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R. Ali Vanderveld,1 Éanna É. Flanagan,1, 2 and Ira Wasserman1, 2

1Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853
2Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY 14853

(Dated: November 2, 2018)

We explicitly calculate the lowest order systematic inhomogeneity-induced corrections to the cos-
mological constant that one would infer from an analysis of the luminosities and redshifts of Type
Ia supernovae, assuming a homogeneous universe. The calculation entails a post-Newtonian expan-
sion within the framework of second order perturbation theory, wherein we consider the effects of
subhorizon density perturbations in a flat, dust dominated universe. Within this formalism, we
calculate luminosity distances and redshifts along the past light cone of an observer. The luminosity
distance-redshift relation is then averaged over viewing angles and ensemble averaged, assuming that
density fluctuations at a given cosmic time are a homogeneous random process. The resulting rela-
tion is fit to that of a homogeneous model containing dust and a cosmological constant, in order to
deduce the best-fit cosmological constant density ΩΛ. We find that the luminosity distance-redshift
relation is indeed modified, even for large sample sizes, but only by a very small fraction, of order
10−5 for z ∼ 0.1. This lowest order deviation depends on the peculiar velocities of the source and
the observer. However, when fitting this perturbed relation to that of a homogeneous universe, via
maximizing a likelihood function, we find that the inferred cosmological constant can be surpris-
ingly large, depending on the range of redshifts sampled. For a sample of supernovae extending from
zmin = 0.02 out to a limiting redshift zmax = 0.15, we find that ΩΛ ≈ 0.004. The value of ΩΛ has
a large variance, and its magnitude tends to get progressively larger as the limiting redshift zmax

gets smaller, implying that precision measurements of ΩΛ from nearby supernova data will require
taking this effect into account. This effect has been referred to in the past as the “fitting problem”,
and more recently as subhorizon “backreaction”. We find that it is likely too small to explain the
observed value ΩΛ ≈ 0.7. There have been previous claims of much larger backreaction effects. By
contrast to those calculations, our work is directly related to how observers deduce cosmological
parameters from astronomical data.

PACS numbers: 98.80.-k, 98.80.Jk, 98.80.Es

I. INTRODUCTION

It appears as though the Universe is expanding at an accelerating rate, as has been deduced from luminosity distance
measurements of Type Ia supernovae, which appear dimmer than one would expect based on general relativity without
a cosmological constant [1, 2]. This acceleration has also been deduced from measurements of the current matter
density ΩM ≈ 0.27, which is too small to close the Universe as required by cosmic microwave background radiation
(CMB) observations with H0 priors from HST [3, 4]. Explanations for this discrepancy have been put forward, but
most employ a modification of general relativity on cosmological scales or the addition of an exotic “dark energy”
field.
There have also been attempts to explain this seemingly anomalous cosmic acceleration as a consequence of sub-

horizon inhomogeneity, rather than modified gravity or dark energy. A perturbation is referred to as “subhorizon” if
its wavelength is small compared to the Hubble length: λ/LH ≪ 1. It has been suggested that small-scale density
perturbations could cause the appearance of accelerated expansion without the need to introduce any form of dark
energy, which is an appealing prospect [5, 6, 7, 8]. The fact that inhomogeneity can systematically modify our inter-
pretation of cosmological measurements was first realized by Ellis, who called it the “fitting problem” [9, 10]. The
basic idea is this: Due to the nonlinearity of the Einstein equation, the operators for taking spatial averages and for
time evolution do not commute. This means that, although our universe is homogeneous in the mean, it will likely
not have the same time evolution as that of the corresponding homogeneous universe. Nevertheless, we routinely fit
distance data to FRW models, a procedure that introduces errors into the inferred properties of our Universe, and
these errors will be present even for very large samples of Type Ia supernovae.
Our goal in this paper is to calculate the lowest order fitting effect by calculating the cosmological constant density

ΩΛ that one would deduce from a perturbed luminosity distance-redshift relation DL(z). If we treat cosmological
fluctuations perturbatively and as a random process as suggested by the “fair sample hypothesis” [11], then this fitting
effect should be fundamentally nonlinear in the density contrast δ = (ρ− 〈ρ〉)/〈ρ〉, requiring that we work to at least
second order in δ. This is because the ensemble averages of first order quantities vanish. We model observations out
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FIG. 1: The best-fit cosmological constant density ΩΛ plotted as a function of the maximum redshift zmax, for the choices
zmin = 0.01, 0.02, and 0.03. The horizontal dash-dot line shows the actual model value ΩΛ = 0.

to some moderate redshift zmax ∼ 0.1 ≪ 1. Within the corresponding comoving spherical region, the Hubble flow
velocity vH is bounded above by

vH
c

. zmax ∼ 0.1 , (1.1)

allowing us to use post-Newtonian expansions. There are two different velocity scales that occur, the Hubble flow
velocity vH and the peculiar velocity vp. The corresponding dimensionless small parameters are

εH =
vH
c

∼ H0r

c
. zmax ∼ 0.1 (1.2)

and

εp =
vp
c

∼ δ

(

H0λc

c

)

, (1.3)

where λc ∼ 10 Mpc is the wavelength of the dominant perturbation mode. In our computation, we will treat both of
these parameters as being of formally the same order, and we will denote both by “ε” for book keeping purposes. At the
end of our computation we can identify terms that scale as εnHεmp for different values of m and n. As mentioned above,
we also expand separately in the fractional density perturbation δ. We will compute redshifts z(λ) and luminosity
distances H0DL(λ) as functions of the affine parameter λ to third order in ε and to second order in δ. Combining
these results to eliminate λ will yield DL as a function of z.
Using this expansion method, we find that the lowest order inhomogeneity-induced correction to the luminosity

distance scales as |∆DL|/DL ∼ δ2(H0λc/c) ∼ 10−5. We then fit this relation to what one would expect from a
homogeneous cosmological model which contains dust with a density ΩM and a cosmological constant with a density
ΩΛ,

DL(z) =
1 + z

H0

√

|1− ΩM − ΩΛ|
F
[

√

|1− ΩM − ΩΛ|
∫ z

0

dz′
√

ΩM (1 + z′)3 + (1− ΩM − ΩΛ) (1 + z′)2 +ΩΛ

]

, (1.4)

by maximizing a likelihood function. Here F(u) = u for a flat universe, F(u) = sinh(u) for an open universe, and
F(u) = sin(u) for a closed universe. We find that the result for the cosmological constant density is dependent on
the size of the redshift range for which we have supernova data. These results are summarized in Figure 1. For data
from zmin = 0.02 out to a limiting redshift zmax = 0.15, we find that the best-fit cosmological constant density is
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ΩΛ ≈ 0.004, and ΩΛ tends to get larger as zmax gets smaller. The best-fit |ΩΛ| also becomes larger as zmin becomes
smaller, since |∆DL|/DL becomes large on small scales. Although this ensemble averaged result is still quite small,
we find that the variance can be σ2

Λ ∼ 1 for a sample of 100 supernovae out to a redshift zmax ∼ 0.2. One implication
of these results is that precision measurements of the cosmological constant from nearby supernova data require that
we measure DL(z) over a large enough redshift range, with a large enough sample. One could also try to correct
for some of the effects of inhomogeneity, using available information about large scale structure and about our own
peculiar velocity [12, 13].
The analysis presented here is more realistic than similar analyses within the context of simplified models of

structure formation, such as the spherically symmetric Lemâıtre-Tolman-Bondi (LTB) models [14, 15, 16, 17], Swiss
cheese models [18] and their variants [19, 20, 21, 22]. This is because we look at the full three dimensional problem, and
assume that there are no bulk flows on cosmological length scales. There have also been analyses of the perturbations
to the luminosity distance-redshift relation that go to Newtonian order [23, 24, 25, 26], that only consider superhorizon
perturbation modes [27, 28], and that use Taylor expansions of the luminosity distance [29], which are most appropriate
for long-wavelength perturbations. In contrast, we go to post-Newtonian order, we only consider subhorizon modes,
and we fit to FRW models, so that we may fully address the “fitting problem”.
Our analysis is also fundamentally different from those in Refs. [5, 6, 7, 8, 30, 31], as we choose a different method

for obtaining averaged expansion parameters. These authors average the expansion rate over a constant time slice,
whereas we choose to calculate only observable quantities, namely the luminosity distance and the redshift, along the
past light cone of the observer. We then combine these expressions into DL(z, θ, φ), average over viewing angles and
ensemble average, and then fit the results to what one would expect in a homogeneous model containing dust and a
cosmological constant to find the best-fit value for ΩΛ. This approach better simulates the process of gathering and
analyzing supernova data, and it leads to a different result with a stable perturbative expansion.
Refs. [5, 6, 7, 8] base their characterization of the expansion rate of the Universe on quantities that are not related

to how observers have deduced the existence of dark energy. In these papers, perturbations are spatially averaged
over a constant time slice. Such a spatial average is somewhat arbitrary, as it is dependent on the choice of spatial
hypersurface. This is in contrast to the observable significance of DL(z). Refs. [6, 7, 8] also use the synchronous
gauge for their calculations, wherein there are metric perturbations of order δ. Since δ & 1 on small scales, this gauge
is particularly ill suited to perturbation theory. In contrast, in Newtonian-type gauges the metric perturbation is of
order δ(H0λc/c)

2 ≪ δ. We explore this difference in Section VI.
The organization of the paper is as follows: In Section II below, we introduce our coordinate choice, wherein

we recast the Friedmann-Robertson-Walker (FRW) metric as an expansion around flat space, and in Section III we
present the fundamental post-Newtonian optics equations that we will need for this calculation. We then explain our
method of computation and calculate the necessary unperturbed quantities in Section IV. Here we also compute the
luminosity distances and redshifts for a perturbed matter dominated universe, finding z and H0DL to second order in
δ and to third order in ε, and we find that we may write the lowest order correction to DL(z) in terms of the peculiar
velocity field. We then fit to a homogeneous model in Section V to find the best-fit ΩΛ and its variance. The detailed
redshift and luminosity distance equations are in Appendix A, the necessary results of second order perturbation
theory are reviewed in Appendix B, and the averaging is discussed in Appendix C. Then, in Section VI we discuss the
previous results in the synchronous gauge and show that one can choose coordinates and a definition of “acceleration”
such that it appears as though there could be a larger fitting effect. We argue that such a result would be unphysical.
A detailed discussion of transforming to synchronous coordinates is given in Appendix D. Finally, in Section VII we
make our concluding remarks. As usual, Greek indices will be summed over all four spacetime dimensions while Latin
indices will be summed only over the three spatial dimensions. We will also write 3-vectors in boldface and put arrows
over 4-vectors.

