below the adi-
abatic value (dotted line in Fig. 1). For practical purposesone
can suggest that it does not depend on the plasma abundance
(see Fig. 1). Note that for these calculations and throughout the
paper we have used the Raymond, Cox, & Smith (1976) equilib-
rium cooling function tabulated and updated by Plewa (1995).

3.2. The threshold mechanical luminosity

In the case of a homogeneous stellar mass distribution, the equa-
tion of mass conservation

1
r2

d
dr

(

ρwuwr2
)

= qm, (4)
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Fig. 1. The temperature at the stagnation radius as a function
of the adiabatic wind terminal speed,VA∞ = 2LS C/ṀS C. Solid
and dashed lines represent the temperature at the stagnation ra-
dius for solar and 10 times solar metallicities, respectively. The
adiabatic wind stagnation (central) temperature is shown by the
dotted line.
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Fig. 2. The ratio of the density at the star cluster surface to
that at the stagnation radius in the catastrophic cooling regime.
Solid, dotted and dashed lines present semi-analytic results (see
Silich et al. 2004) forVA∞ = 1000km s−1, VA∞ = 1500km s−1

andVA∞ = 2000km s−1, respectively.

can be easily integrated. At the star cluster edge this results in:

ρS C =
qmRS C

3cS C













1−
R3

st

R3
S C













. (5)

As mentioned above, in the adiabatic case the density at the
star cluster surface scales linearly with that at the central stagna-
tion radius. This is not exactly the case in the radiative solution.
Nevertheless,ρS C/ρst remains restricted into a very narrow in-
terval, 0.28 ≤ ρS C/ρst ≤ 0.42, (see Fig. 2), which allows one to
propose a simple analytic expression for the stagnation radius in
reasonable agreement with the results found in semi-analytic and
full numerical calculations. Indeed, assuming by analogy with

the adiabatic solution, thatρS C = αρst, whereα is a fiducial co-
efficient, one can combine Eqs. (5) and (3) to derive:

R3
st

R3
S C

= 1−

(

Lcrit

LS C

)1/2

, (6)

whereLcrit is

Lcrit =
6(γ − 1)πηα2µ2

i RS CV4
A∞

(γ + 1)Λst
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ηV2
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2
−

c2
st

γ − 1













. (7)

In Eqs. (6) and (7)Λst and cst are the cooling function value
and speed of sound at the stagnation radius, respectively. To de-
rive these equations we have used the adiabatic relation forthe
sound speed at the star cluster surface:c2

S C = (γ−1)V2
A∞/(γ+1).

When the mechanical luminosity of the cluster exceedsLcrit, the
stagnation radius detaches from the star cluster center, which im-
plies thatLcrit is the threshold luminosity which separates clus-
ters evolving in the catastrophic cooling (bimodal) regimefrom
those evolving either in the quasi-adiabatic or in the radiative
regimes, with their stagnation radius located at the star cluster
center. Note that for the latter cases Eq. (6) is not valid.

3.3. The analytic formulation

The analytic values for the threshold luminosity and the stag-
nation radius have been compared with our semi-analytic re-
sults and full numerical calculations (see Fig. 2 and 3 in
Tenorio-Tagle et al. 2007). For that we have used first Fig. 1 to
obtain the temperature at the stagnation radius for a given value
of the adiabatic wind terminal speed,VA∞. We then use this tem-
perature to calculate the sound speed,cst, and the corresponding
cooling function value,Λst, and then use these values to cal-
culate the threshold luminosity and the stagnation radius from
Eqs. (7) and (6). The agreement between the approximate ana-
lytic expressions and semi-analytic results is good if the fiducial
coefficientα = 0.28 (see Fig. 3).

Using Eq. (6) one can also estimate the fraction of the de-
posited matter that clusters evolving in the bimodal regimere-
turn to the ISM of their host galaxy:

Ṁout

ṀS C
=

R3
S C − R3

st

R3
S C

=

(

Lcrit

LS C

)1/2

, (8)

This quantity decreases monotonically with the star cluster
mechanical luminosity (see Fig. 3) as was also found in the
1D hydrodynamicsimulations performed by Tenorio-Tagle etal.
(2007).