II. POST-NEWTONIAN EXPANSION OF THE LOCAL FRW METRIC

In general, certain coordinate choices allow us to conveniently recast the local metric as an expansion around flat
space, as was first emphasized for the FRW metric by Peebles [32]. We will take advantage of such an expansion so
that we may use the standard post-Newtonian formalism for this calculation. Starting with the usual FRW metric
with c = G = 1,

ds2 = −dτ2 + a2(τ)
(

dχ2 + χ2dΩ2
)

, (2.1)

we can define the new radial coordinate

r̃ = a(τ)χ (2.2)
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so that the line element becomes

ds2 = −
(

1−H2r̃2
)

dτ2 − 2Hr̃dτdr̃ + dr̃2 + r̃2dΩ2 , (2.3)

where the Hubble parameter of a flat and dust-dominated FRW universe is H(τ) = (1/a)(da/dτ) = 2/3τ ; we will
specialize to this case for the remainder of this paper. Now we change coordinates to the standard post-Newtonian
gauge. In this gauge, the metric to first post-Newtonian order can be written as

ds2 = gµνdx
µdxν = −

(

1 + 2Φ + 2Φ2
)

dt2 + 2ζidx
idt+ (1− 2Φ) γijdx

idxj , (2.4)

where γij is a flat spatial metric, the potential Φ contains both Newtonian and post-Newtonian pieces, ζi is the usual
gravitomagnetic potential, and

3Φ̇ +∇ · ζ = 0 (2.5)

is the gauge condition. Achieving this form for the metric entails transforming from τ and r̃ to t and r, defined by

τ = t

[

1− r2

3t2
− r4

30t4
+O

(

r6

t6

)]

(2.6)

and

r̃ = r

[

1− r2

9t2
+O

(

r4

t4

)]

. (2.7)

Then the line element becomes

ds2 = −
[

1 +
2r2

9t2
+

46r4

405t4
+O

(

r6

t6

)]

dt2 +

[

4r3

15t3
+O

(

r5

t5

)]

drdt +

[

1− 2r2

9t2
+O

(

r4

t4

)]

(

dr2 + r2dΩ2
)

(2.8)

to the necessary order in r. This metric is of the post-Newtonian form (2.4) if we define

Φ(0) =
r2

9t2
+

2r4

45t4
(2.9)

and

ζr(0) =
2r3

15t3
. (2.10)

Here subscripts “(0)” denote unperturbed, background quantities; we will add cosmological perturbations in subse-
quent sections. The unperturbed density in the new coordinates is

ρ(0) =
1

6πt2

[

1 +
2r2

3t2
+O

(

r4

t4

)]

, (2.11)

and the continuity equation tells us that the unperturbed 3-velocity must be of the form v(0) = v(0)∂/∂r, where

v(0) =
2r

3t

[

1 +
r2

9t2
+O

(

r4

t4

)]

, (2.12)

and where v(0) = dr/dt. Thus, we see that counting orders of ε ∼ v/c is equivalent to counting orders of r/t in these
coordinates. Our coordinate choice and expansion method also have the consequence that the analysis of this paper
is only valid for small redshifts.
In general in the standard post-Newtonian gauge, the connection coefficients are

Γt
tt = Φ̇ , (2.13)

Γt
ti = Φ,i , (2.14)

Γt
ij = −Φ̇γij − ζ(i|j) , (2.15)
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Γi
tt = γijΦ,j , (2.16)

Γi
tj = −Φ̇δij + γikζ[k|j] , (2.17)

and

Γi
jk = Γ̃i

jk − Φ,kδ
i
j − Φ,jδ

i
k +Φ,lγ

ilγjk , (2.18)

to the necessary order in ε, where Γ̃i
jk is the connection associated with the flat spatial metric γij , which we will choose

to be that of standard spherical coordinates (r, θ, φ), as in Ref. [33]. Vertical bars represent covariant derivatives with
respect to γij . We will also need the Ricci tensor components

Rtt = ∇2Φ (2.19)

and

Rij = ∇2Φδij . (2.20)

Furthermore, the first post-Newtonian hydrodynamic and Einstein equations are

∂

∂t

[

ρ

(

1 +
v2

2
− 3Φ

)]

+∇ ·
[

ρ

(

1 +
v2

2
− 3Φ

)

v

]

= 0 , (2.21)

∂v

∂t
+ (v · ∇)v = −∇

(

Φ + 2Φ2
)

− ζ̇ − (∇× ζ)× v + 3Φ̇v + 4v (v · ∇)Φ− v2∇Φ , (2.22)

∇2Φ = 4πρ
(

1 + 2v2 − 2Φ
)

, (2.23)

and

∇2ζ = 16πρv +∇Φ̇ , (2.24)

in this gauge. The 3-velocity v is related to the 4-velocity ~u of the fluid by

~u =
(

ut, ui
)

≡ γ
(

1, vi
)

, (2.25)

where demanding that ~u · ~u = −1 yields

γ2 = 1 + v2 − 2Φ + 2Φ2 − 6Φv2 + v4 + 2ζ · v . (2.26)

III. COMPUTATION OF LUMINOSITY DISTANCE AND REDSHIFT

A. Computing DL(z) in a general spacetime

In this section we will review how to compute luminosity distances and redshifts in a general spacetime, as in Refs.
[33, 34]. Our analysis is initially similar to that of Ref. [29], although they eventually rely on Taylor expansions
around the observer’s location. Such expansions are sensible for long-wavelength perturbations, but not for the short-
wavelength perturbations that we consider here. We focus attention on a particular observer at some event P . In
our application to perturbed FRW spacetimes, this observer will be at r = 0 and at t = t0 for some fixed t0. We
consider the congruence of geodesics forming this observer’s past light cone. Given the connection, we then find ray
trajectories xα(λ) by noting that the 4-momentum is kα = dxα/dλ, and by using the geodesic equation

dkα

dλ
= kβ∂βk

α = −Γα
µνk

µkν , (3.1)

where we have defined d/dλ = kα∂α. Here the affine parameter λ is chosen such that λ = 0 at the observer and
λ = λs < 0 at the source. We also note that the 4-momentum is null.
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The expansion θ of the congruence of null rays is related to the area A(λ) of a bundle of rays by

θ =
1

A
dA (λ)

dλ
. (3.2)

We can find θ by using the Raychadhuri equation

dθ

dλ
= −Rµνk

µkν − 1

2
θ2 − 2|σ|2 , (3.3)

where we have defined the shear of the congruence

|σ|2 =
1

2

[

kα;βk
α;β − 1

2
θ2
]

, (3.4)

and where we require θ ∼ 2/λ as λ → 0, so that the area of the beam goes to zero at λ = 0. The shear σ ≡
√

|σ|2 is
given by the differential equation

dσ

dλ
= −σθ + Cαβµνk

αkν t̄µt̄β , (3.5)

where Cαβµν is the Weyl tensor, and we have defined a null Newman-Penrose tetrad composed of the real 4-vectors
kµ and mµ, and the complex conjugate 4-vectors tµ and t̄µ. These satisfy the orthogonality conditions

kµmµ = t̄µtµ = 1 (3.6)

and

kµkµ = mµmµ = tµtµ = kµtµ = mµtµ = 0 , (3.7)

as in [29]. They are chosen at the observer and then extended along each geodesic in the congruence by parallel
transport. We also choose the initial condition σ = 0 at λ = 0.
Once we find θ, we then find the luminosity distance as a function of the affine parameter at the source,

DL(λs) = lim
∆λ→0

[

−∆λ (1 + z)
2
exp

(

1

2

∫ λs

∆λ

θdλ

)]

= −λs (1 + z)2 exp

[

1

2

∫ λs

0

(

θ − 2

λ

)

dλ

]

(3.8)

where ∆λ corresponds to the size of the observer’s telescope, which we set to zero. The right hand side of Eq. (3.8)
has a well defined, finite, limit as ∆λ → 0 due to the aforementioned initial condition placed on θ. Note also that the
right hand side has an overall minus sign due to our convention that the affine parameter is negative.
The redshift observed at λ = 0, of the light emitted from the source at λs, is

1 + z(λs) =
(uαk

α)s
(uβkβ)o

, (3.9)

where

uαk
α = γ

(

gttk
t + gtik

i + gitv
ikt + gijv

ikj
)

, (3.10)

and where the subscript “s” will in general denote quantities evaluated at the source at the emission time and the
subscript “o” will denote quantities evaluated at the observer at the observation time. By combining Eqs. (3.8) and
(3.9) we can, in principle, compute DL as a function of z in a general spacetime.

B. Computing DL(z) to first post-Newtonian order

Now we specialize the results of the preceding subsection to a perturbed FRW metric in the post-Newtonian gauge
(2.4). Our goal is to find both H0DL and z to order ε3. At the observer, we have chosen r = 0 and t = t0 and we have
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normalized the 4-momentum such that kr = −1. This implies that λ ≈ −r and r/t ∼ −λ/t ∼ ε to lowest order. We
will thus need to find the right hand side of Eq. (3.8) to order λε2 so that we may find H0DL to order ε3. Because of
this, we see that we will need the integral in the exponential to order ε2, and therefore we will need to find λθ to order
ε2. Similarly, inspection of Eq. (3.9) tells us to what post-Newtonian order we will need to compute the components
of kα. To lowest order, gtt ∼ 1, gti = git ∼ ε3, gij ∼ 1, γ ∼ 1, and vi ∼ ε, and therefore we will need kt to order ε3

and we will need the spatial components ki to order ε2.
The post-Newtonian pieces of kα must be as small or smaller than order ε2, as can be seen by noting that λΓα

µν ∼ ε2

in the null geodesic equation (3.1). Given this assumption and the normalization of kα, Eq. (3.1) reduces to

dkα

dλ
=

∂kα

∂t
− ∂kα

∂r
+O

(

ε4

λ

)

= −Γα
tt + 2Γα

tr − Γα
rr +O

(

ε4

λ

)

. (3.11)

Plugging in the connection coefficients from Eq. (2.13)-(2.18), we find

dkt

dλ
= 2Φ,r + ζr,r +O

(

ε4

λ

)

, (3.12)

dkr

dλ
= O

(

ε3

λ

)

, (3.13)

d

dλ

(

rkθ
)

= −2

r
Φ,θ +O

(

ε3

λ

)

, (3.14)

and

d

dλ

(

rkφ
)

= − 2

r sin2 θ
Φ,φ +O

(

ε3

λ

)

. (3.15)

Using the specified initial conditions, the solutions to these equations are

kt = 1− 2Φ− ζr − 2

∫ r

0

Φ̇dr′ +O
(

ε4
)

, (3.16)

kr = −1 +O
(

ε3
)

, (3.17)

kθ =
2

r

∫ r

0

dr′

r′
Φ,θ +O

(

ε3
)

, (3.18)

and

kφ =
2

r sin2 θ

∫ r

0

dr′

r′
Φ,φ +O

(

ε3
)

; (3.19)

the integrals above are performed along the unperturbed ray, where t(λ) = t0 + λ and r(λ) = −λ. We can then find
the perturbed ray trajectory by integrating Eqs. (3.16)-(3.19) with respect to λ. Most notably, Eq. (3.17) leads to
λ = −r +O(λε3). This means that we can easily rewrite Eq. (3.8) in terms of the radial coordinate r of the source:

DL = r (1 + z)2 exp

[

−1

2

∫ r

0

(

θ +
2

r′

)

dr′
]

+O
(

rε3
)

. (3.20)

In order to find the expansion θ, we first need to find the shear, given by Eq. (3.5). The solution to this equation is

σ =
1

λ2

∫ λ

0

(λ′)
2
Cαβµνk

αkν t̄µ t̄βdλ′ ; (3.21)

since |k| ∼ |t̄| ∼ 1, it turns out that the lowest order shear is σ ∼ ε2/λ. Inserting |σ|2 ∼ ε4/λ2 into the Raychaudhuri
equation (3.3) gives a contribution of order ε4/λ to the expansion θ. However, we already know that we only need θ
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to order ε2/λ, and so this contribution is negligible for our purposes here. Neglecting shear and defining δθ = θ−2/λ,
we rewrite Eq. (3.3) as

d(δθ)

dλ
= −Rtt −Rrr −

2

λ
(δθ) +O

(

ε3

λ2

)

= −2∇2Φ− 2

λ
(δθ) +O

(

ε3

λ2

)

. (3.22)

The solution to this is

δθ =
2

r2

∫ r

0

(r′)
2 ∇2Φdr′ +O

(

ε3

λ

)

, (3.23)

where we are using λ = −r + O(λε3). Using this result in Eq. (3.20) yields our final result for the post-Newtonian
luminosity distance

DL = r (1 + z)
2

[

1−
∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2Φdr′′

]

+O
(

rε3
)

. (3.24)

We now turn to evaluating the redshift z as a function of the affine parameter λ. Equation (3.9) is the general
expression for the redshift, and it depends on uαk

α at the source and at the observer. To order ε3, using Eqs. (2.4),
(2.26), and our solutions for kα, we obtain

uαk
α = gαβu

αkβ

= −1− vr − 1

2
v2 +Φ+ 3vrΦ− 1

2
vrv2 + 2

∫ r

0

Φ̇dr′ + vθk
θ + vφk

φ +O
(

ε4
)

, (3.25)

where kθ and kφ are given by Eqs. (3.18) and (3.19), respectively. Therefore, the post-Newtonian redshift is

1 + z =
(uαk

α)s
(uβkβ)o

= 1 + vrs − vro +Φo − Φs +
1

2

(

v2s − v2o
)

+ (vro)
2 − vrov

r
s − 2

∫ r

0

Φ̇dr′ + (vθk
θ + vφk

φ)o − (vθk
θ + vφk

φ)s

+ Φov
r
o +Φsv

r
o +Φov

r
s − 3Φsv

r
s −

1

2
v2o (v

r
s − vro) + (vro)

2 (vrs − vro) +
1

2
v2s (v

r
s − vro) +O

(

ε4
)

. (3.26)

In Eqs. (3.24) and (3.26), the right hand sides are evaluated at r = −λ and t = t0 + λ. Recall that subscripts “o”
denote quantities evaluated at the observer where r = 0 and t = t0, while subscripts “s” denote quantities evaluated
at the source (t(λ), r(λ), θ, φ).

IV. ADDING DENSITY PERTURBATIONS

A. Basic method

In this section we apply the formalism of Section III to a spherical region in a perturbed FRW spacetime. We will
describe that region using the post-Newtonian metric (2.4). We expand the metric functions Φ and ζi and the fluid
3-velocity vi in powers of the density contrast δ as

Φ = Φ(0) +Φ(1) +Φ(2) + O
(

δ3
)

, (4.1)

ζi = ζi(0) + ζi(1) + ζi(2) +O
(

δ3
)

, (4.2)

and

vi = vi(0) + vi(1) + vi(2) +O
(

δ3
)

, (4.3)
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respectively. We also expand the null geodesic xα and 4-momentum kα = dxα/dλ as

xα = xα
(0) + xα

(1) + xα
(2) +O

(

δ3
)

(4.4)

and

kα = kα(0) + kα(1) + kα(2) +O
(

δ3
)

, (4.5)

respectively. For the remainder of the paper, quantities that are zeroth order in δ will be denoted by a subscript “(0)”,
first order by a subscript “(1)”, and second order by a subscript “(2)”. Also henceforth “first order” and “second
order” will always refer to orders in δ, not ε, unless otherwise specified.
In the perturbed spacetime, we will calculate the redshift z and luminosity distance DL as functions of the obser-

vation time t0, of the affine parameter λ along the past-directed null geodesic, and of the 4-momentum ~k of photons

at r = 0 and t = t0. We parameterize this future-directed null vector ~k in terms of angles θ and φ, in such a way that

kr = −1 and ~k is in the direction (θ, φ) at r = 0. We can thus express DL and z as functions of λ, θ, and φ at fixed
t0, and by eliminating the affine parameter λ we can compute DL(z, θ, φ).
We can then take an average over angles to find DL(z), where we must take some care since there are two sets of

relevant angles. There are the angles (θ̃, φ̃) which parameterize the direction of ~k in the observer’s rest frame, and

then there are the coordinate angles (θ, φ). We will need to average over (θ̃, φ̃). This means that we will need to

know the relationship between the related infinitesimal solid angles dΩ2 and dΩ̃2. We define Cartesian coordinates
(x1, x2, x3) in terms of the polar coordinates (r, θ, φ) in the standard way. An orthonormal set of basis vectors for
the observer’s local Lorentz frame can be obtained by renormalizing the coordinate basis vectors ∂/∂t and ∂/∂xi and
boosting. The result is

~et =

[

1 +
1

2
v2o − Φo +O

(

ε3
)

]

∂

∂t
+
[

vio +O
(

ε3
)] ∂

∂xi
(4.6)

and

~ei =
[

vio +O
(

ε3
)] ∂

∂t
+

[

δij (1 + Φo) +
1

2
viov

j
o ++O

(

ε3
)

]

∂

∂xj
. (4.7)

The angles (θ, φ) are defined by

~k = kt
∂

∂t
− ni ∂

∂xi
, (4.8)

with

n = (sin θ cosφ, sin θ sinφ, cos θ) , (4.9)

while the observer’s angles (θ̃, φ̃) are defined by

~k ∝ ~et − ñi~ei , (4.10)

with

ñ =
(

sin θ̃ cos φ̃, sin θ̃ sin φ̃, cos θ̃
)

. (4.11)

By inserting (4.6) and (4.7) into (4.10) and then comparing with (4.8), we find

n ∝ ñ+Φoñ− vo +
1

2
(vo · ñ)vo +O

(

ε3
)

. (4.12)

This gives

d2Ω̃ = d2Ω
[

1− 2 (vo · n) +O
(

ε2
)]

. (4.13)

After averaging over viewing angles, we find the expected value of DL(z) by taking an ensemble average, wherein
we treat the density perturbation δ at any fixed time as a homogeneous random process. Once we have the averaged
DL(z), we can then analyze these data in terms of a homogeneous universe to see if we would find an apparent
acceleration. Assuming Gaussian uncertainties, we perform a chi-squared fit to a FRW model with a matter density
ΩM and a cosmological constant density ΩΛ.
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B. Unperturbed quantities

In the unperturbed background, everything is spherically symmetric, and the line element in our coordinates is
given by Eq. (2.8). The background four-momentum kα0 is purely in the t− r plane, and is given by Eqs. (3.16) and
(3.17) to be

kt(0)(r, t) = 1− 2r2

9t2
+

2r3

135t3
+O

(

r4

t4

)

(4.14)

and

kr(0)(r, t) = −1− 4r3

27t3
+O

(

r4

t4

)

. (4.15)

Since kt(0) = dt/dλ and kr(0) = dr/dλ, we can integrate and invert these equations to find the unperturbed ray

trajectory; keeping in mind the conditions that r = λ = 0 and t = t0 at the observer, we find

t(λ) = t0 + λ

[

1− 2λ2

27t20
+O

(

λ3

t30

)]

(4.16)

and

r(λ) = −λ

[

1 +O

(

λ3

t30

)]

(4.17)

in the unperturbed background.
Using this, we can use the solution (3.23) to the Raychaudhuri equation to find the background expansion θ(0),

θ(0)(λ) =
2

λ
− 4

9t20
λ+O

(

λ2

t30

)

. (4.18)

Then the zeroth-order luminosity distance is given by Eq. (3.24) to be

DL(0) = (1 + z)
2
r

(

1− r2

9t2

)

+O

(

r4

t3

)

=
2

3H0
(1 + z)2

r

t

[

1− r

t
+

8r2

9t2
+O

(

r3

t3

)]

, (4.19)

where we have defined H0 = 2/3t0. The zeroth-order redshift is found from Eq. (3.26) ,

z(0) =
2r

3t
+

r2

9t2
+

4r3

27t3
+O

(

r4

t4

)

, (4.20)

and we eventually find the expected DL(0)(z) by inverting Eq. (4.20) and plugging the result into Eq. (4.19):

DL(0)(z) =
z

H0

[

1 +
1

4
z − 1

8
z2 +O

(

z3
)

]

. (4.21)

Thus, for the background, the best-fit cosmological constant density is ΩΛ = 0 and the deceleration parameter is
q0 = 1/2.