The analytic expression (8) reproduces the numerical results
with an accuracy better than∼ 25%. Minor differences between
the analytic and the numerical outputs indicate thatρS C/ρst de-
viates from the assumed constant value.

4. Heating efficiency

Here we follow the Chevalier & Clegg (1985) formulation
supported by full numerical calculations (see, for example
Cantó et al. 2000; Rockefeller et al. 2004) and assume that the
injected matter is thermalized in situ via random encounters of
high velocity stellar winds and supernovae ejecta. The efficiency
of this process is an important, but poorly known parameter
(Stevens & Hartwell 2003). This parameter has been discussed
by different groups (see, for example, Bradamante et al. 1998;
Melioli & de Gouveia Dal Pino 2004 and references therein)
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Fig. 3. The comparison of analytic results with semi-analytic and
full numerical calculations. Panel a) displays the critical lumi-
nosity calculated for three different values of the adiabatic wind
terminal speed:VA∞ = 1000 km s−1, VA∞ = 1500 km s−1 and
VA∞ = 2000 km s−1. Panel b) displays how the stagnation ra-
dius shifts from the center when the mechanical luminosity ex-
ceeds the critical value. Panel c) shows the fraction of the matter
supplied by supernovae and stellar winds that the cluster returns
to the ISM of the host galaxy. In all panels solid lines present
the analytic results. The results from the semi-analytic and full
numerical calculations are shown by the dotted line and by the
cross symbols, respectively. The fiducial coefficientα was set to
α = 0.28 in all calculations.

who argued for very different values of heating efficiency that
vary from 100% to a few per cent.

Note that different authors have different prescriptions for
the physical processes that may lead to an incomplete transfor-
mation of the deposited kinetic energy. In our view, the high

density of the sources may cause an important fraction of the
star cluster mechanical luminosity to be immediately radiated
away. This would happen locally at the sites where the ejecta
from nearby stellar winds and supernovae would interact, in-
hibiting in this way the possibility of having such energy evenly
spread throughout the cluster volume. Turbulence may also ab-
sorb some fraction of the deposited energy. The immediate con-
sequence of such a sudden depletion of energy is to reduce the
thermal pressure gradient responsible for the acceleration of the
injected matter and thus the magnitude of the resultant highve-
locity outflow. We have incorporated all uncertainties related to
this process into a parameterη that represents the fraction of
the deposited mechanical energy per unit time which is finally
evenly spread throughout the cluster volume and participates in
the thermal acceleration of the injected matter. The heating effi-
ciency then effectively reduces the value of the deposited energy,
LS C , but does not affect the mass deposition rate,ṀS C .

Fig. 4 shows the impact of a reduced heating efficiency on the
plasma temperature and how it drastically decreases the thresh-
old luminosity. What the most reasonable value of the heating
efficiency in super star clusters is, remains an open question in
need of both detailed full hydrodynamical calculations andcare-
ful analysis of the available observational data. Nevertheless, the
threshold mechanical luminosities calculated for a reasonable
range of heating efficiencies, 0.1 < η < 1 (shown in Fig. 4b),
suggest that many SSCs may be found well above the threshold
line, as in the case of the M82-A1 supercluster. See Smith et al.
(2006), who, based on the size of its associated HII region, es-
timated a heating efficiencyη < 0.1. A critical revision of the
available super star cluster data will be the subject of a forth-
coming communication.

5. Conclusions

We have provided a simple analytic formulation that allows for
an easy determination in the energy deposition rate vs cluster
size diagram, of the location of the threshold mechanical lumi-
nosity that separates clusters evolving in either of the twopos-
sible hydrodynamic solutions: the normally assumed negative
feedback solution in which all mass supplied by SNe and indi-
vidual stellar winds leaves the cluster as a cluster wind (Rst = 0)
and the bimodal solution (0< Rst < RS C) in which the reinserted
matter accumulates within the volume defined byRst. Simple
analytic expressions, accounting also for a reduced heating effi-
ciency, allow one to calculate the position of the stagnation ra-
dius and the fraction of the deposited matter that clusters evolv-
ing in the bimodal regime return to the ISM of their host galaxy.
Our results are in good agreement with our former semi-analytic
and numerical results.
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