C. Second order perturbed optics

The perturbed post-1-Newtonian line element is, from Eq. (2.4),

ds2 ≈ −
(

1 + 2Φ(0) + 2Φ2
(0) + 2Φ(1) + 4Φ(0)Φ(1) + 2Φ(2) + 2Φ2

(1) + 4Φ(0)Φ(2)

)

dt2

+ 2
(

ζi(0) + ζi(1) + ζi(2)
)

dxidt+
(

1− 2Φ(0) − 2Φ(1) − 2Φ(2)

)

γijdx
idxj (4.22)
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and the perturbed luminosity distance (3.24) is defined to be

DL = (1 + z)2EL , (4.23)

where

EL(r, θ, φ) = EL(0)(r, θ, φ) + EL(1)(r, θ, φ) + EL(2)(r, θ, φ) +O
(

δ3
)

= r

[

1−
∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2

(

Φ(0) +Φ(1) +Φ(2)

)

dr′′

]

+O
(

δ3
)

, (4.24)

and where we have pulled out the factor of (1 + z)2 for simplicity. We then find that the order δ perturbation is

EL(1) = − 2

3H0

r

t0

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2Φ(1)dr

′′ , (4.25)

and the order δ2 perturbation is

EL(2) = − 2

3H0

r

t0

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2Φ(2)dr

′′ , (4.26)

where H0 = 2/3t0. In general, all of the terms involving potentials and velocities in these equations, and in those
that follow, are evaluated along the zeroth-order, unperturbed, geodesic.
We can now calculate the perturbed redshift

z(r, θ, φ) = z(0)(r, θ, φ) + z(1)(r, θ, φ) + z(2)(r, θ, φ) +O(δ3) (4.27)

from Eq. (3.26), using our knowledge of the zeroth-order quantities, to find

z(1) = vrs(1) − vro(1) +Φo(1) − Φs(1) +
2r

3t

(

vrs(1) − vro(1)

)

− 2

∫ r

0

Φ̇(1)dr
′ +

2r

3t
Φo(1)

− 2r

t
Φs(1) −

r2

9t2
vro(1) +

r2

3t2
vrs(1) +O

(

δε4
)

(4.28)

and

z(2) = vrs(2) − vro(2) +Φo(2) − Φs(2) +
2r

3t

(

vrs(2) − vro(2)

)

+
1

2

(

v2s(1) − v2o(1)

)

+
(

vro(1)

)2

− vro(1)v
r
s(1) − 2

∫ r

0

Φ̇(2)dr
′ +
(

vθ(1)k
θ
(1) + vφ(1)k

φ
(1)

)

o
−
(

vθ(1)k
θ
(1) + vφ(1)k

φ
(1)

)

s
+

2r

3t
Φo(2)

− 2r

t
Φs(2) −

r2

9t2
vro(2) +

r2

3t2
vrs(2) +

r

3t

[

v2s(1) − v2o(1)

]

+
2r

3t

[

(

vrs(1)

)2

+
(

vro(1)

)2

− vrs(1)v
r
o(1)

]

+ Φo(1)v
r
o(1) +Φs(1)v

r
o(1) +Φo(1)v

r
s(1) − 3Φs(1)v

r
s(1) + xi

(1)v
r
s(1),i +O

(

δ2ε4
)

, (4.29)

where the first order perturbation to the null geodesic is

xi
(1) = −

∫ r

0

ki(1)dr
′ . (4.30)

All of the quantities above are evaluated along the zeroth-order geodesic, and the integrals are performed along an
unperturbed central ray where r(λ) = −λ and t(λ) = t0 + λ.
Now we have found the redshift z and luminosity distance H0DL as functions of affine parameter λ and initial

4-momentum ~ko, to second order in δ and to third order in ε. Adding the redshift equations (4.20), (4.28), and (4.29)
yields z(λ, θ, φ). Similarly, the luminosity distance DL(λ, θ, φ) is found from adding Eqs. (4.21), (4.25), and (4.26),
after replacing the factors of (1 + z)2. Inverting z(λ, θ, φ) perturbatively, in terms of either δ or ε, gives us λ as a
function of z. Plugging this into DL(λ, θ, φ) yields an expression for DL(z, θ, φ). We then angle average this and
then ensemble average, assuming that density fluctuations at a given cosmic time are a homogeneous random process.
Details of this full procedure are given in Appendices A, B, and C, and the result is

DL(z) =
z

H0

(

1 +
1

4
z − 1

8
z2
)

+∆DL(z) , (4.31)
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where ∆DL(z) depends on the two point correlation function. We will only need the lowest order piece of this, which
is

∆DL(z) = − 1

3H2
0

f ′

(

z

H0

)

〈v2o(1)〉+O

(

fε2δ2

H0

)

, (4.32)

using z ≈ H0r to lowest order. The function f is related to the velocity two point correlation function (see Appendix
C):

f(r) =
3 〈n · v(r0, t)n · v(r0 + rn, t)〉

〈|v(r0, t)|2〉
− 1 , (4.33)

where n is a unit vector that defines the viewing direction and r0 is an arbitrary location in space. Note that f(r)
is independent of time, even though 〈v(r0, t)2〉 does depend on time. This is because the time dependences of the
numerator and denominator cancel.
The perturbation to the luminosity distance is proportional to

〈v2o(1)〉 =
4

9H2
0

〈
(

∇Φo(1)

)2〉 ; (4.34)

this qualitative scaling has been argued for in Refs. [35] and [36]. We can Fourier transform Φ(1), in terms of a

wavevector ki (not to be confused with the previously-defined 4-momentum) [7],

Φ(1) =

∫

d3k

(2π)3
Φke

ik·r (4.35)

so that we may write the average of (∇Φ(1))
2 as a sum over modes:

〈
(

∇Φ(1)

)2〉 = 9

4
H4

0

∫ ∞

0

dk

k3
∆2(k) , (4.36)

where ∆(k) is the dimensionless power spectrum of matter density fluctuations at the present time, defined by

〈δ2〉 =
∫ ∞

−∞

d(ln k)∆(k)2 . (4.37)

We adopt the following power spectrum

∆2(k) = C2

(

k

H0

)4

T 2

(

k

keq

)

, (4.38)

where the factor of (k/H0)
4 reflects a Harrison-Zel’dovich flat spectrum, the amplitude C = 1.9 × 10−5 is set by

observations, and T (y) is the transfer function. The BBKS transfer function [37] is a good fit for T in the absence of
dark energy,

T (y) =
ln (1 + 2.34y)

2.34y

[

1 + 3.89y + (16.1y)
2
+ (5.46y)

3
+ (6.71y)

4
]−1/4

, (4.39)

where

y =
k

keq
=

kθ1/2

ΩXh2Mpc−1 . (4.40)

Here we show the most general form of the transfer function, where θ = ρER/1.68ργ (not to be confused with the
expansion θ) is the density of relativistic particles divided by the density of photons, ΩX is the density of cold dark
matter, and h = H0/(100 km s−1 Mpc−1). We choose ΩX = 1 for our analysis.
Using this spectrum,

〈
(

∇Φo(1)

)2〉 =
9C2k2eq

4

∫ ∞

0

ydyT 2(y) , (4.41)
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FIG. 2: The function 1 + f(r) plotted versus keqr, where keq is the wavenumber of the dominant perturbation mode.

where keq = 1/λc = ΩXh2θ−1/2Mpc−1 ≈ 3000ΩXhθ−1/2H0 and the integral is approximately 2.31× 10−2, using the
transfer function in Eq. (4.39). So we finally find

〈
(

∇Φo(1)

)2〉 ≈ 9× 10−6H2
0

[(

ΩX

0.27

)(

h

0.7

)]2

θ−1 (4.42)

and therefore

〈v2o(1)〉 ≈ 3× 10−6

[(

ΩX

0.27

)(

h

0.7

)]2

θ−1 . (4.43)

Using the power spectrum (4.38) we also find

〈n · v(r0, t)n · v(r0 + rn, t)〉 =
C2k2eq
H2

0

∫ ∞

0

ydyT 2(y)

[

1

3
j0

(

keqzy

H0

)

− 2

3
j2

(

keqzy

H0

)]

, (4.44)

where j0 and j2 are spherical Bessel functions of the first kind, defined in Eqs. (C13) and (C14) of Appendix C. We
plot 1+ f(r), found by combining Eqs. (4.33) and (4.44), in Figure 2. Note that this becomes negative for keqr & 10.
Note also that we have not used any truncation of the power on scales that are nonlinear. If we instead were to impose
a high-k cutoff, so as not to include the effects of any modes that have ∆2(k) > 1, then this would lead to differences
of a factor of about two. A different approach would be to include the quasi-linear regime, with the power spectrum
given from N-body simulations [38].
We will specialize to keq/H0 = 1000 for the rest of this paper, which yields

〈v2o(1)〉 ≈ 8.34× 10−6 . (4.45)

In Figure 3, we show how the perturbation ∆DL(z) scales relative to the unperturbed luminosity distance DL(0)(z),

for the choice keq/H0 = 103. Note that we are plotting the logarithm of the absolute value, as the perturbation
changes sign from positive to negative as one looks at larger distances. By inspection, it becomes clear that ∆DL(z)
is not actually a perturbation for very small redshifts, i.e. for where |∆DL|/DL(0) ∼ 1, and thus our computation of
∆DL is no longer valid in that regime. Indeed, it is well known that the peculiar velocities of objects within the Local
Supercluster are not small when compared to their redshifts. However, this will not be a problem in practice, as Type
Ia supernovae at such small redshifts are typically not used for cosmological parameter fitting. We will eventually
take this breakdown of perturbation theory into account by imposing a lower cutoff zmin when we fit our data to a
theoretical model. By eye, we see that it should be safe to choose zmin ∼ 0.01.
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FIG. 3: The relative size of the perturbation log[|∆DL(z)|/DL(0)(z)] plotted versus log(z), assuming that the dominant per-

turbation wavelength is 103 times smaller than the Hubble scale: keq/H0 = 103.

V. THE PERTURBATION TO THE INFERRED COSMOLOGICAL CONSTANT

A. Finding the best-fit FRW model

We may now find the inferred cosmological constant and deceleration parameter by analyzing Eq. (4.31) within the
context of what one would expect in a homogeneous model. The lowest order perturbation to the luminosity distance
depends on the difference between the peculiar velocities at the source and at the observer, and so the question that
we now ask is: How do peculiar velocities and their correlations affect inferences drawn from data about cosmological
models? We cannot simply Taylor expand Eq. (4.31) around the observer to find q0. This is because f varies on
short lengthscales of order k−1

eq ∼ 10 Mpc, so that a Taylor series expansion would effectively mean computing q0 from
DL(z) within this unrealistically short lengthscale. A good alternative then is to fit the perturbed luminosity distance
over a finite range of redshifts to what one would expect in a homogeneous model with matter and a cosmological
constant.
Suppose that the observer can measure redshifts {zi} for a set of distant objects arbitrarily well. From the distance

determinations {DLi}, the observer can compute {ri = DLi/(1 + zi)}, and we can therefore take {zi, ri} to be the
data gathered by the observer. Suppose also that in actuality the Universe is spatially flat with Hubble parameter
H0 and matter only. Let

ri = H−1
0 [F (zi) + ∆i(zi)] (5.1)

be the physical value of ri, where for a flat matter-only cosmology

F (zi) =

∫ zi

0

dz

(1 + z)3/2
= 2

[

1− 1√
1 + zi

]

(5.2)

and ∆i(zi) (not to be confused with the matter perturbation power spectrum) is the non-FRW contribution to ri,
from fluctuations via velocity differences. From Eq. (4.32), we find the ensemble averaged perturbation

∆i(zi) ≈
C2k3eq
H3

0

∫ ∞

0

dyT 2(y)

[

y cos(keqziy/H0)

keqzi/H0
− 3

sin(keqziy/H0)

(keqzi/H0)2
− 6

cos(keqziy/H0)

(keqzi/H0)3y

+ 6
sin(keqziy/H0)

(keqzi/H0)4y2

]

. (5.3)
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The observer fits the data to a FRW model that is slightly curved and has a small cosmological constant. The
fitted model is then

rfiti =

∫ zi

0

dz

H(z)
− k

6

(
∫ zi

0

dz

H(z)

)3

, (5.4)

where k = (ΩM +ΩΛ − 1)H2
fit and

H2(z) = H2
fit

[

ΩM (1 + z)3 + (1 − ΩM − ΩΛ)(1 + z)2 +ΩΛ

]

= H2
fit(1 + z)3

[

1− (1 − ΩM )z

1 + z
− ΩΛz(2 + z)

(1 + z)3

]

; (5.5)

here Hfit is the fitted Hubble parameter, and ΩM and ΩΛ are the density parameters for matter and for the cosmo-
logical constant, respectively. Let us work to first order in 1−ΩM and ΩΛ, a simplification which ought to suffice as
long as ∆i ≪ 1. Thus, the fitted model is

rfiti = H−1
fit [F (zi) + (1− ΩM )G(zi) + ΩΛI(zi)]

≡ H−1
fit [F (zi) + ǫMG(zi) + ǫΛI(zi)] , (5.6)

where F (zi) is the same as before, and we have defined

G(z) =
1

2

∫ z

0

dz z

(1 + z)5/2
+

1

6
[F (z)]3 (5.7)

and

I(z) =
1

2

∫ z

0

dz z(2 + z)

(1 + z)9/2
− 1

6
[F (z)]3 . (5.8)

There are three fitting parameters: Hfit, ǫM = 1− ΩM and ǫΛ = ΩΛ.
From the data and our model we can compute a likelihood function. Assuming Gaussian uncertainties this will be

the exponential of

χ̃2 = −1

2

∑

i

[

ri − rfiti (zi)
]2

σ2
i

= −1

2

∑

i

[(

H−1
0 −H−1

fit

)

Fi +H−1
0 ∆i −H−1

fit(ǫMGi + ǫΛIi)
]2

σ2
i

, (5.9)

where σi is the estimated uncertainty in the value of ri inferred from observations and Qi ≡ Q(zi) for Q = F,G, I.
The next step is to maximize χ̃2 with respect to the parameters of the fit, which will lead to a set of coupled

nonlinear equations. To simplify, let us linearize in the small parameters ǫM , ǫΛ, {∆i} and h = Hfit/H0 − 1. The
resulting equations are

〈∆iFi〉 = ǫM 〈GiFi〉+ ǫΛ〈IiFi〉 − h〈F 2
i 〉 , (5.10)

〈∆iGi〉 = ǫM 〈G2
i 〉+ ǫΛ〈IiGi〉 − h〈GiFi〉 , (5.11)

and

〈∆iIi〉 = ǫM 〈IiGi〉+ ǫΛ〈I2i 〉 − h〈IiFi〉 , (5.12)

where we have defined the average 〈Qi〉 ≡
∑

iQi/(Nσ2
i ). Solving for the parameters of the fit, we get

ǫΛ = D−1

[

〈∆iFi〉(〈IiFi〉〈G2
i 〉 − 〈IiGi〉〈GiFi〉) + 〈∆iGi〉(〈IiGi〉〈F 2

i 〉 − 〈IiFi〉〈GiFi〉)

+〈∆iIi〉(〈GiFi〉2 − 〈G2
i 〉〈F 2

i 〉)
]

, (5.13)
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ǫM = D−1

[

〈∆iFi〉(〈GiFi〉〈I2i 〉 − 〈IiFi〉〈IiGi〉) + 〈∆iGi〉(〈IiFi〉2 − 〈I2i 〉〈F 2
i 〉)

+〈∆iIi〉(〈IiGi〉〈F 2
i 〉 − 〈GiFi〉〈IiFi〉)

]

, (5.14)

and

h = −D−1

[

〈∆iFi〉(〈IiGi〉2 − 〈I2i 〉〈G2
i 〉) + 〈∆iGi〉(〈GiFi〉〈I2i 〉 − 〈IiGi〉〈IiFi〉)

+〈∆iIi〉(〈IiFi〉〈G2
i 〉 − 〈GiFi〉〈IiGi〉)

]

, (5.15)

where

D = 〈IiGi〉2〈F 2
i 〉 − 2〈IiFi〉〈IiGi〉〈GiFi〉 − 〈I2i 〉〈F 2

i 〉〈G2
i 〉+ 〈I2i 〉〈GiFi〉2 + 〈IiFi〉2〈G2

i 〉 . (5.16)

These are fairly general for small ∆i, and show that there may be contributions to ǫΛ, ǫM , and h from velocity
fluctuations.
Next, we need to compute the averages. To do this, we recall that F corresponds to comoving radial coordinate,

modulo a factor of H−1
0 . To the order of approximation underlying our calculations, we can take the comoving source

density to be uniform. Moreover, we do not need to worry about Malmquist bias, at least for Type Ia supernovae,
which are very bright. Let us also assume that all of the {σ2

i } are the same, to keep the problem as simple as possible.
Then σ2

i drops out of our expressions for ǫM , ǫΛ, and h, although it remains in their uncertainties. We suppose that
our source catalog extends to some maximum value Fmax, with a corresponding maximum redshift zmax. It is worth
remembering that F < 2 is an absolute upper bound, and that for z < 1, F < 2 −

√
2 ≈ 0.6, so we will be dealing

with relatively small values of F typically. Moreover, as we have already noted in Figure 3, our small ∆i assumption
breaks down below a minimum redshift zmin . 0.01, but this is not a problem as no supernovae below this redshift
have ever been used for cosmological model fitting [1, 2]. So we will assume a lower cutoff for all of our sums of Fmin.
Then, for example,

〈F 2
i 〉 =

3

F 3
max − F 3

min

∫ Fmax

Fmin

dF F 2 F 2 , (5.17)

and Eqs. (5.2), (5.7), (5.8), and (5.16) give the lowest order result, assuming that F 3
max ≫ F 3

min,

D ≈ − 1

5268480
F 12
max . (5.18)

Keeping only lowest order terms in Fmax in the numerators of Eqs. (5.13), (5.14), and (5.15) as well, we get

ǫΛ ≈ −5268480

16

[

3〈∆iFi〉
784F 4

max

− 3〈∆iF
2
i 〉

280F 5
max

+
〈∆iF

3
i 〉

140F 6
max

]

, (5.19)

ǫM ≈ −2ǫΛ , (5.20)

and

h ≈ −5268480

16

[ 〈∆iFi〉
448F 2

max

− 〈∆iF
2
i 〉

168F 3
max

+
3〈∆iF

3
i 〉

784F 4
max

]

. (5.21)

We see that if ∆i ∝ Fi, then ǫΛ is zero, because the three terms in Eq. (5.19) cancel. This means that if ∆i arises
from velocity correlations, it is only the correlation function of velocities at two separated points that matters, not
the RMS velocity at a point. Also note that, for this fitting procedure, the deceleration parameter is still q0 = 1/2,
since

∆q0 = q0 −
1

2
= −1

2
− (äa/H2)0

=
1

2
(ΩM − 1− 2ΩΛ) =

1

2
(−ǫM − 2ǫΛ) =

1

2
(2ǫΛ − 2ǫΛ) = 0 (5.22)
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from Eq. (5.20), in agreement with Refs. [27], [28], and [39].
The perturbation ∆i, given in Eq. (5.3), depends on the correlation function f(r), and so it does contribute to ǫΛ.

For zmin = 0.02 and zmax = 0.15, we numerically integrate to find that the best-fit cosmological constant density is
ΩΛ ≈ 0.004. Table I gives a few more results for the best-fit values for ǫΛ, ǫM , and h as a function of the two limiting
redshifts zmin and zmax in the continuum limit, where we have made the assumption that the number of sources N
is very large: N → ∞. In this limit, ∆i(zi) → ∆(z) and

ǫΛ =

∫ Fmax

Fmin

dFw(F )∆(F ) , (5.23)

where we have the weighting function

w (F ) ≡ −5268480

16

(

3F

784F 4
max

− 3F 2

280F 5
max

+
F 3

140F 6
max

)

. (5.24)

We also plot these results in Figure 1, in the Introduction. Note that ΩΛ may be positive or negative, depending on
the redshift range, since ∆DL changes sign in the region of interest.

TABLE I: Best-fit parameters in the continuum limit for a few values of the source catalog limiting redshifts zmin and zmax,
also for the choice that the dominant perturbation wavelength is 103 times smaller than the Hubble scale: keq/H0 = 103.

zmin zmax ΩΛ 1− ΩM Hfit/H0 − 1
0.01 0.1 −0.018 0.036 −4.3× 10−5

0.2 0.0016 −0.0032 4.0× 10−5

0.03 0.1 0.0037 −0.0074 7.1× 10−5

0.2 0.0020 −0.0040 4.7× 10−5

In order to test the robustness of these continuum limit calculations, we have also applied our fitting procedure to
randomly-generated catalogs of synthetic redshift data. To generate a data point Fi for such a catalog, we assume
that the quantity (F 3

i −F 3
min)/(F

3
max−F 3

min) is distributed uniformly between 0 and 1. In this way, we create catalogs
of N = 100 data points, wherein each data point is a value of Fi for a source with a random location. For each data
point, we use the ensemble averaged formula for ∆DL(z) to find ∆i. We then fit these data to a homogeneous model
as outlined above, using sums instead of integrals. Using 20 randomly-generated catalogs, the average best-fit values
for ΩΛ are summarized in Table II, along with their standard deviations. We also found the best-fit cosmological
constant with 50 catalogs for zmin = 0.02 and zmax = 0.15, to find ΩΛ = 0.005± 0.001.

TABLE II: Best-fit parameters for 20 catalogs of N=100 samples each, for a few values of the source catalog limiting redshifts
zmin and zmax. We have also made the choice that the dominant perturbation wavelength is 103 times smaller than the Hubble
scale: keq/H0 = 103.

zmin zmax ΩΛ

0.01 0.1 −0.020± 0.002
0.2 0.002 ± 0.001

0.03 0.1 0.014 ± 0.001
0.2 0.0025 ± 0.0004

B. Variance

Although the best-fit values for ΩΛ of the previous subsection are very small, we must keep in mind that they
are derived from the ensemble averaged perturbation to the luminosity distance. For a given source, this ensemble
averaged perturbation will be far smaller than the leading order perturbation, which depends linearly on the peculiar
velocity. This linear perturbation will be the main source of the variance in the best-fit parameters, and this variance
should overwhelm the systematic error for typical supernova sample sizes. This complication was pointed out by Ref.
[40] and it was shown to cause errors of ∆ΩΛ ≈ −0.04 for a sample of actual nearby supernovae in Ref. [12].
Consider our expression for the best-fit ΩΛ, in terms of N discrete sources, rewritten as a weighted sum,

ΩΛ =
1

N

∑

i

w (Fi)∆i . (5.25)
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What we have computed is the ensemble average of this,

〈ΩΛ〉 =
1

N

∑

i

w (Fi) 〈∆i〉 . (5.26)

The variance is then

σ2
Λ =

〈

(ΩΛ − 〈ΩΛ〉)2
〉

= 〈Ω2
Λ〉+O

(

δ3
)

=
1

N2

∑

i,j

w(Fi)w(Fj)〈∆i∆j〉 , (5.27)

which has two types of terms contributing: those with i = j and those with i 6= j. Separating these, we have
σ2
Λ = σ2

1 + σ2
2 , where

σ2
1 ≡ 1

N2

∑

i

w2(Fi)〈∆2
i 〉 (5.28)

and

σ2
2 ≡ 1

N2

∑

i6=j

w(Fi)w(Fj)〈∆i∆j〉 . (5.29)

In the continuum limit N → ∞, the first piece of the variance becomes

σ2
1 ≈ 1

N

3

F 3
max

∫ Fmax

0

F 2dFw2(F )〈∆2(F )〉 (5.30)

where, from Eq. (5.3),

〈∆2(F )〉 = 〈∆2(H0r)〉 = 〈n · [v(r) − v(0)]n · [v(r) − v(0)]〉 ∼ 〈v2o〉 . (5.31)

The integrand in Eq. (5.30) is integrable as F → 0, and so the quantity σ1 is to a good approximation independent
of zmin for small zmin. Thus we can for simplicity take zmin = 0. After integrating, we find

σ2
1 ∼ 100

N

( 〈v2o〉
8× 10−6

)

(zmax

0.2

)−6

. (5.32)

For a source catalog of 100 sources out to a limiting redshift zmax = 0.2, we find that this variance is significant:
σ2
1 ∼ 1.
The second piece (5.29) of the variance does not depend on the sample size, although it does depend on Fmax. In

the continuum limit,

σ2
2 ≈ 9

F 6
max

∫ Fmax

0

F 2dFw(F )

∫ Fmax

0

(F ′)
2
dF ′w(F ′)〈∆(F )∆(F ′)〉 (5.33)

where

〈∆(F )∆(F ′)〉 = 1

3
〈v2o(1)〉

[

f

(

F

H0
− F ′

H0

)

− f

(

F

H0

)

− f

(

F ′

H0

)]

. (5.34)

Plugging Eq. (5.34) into Eq. (5.33), then using Eqs. (4.33) and (4.44), and then finally doing some rearranging, we
find

σ2
2 ≈

(

246960CH0

F 5
maxkeq

)2 ∫ y

0

dy

y3
T 2(y)

[

I

(

2keqFmax

H0
y

)]2

(5.35)

where

I(q) ≡
∫ 1

0

dx

(

3

784
x− 3

280
x2 +

1

140
x3

)

(sin qx− qx cos qx) . (5.36)

This result for σ2
2 does not depend on the sample size, as it only depends on the size of the redshift range Fmax,

making it a measure of cosmic variance. By integrating numerically, we find that it scales roughly as F−8
max and

σ2
2 ∼ 0.03

(zmax

0.2

)−8

. (5.37)

For comparison, Ref. [12] uses a sample of 115 supernovae up to a redshift zmax = 1.01, and they find an error from
the data of ∆ΩΛ = −0.04. For this same scenario, we estimate |∆ΩΛ| ≈ 0.01, from the sum of Eqs. (5.32) and (5.37).
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VI. CONSISTENCY WITH PRIOR RESULTS

The method of analysis that we have presented in the previous sections differs from that of Refs. [5, 6, 7, 8]. This
is because of (i) a difference in gauge choice and (ii) a fundamental difference in the definition of what constitutes
“acceleration”. We have chosen to use the standard post-Newtonian gauge, and to define acceleration as being based
on fitting the luminosity distance-redshift relation to that of a homogeneous model containing dust and a cosmological
constant. As this definition of acceleration is based only on observable quantities, performing our calculation in other
gauges gives us the same results.
In contrast, Refs. [5, 6, 7, 8] calculate the cosmological expansion rate, averaged over a constant time slice. The

motivation for doing this comes from the spatially-averaged Friedmann equations, also called the Buchert equations
[41]. In particular, Ref. [7] defines the effective coarse-grained scale factor aD in terms of the average matter density:
〈ρ〉D ∝ a−3

D , where the angle brackets 〈〉D, with subscript D, denote an average over a spatial hypersurface D at a
given time. Then Ref. [8] defines the coarse-grained Hubble rate

HD =
ȧD
aD

=
1

3
〈θ〉D (6.1)

and the effective deceleration parameter

q = − ḢD

H2
D

− 1 . (6.2)

These measures of acceleration are somewhat arbitrary since the deceleration parameter (6.2) depends on the spatial
hypersurface over which one averages. Refs. [5, 6, 7, 8] use constant time slices in the comoving synchronous gauge.
In this gauge, the perturbation to the the expansion θ is related quite simply to the perturbations to the trace of the
connection; from Ref. [7],

〈θ(1)〉D =
1

a
〈Γi

ti(1)〉D , (6.3)

and similarly for θ(2). Ref. [6] claims that spatially averaged perturbations could become quite large, which implies
that our perception of the expansion rate of the Universe is significantly affected by inhomogeneity. The culprit is
the appearance of terms in Γi

ti(2) with large numbers of spatial gradients, which naturally appear in the synchronous

gauge. These higher derivative terms, which do not appear in our method above, lead to a perturbative instability,
wherein terms higher order in perturbation theory do not get smaller as expected.
Although the results of the previous sections appear to differ from the claims of Refs. [5, 6, 7, 8], in fact the large

fitting effect claimed in those papers arises at a higher post-Newtonian order than we have computed. In this section
we show that our results are consistent with theirs to the order we have computed. Our method of computation could
be extended to higher post-Newtonian order, which would allow for a detailed confrontation with their claims.
However, we believe that our result of a small fitting effect is robust, in the sense that it will not be altered by the

inclusion of effects that are higher order in ǫ and/or δ. This belief is based on the structure of the post-Newtonian
expansion of Einstein’s equations, and on the fact that we are computing a gauge-invariant observable. If this is true,
then our conclusion is in disagreement with Refs. [5, 6, 7, 8].
We believe the most likely reason for the disagreement is that we compute a gauge-invariant observable that is

directly and uniquely related to supernova observations, whereas the quantities computed in Refs. [5, 6, 7, 8] have
some arbitrariness and are not directly related to observations. The proposal of Refs. [5, 6, 7, 8] that there might be
a large backreaction effect in terms of qD does not necessarily imply that observers will measure large deviations from
FRW dynamics. As mentioned above, spatially averaged perturbations are dependent on one’s coordinate choice,
in the sense that a constant time hypersurface in one coordinate system is most likely not going to be a constant
time hypersurface in a different coordinate system. These averages are unlikely to be directly observable, and are
not uniquely related to the cosmic acceleration inferred from cosmological observations. As Hirata and Seljak [28]
remarked, we “cannot cover the entire universe with astronomers so as to measure spatially averaged quantities” such
as HD. It is possible that the measure of acceleration (6.2) could be large while the observed acceleration is small.
We now turn to showing consistency of our results with those of Refs. [5, 6, 7, 8] to the order we have computed. We

take our metric (2.4) and transform it from the post-Newtonian gauge to the synchronous gauge. We then compute
from the transformed metric the perturbation to the Hubble rate. The relative size of the difference between HD and
the expected FRW value H determines whether or not there will be a large fitting effect. As an example, we will now
compute the ratio

HD −H

H
≡ ∆H

H
=

〈θ(1) + θ(2)〉D
3H

(6.4)
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where the spatial average involves integrating with respect to the perturbed volume element dV =
√
gspaced

3x, where
gspace is the determinant of the spatial part of the metric. Note that the quantity that we define as ∆H/H differs
from what is computed in Refs. [5, 6, 7, 8], although we do find the same qualitative result at the end of the
day. Below we show that this quantity is small to Newtonian order, in correspondence with what was found in [7],
even though it involves a sum of terms that can be large individually. The reason these terms are large is that in
synchronous coordinates metric perturbations can be of order δ, which may be of considerable size even though there
are no large gravitational potentials anywhere in the Universe. By contrast, in our calculation based on standard
post-Newtonian coordinates, metric perturbations are at most of order ǫ2δ, which is always small. In this sense,
perturbation expansions are much better behaved in the standard post-Newtonian coordinates than in synchronous
coordinates.
We start by reviewing the transformation from standard post-Newtonian coordinates (2.4) to synchronous coordi-

nates; a detailed discussion is presented in Appendix D. Begin with the second order perturbed FRW metric in the
gauge

ds2 = a2(η)
[

−
(

1 + 2Φ(1) + 2Φ(2)

)

dη2 +
(

1− 2Φ(1) − 2Φ(2)

)

δijdX
idXj

]

, (6.5)

where we are now using conformal and Cartesian coordinates for simplicity, and we will only need to work to Newtonian
order. We can then define the new coordinates τ and x̃i by

η = τ

[

1− 1

3
Φ(1) −

1

5
Φ(2) +

2τ2

45

(

∇Φ(1)

)2
]

+O
(

τ0ε
4
)

+O(τ0δ
3) (6.6)

and

X i = x̃i − τ2

6
Φ(1),i −

τ2

20
Φ(2),i +

τ4

120
Φ(1),ijΦ(1),j +O

(

x̃iε2
)

+O(x̃iδ3) , (6.7)

where these potentials are fixed physical quantities, evaluated at (τ, x̃i), and these spatial derivatives are in terms of
the new coordinates. We are also assuming that we have the growing mode only, for which we have the power law
scalings Φ(1) ∝ τ0 and Φ(2) ∝ τ2. Then the line element becomes, to lowest order in ε,

ds2 = a2(τ)
[

−dτ2 + g̃ijdx̃
idx̃j

]

= a2(τ)

{

−dτ2 +

[

δij −
τ2

3
Φ(1),ij −

τ2

10
Φ(2),ij +

τ4

60
Φ(1),ijkΦ(1),k +

2τ4

45
Φ(1),ikΦ(1),jk +O

(

ε2
)

]

dx̃idx̃j

}

,(6.8)

which is now in a synchronous gauge. Note that the metric now has perturbations of order ε0δ ∼ δ. These order δ
perturbations will lead to the appearance of large terms in ∆H/H , which will cancel when averaged. Then we find

√
gspace = a3(τ)

[

1− τ2

6
∇2Φ(1) +O

(

δ2
)

]

. (6.9)

The spatial trace of the connection is

Γi
τi =

1

2a2
g̃ij
(

a2g̃ij
)

,τ
(6.10)

which receives the first and second order perturbations

Γi
τi(1) = a(τ)θ(1) =

1

2
δij g̃ij(1),τ = −τ

3
∇2Φ(1) +O

(

δε2
)

(6.11)

and

Γi
τi(2) = a(τ)θ(2) =

1

2
g̃ij(1)g̃ij(1),τ +

1

2
δij g̃ij(2),τ

= −τ3

45
Φ(1),ijΦ(1),ij −

τ

10
∇2Φ(2) +

τ3

30

(

∇2Φ(1)

)

,k
Φ(1),k +O(δ2ε2) . (6.12)

Using the Fourier transformation (4.35), taking an ensemble average, and using the result that 〈∇2Φ(2)〉 = 0 (see
Appendix C), we find from Eqs. (6.4) and (6.3)

∆H

H
≈ 1

3Ha

〈

τ3

18

(

∇2Φ(1)

)2 − τ3

45
Φ(1),ijΦ(1),ij +

τ3

30

(

∇2Φ(1)

)

,k
Φ(1),k

〉

=
τ3

135Ha

〈

(

∇2Φ(1)

)2 − Φ(1),ijΦ(1),ij

〉

=
τ3

135Ha

〈

[

Φ(1),i∇2Φ(1) − Φ(1),jΦ(1),ij

]

,i

〉

, (6.13)
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which is consistent with the lowest order result of Ref. [7]. This spatial average is a boundary term, whose ensemble
average vanishes.
Although (6.13) vanishes, it contains terms with two more powers of k/H0 than what one would find in the post-

Newtonian gauge. It is these terms that Refs. [6, 8] argue will lead to a large effect at higher order in perturbation
theory. In other words, using the synchronous gauge and defining acceleration in terms of spatially averaged expansion
parameters can lead to a conceivably large correction. This is in contrast to our earlier method, wherein we calculate
the observable effect, which is very small. Note that our expansion (A3) for DL(z) contains no four-derivative terms
like those in (6.13).

VII. CONCLUSIONS

We have computed the inhomogeneity-induced perturbations to the redshifts and luminosity distances that a comov-
ing observer would measure to first post-Newtonian order, i.e. we have computed z and H0DL to order ε3 ∼ (v/c)3,
and to second order in the density perturbation δ = (ρ−〈ρ〉)/〈ρ〉. Assuming a flat and matter-dominated background
cosmology, the perturbed luminosity distance-redshift relation is given by Eq. (4.31). The perturbations to DL(z)
depend on the correlation between the peculiar velocities at the observer and at the source. Roughly speaking, these
perturbations are of order ∆DL/DL ∼ 10−5 when z ∼ 0.1. The luminosity distance-redshift relation was averaged
over viewing angles and over an ensemble of realizations of the density perturbation. The result is gauge invariant, as
it corresponds to a measurable quantity. We then fit this function to what one would expect in a homogeneous FRW
cosmology, containing dust and a cosmological constant, to deduce the corresponding perturbation to the inferred
cosmological constant density.
The inferred ΩΛ depends on the limiting redshifts zmin and zmax of the sample, and we summarize the best-fit

values of ΩΛ for different values of these limiting redshifts in Figure 1 and Table I. These ensemble averaged results
indicate that we are justified in fitting low-z supernova data to homogeneous models, as long as we use supernova
data that spans a large enough redshift range. For instance, assuming that we have luminosities and redshifts from
zmin = 0.02 out to zmax = 0.15, the errors induced by the “fitting problem” are small: ΩΛ ∼ 0.004. Such errors are
not large enough to explain the measured value ΩΛ ≈ 0.7. This is what we would expect, since we have other evidence
to suggest that our universe contains dark energy from large scale structure surveys, from the CMB power spectrum,
and from weak lensing.
In contrast to the small value of the best-fit ΩΛ for the ensemble averaged luminosity distance-redshift relation, we

find that relatively large errors are possible due to fluctuations in DL(z), specifically from terms that are linear in
peculiar velocities. This effect was noted in Ref. [40] and then calculated in Ref. [12] for an actual nearby supernova
data set. We find that the associated variance in ΩΛ has two components, one that depends on the number of sources
N , σ2

1 ∼ (100/N)(zmax/0.2)
−6, and one that does not, σ2

2 ∼ 0.03(zmax/0.2)
−8.

It should be stressed that our goal in this paper was only to find a rough estimate of the fitting effect. One
potential weakness of our analysis is that we have assumed that δ < 1, and thus we do not address the effects of
highly nonlinear structures. Such nonlinear modes could be included by using the full nonlinear power spectrum
from N-body simulations [38], and we estimate that this would change the result by approximately a factor of two.
Furthermore, we have assumed that the observer is in a random location in the Universe, and has no knowledge of
his/her own peculiar velocity. One can redo the calculation for an observer who knows and corrects for this velocity.
It has been claimed that there exists a perturbative instability, where successive orders in an expansion in powers

of δ do not get smaller [6, 7, 8]. We do not see any indications of such an instability with our method. When one
defines “acceleration” in terms of only directly observable quantities, as we did in Sections II through V, the fitting
effect one obtains is small.
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APPENDIX A: COMBINING THE REDSHIFT AND LUMINOSITY DISTANCE RELATIONS

Adding the redshift equations (4.20), (4.28), and (4.29) yields

z(λ, θ, φ) =

[

2r

3t
+

r2

9t2
+

4r3

27t3
+O

(

ε4
)

]

+

[

vrs(1) − vro(1) +Φo(1) − Φs(1) +
2r

3t

(

vrs(1) − vro(1)

)

− 2

∫ r

0

Φ̇(1)dr
′ +

2r

3t
Φo(1)

−2r

t
Φs(1) −

r2

9t2
vro(1) +

r2

3t2
vrs(1) +O

(

ε4δ
)

]

+

{

vrs(2) − vro(2) +Φo(2) − Φs(2) +
2r

3t

(

vrs(2) − vro(2)
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+
1

2

(

v2s(1) − v2o(1)
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+
(

vro(1)
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−vro(1)v
r
s(1) − 2
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′ +
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(1) + vφ(1)k

φ
(1)

)

o
−
(

vθ(1)k
θ
(1) + vφ(1)k

φ
(1)

)

s
+

2r

3t
Φo(2)

−2r

t
Φs(2) −

r2

9t2
vro(2) +

r2

3t2
vrs(2) +

r

3t

[

(

vs(1)
)2 −

(

vo(1)
)2
]

+
2r

3t

[

(

vrs(1)

)2

+
(

vro(1)

)2

− vrs(1)v
r
o(1)

]

+Φo(1)v
r
o(1) +Φs(1)v

r
o(1) +Φo(1)v

r
s(1) − 3Φs(1)v

r
s(1) + xi

(1)v
r
s(1),i +O

(

ε4δ2
)

}

+O
(

εδ3
)

, (A1)

where the right hand side is evaluated at r = r(λ) = −λ and t = t(λ) = t0 + λ. To point out a few of the above
effects, the terms linear in velocity and linear in Φ correspond to the Doppler effect and the gravitational redshift,
respectively. We also see the second order Doppler shift with the v2 terms, and the integrated Sachs-Wolfe effect with
the integrated terms. The perturbed luminosity distance is found from Eqs. (4.21), (4.25), and (4.26) to be

DL(λ, θ, φ) =
(1 + z)

2

H0

2r

3t

{

[

1− r

t
+

8r2

9t2
+O

(

ε3
)

]

−
[

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2Φ(1)dr

′′ +O
(

ε3δ
)

]

−
[

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2Φ(2)dr

′′ +O
(

ε3δ2
)

]

+O
(

εδ3
)

}

. (A2)

Here we can see the effects of weak gravitational lensing. Note that as the cosmological portion of the redshift goes
to zero, and hence r → 0, the luminosity distance also goes to zero, as expected.
By combining Eqs. (A1) and (A2), we can eliminate λ and compute DL as a function of z, θ, and φ. This

computation can be carried out explicitly by using the fact that the expressions are power series in ε and δ. This
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procedure gives:

DL(z, θ, φ) ≈ (1 + z)
2

H0

{

z − 7

4
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8
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+
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4
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29

8
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(

vro(1)
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+

(

−3

4
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9

8
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(

vrs(1)

)2

+

(

5

2
− 23

4
z

)

vro(1)v
r
s(1)

+
1

2
vro(1)

(

Φo(1) − Φs(1)

)

+
5

2
vrs(1)

(
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)
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(1)v

r
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∫ r

0

(
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)
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(
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θ
(1) + vφ(1)k

φ
(1)

)

s
−
(

vθ(1)k
θ
(1) + vφ(1)k

φ
(1)

)

o
−
(

z + vro(1) − vrs(1)

)

∫ r

0

dr′

r′2

∫ r′

0

(r′′)
2 ∇2Φ(1)dr

′′
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0
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0
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2 ∇2Φ(2)dr
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0
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2 ∇2Φ(1)dr

′′ − 2
d

dz

∫ r

0

Φ̇(1)dr
′

]

+

[

Φs(1) − Φo(1) +
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1
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(

vro(1) − vrs(1)

)

]

d
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Φs(1)

−
[

2

∫ r

0

Φ̇(1)dr
′ +

(

−1 +
3

2
z

)

Φo(1) +

(

1 +
1

2
z

)

Φs(1) +

(

1− 3

2
z +
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8
z2
)

vro(1) +

(

−1 +
3

2
z − 17

8
z2
)

vrs(1)

]

× d

dz
vrs(1)

}

, (A3)

where, to leading order, d/dz ≈ (3t0/2)∂/∂r. The functions of r and t that appear on the right hand side of Eq.
(A3) are evaluated at r = z/H0 and t = t0 − z/H0. Note that the redshift z here is the full redshift as measured by
the observer. Next we need to average DL(z, θ, φ) over viewing angles in the observer’s rest frame, and also take an
ensemble average. In doing so, the averages of first order quantities will vanish. We also will find that we will only
need the second order velocities and potentials to Newtonian order, so that we may compute the lowest-order effect.

APPENDIX B: NEWTONIAN SECOND-ORDER PERTURBATION THEORY

In terms of comoving coordinates r = x/a(t) [11], the equations of Newtonian hydrodynamics are

∂δ

∂t
+

1

a
∇ · [(1 + δ)vp] = 0 , (B1)

∂vp

∂t
+

ȧ

a
vp +

1

a
(vp · ∇)vp = −∇Φp

a
, (B2)

and

∇2Φp = 4πρ0a
2δ , (B3)

where vp = v(1) + v(2) + . . . is the peculiar velocity, Φp = Φ(1) + Φ(2) + . . . is the perturbation to the Newtonian
gravitational potential, the density contrast is δ = [ρ(r, t) − ρ0(t)]/ρ0(t), and the zeroth order quantities are given
in Section II. The Newtonian first order results are very well known; for a detailed review, see Peebles [11]. For a
Newtonian analysis to second order in δ, see Ref. [42].
The first order result is that the density contrast consists of mode that grows with time, and one that decays with

time:

δ(1)(r, t) = f(r)t2/3 + g(r)t−1 , (B4)

where f and g are functions of the spatial coordinates. We will only consider the growing mode. It is useful to rewrite
the hydrodynamic equations in terms of their Fourier modes. Writing

δ =

∫

d3k

(2π)3
δke

ik·r (B5)
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and

Φp =

∫

d3k

(2π)3
Φke

ik·r , (B6)

Eq. (B3) becomes

k2Φk = 4πρ0a
2δk . (B7)

The second order density contrast is

δ(2) =
9t4

14a4t40

(

Φ(1),ijΦ(1),j +
5

2
∇2Φ(1)Φ(1),i

)

,i

; (B8)

this result came from perturbing Eqs. (B1)-(B3) to second order and then solving these by using the first order
solutions, Eqs. (B4) and (B6). It can be seen that the expected value of δ(2) vanishes by substituting the mode
expansion of Φ(1) into Eq. (B8): 〈δ(2)〉 = 0. We also see from Eq. (B7) that 〈Φp〉 depends only on boundary
conditions; we can choose to add overall constants to Φ at each order in δ, and it is natural to choose these constants
to satisfy 〈Φ(1)〉 = 〈Φ(2)〉 = 0.
Assuming that we only have the growing mode solution of Eq. (B4), we find that the first order peculiar velocity

is related to the Newtonian potential,

v(1)(r, t) = − t

a(t)
∇Φ(1) = −t1/3t

2/3
0 ∇Φ(1) . (B9)

This averages to zero but its square does not. The second order velocity perturbation is

vi(2) = − 3t3

14a3
Φ(1),ijΦ(1),j (B10)

which also averages to zero: 〈v(2)〉 = 0. Note that these averages are ensemble averages, not spatial averages.

APPENDIX C: AVERAGING THE LUMINOSITY DISTANCE-REDSHIFT RELATION

Now we can scrutinize the terms of Eq. (A3), so that we may find their angular and ensemble averages. Note that

the angular averages will be performed with respect to the observer’s angles (θ̃, φ̃), and so we will need to use the
Jacobian given in Eq. (4.13). The first three terms of Eq. (A3) only depend on the background cosmology, and are
unchanged after averaging, and all terms that are to first order in δ will have a vanishing ensemble average. As shown
in Appendix B, terms that depend on vi(2) and Φ(2) also average to zero.

In addition, there are many terms that have vanishing ensemble averages because they contain an odd number of
spatial derivatives of the potential, such as

〈

vro(1)Φo(1)

〉

=
〈

vrs(1)Φs(1)

〉

= 0 , (C1)

〈

vrs(1)
∂

∂r
vrs(1)

〉

= 0 , (C2)

〈

xi
(1)v

r
s(1),i

〉

= 0 , (C3)

〈

vrs(1)
d

dz

∫ r

0

Φ̇(1)dr
′

〉

= 0 , (C4)

et cetera. We also find that
〈(

vθ(1)k
θ
(1) + vφ(1)k

φ
(1)

)

s
−
(

vθ(1)k
θ
(1) + vφ(1)k

φ
(1)

)

o

〉

∼ O
(

ε4
)

, (C5)
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since vθ(1)k
θ
(1) ∼ vφ(1)k

φ
(1) ∼ ε3, and taking the difference of the averages at the source and at the observer introduces

another factor of z ∼ ε.
We can further rewrite the average 〈v2s(1)〉 by exploiting the power law scaling v2(1) ∝ t2/3, to find

〈v2s(1)〉 =

〈

(

t
2/3
0 t1/3∇Φ(1)

)2
〉

≈
〈

(

t
2/3
0 ∇Φ(1)

)2
〉

(t0 − r)
2/3

= 〈v2o(1)〉
[

1− z +O(z2)
]

. (C6)

We also use 〈(vr(1))2〉 = 〈v2(1)〉/3, and introduce the two point correlation function f(r),

〈vrs(1)vro(1)〉 =
1

3
〈v2o(1)〉

(

1− 1

2
z

)

[1 + f(r)] , (C7)

where f(r) is defined by

〈n · v(r0, t)n · v(r0 + rn, t)〉 = 1

3
〈v2o(1)〉 [1 + f(r)] , (C8)

and n is a unit vector that defines the viewing direction.
We can write this correlation function in terms of a more general correlation function cij(r), using the Fourier

transform of Eq. (B6) and Eqs. (4.37)-(4.40):

〈v2o(1)〉cij(r) ≡ 〈vi(r0, t0)vj(r0 + r, t0)〉 =
H2

0

4π

∫ ∞

0

d3kkikj∆
2(k)e−ik·r

k7
. (C9)

This function can be rewritten as

〈v2o(1)〉cij(r) ≡ H2
0

[

1

3
A(r)δij +

rirj
r2

B(r)

]

, (C10)

where

A(r) =
3

8π

∫ ∞

0

d3k∆2(k)

k5

[

1− (k · r)2
]

e−ik·r =

∫ ∞

0

dk∆2(k)

k3
[j0(kr) + j2(kr)] (C11)

and

B(r) =
1

8π

∫ ∞

0

d3k∆2(k)

k5

[

3 (k · r)2 − 1
]

e−ik·r =

∫ ∞

0

dk∆2(k)

k3
[−j2(kr)] , (C12)

and where we are using spherical Bessel functions of the first kind:

j0(x) =
sinx

x
(C13)

and

j2(x) =

(

3

x3
− 1

x

)

sinx− 3

x2
cosx . (C14)

It follows that

1

3
〈v2o(1)〉 [1 + f(r)] = 〈v2o(1)〉ninjcij(r) = H2

0

[

1

3
A(r) +B(r)

]

=
C2k2eq
H2

0

∫ ∞

0

ydyT 2(y)

[

1

3
j0

(

keqzy

H0

)

− 2

3
j2

(

keqzy

H0

)]

, (C15)

where keq = 1/λc ∼ 103H0. We plot 1+f(r) in Figure 2; we see that it falls to approximately zero for r ≫ λc ∼ 10 Mpc,
and thus we do not expect it to be important when measuring the distances to supernovae at redshifts z ∼ 0.1. Note
also that f becomes negative for large enough r.
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Using these simplifications, we finally get

DL(z) =
z

H0

(

1 +
1

4
z − 1

8
z2
)

+∆Drms
L (z) + ∆Dcorr

L (z) , (C16)

where ∆Drms
L (z) is the perturbation that depends on RMS quantities at a given point, which vanishes:

∆Drms
L (z) = 0 , (C17)

and ∆Dcorr
L (z) is the perturbation that depends on f . To subleading order, this is

∆Dcorr
L (z) ≈

(1 + z)2〈v2o(1)〉
H0

[

3

2
f

(

z

H0

)

− 1

3H0
f ′

(

z

H0

)

(1− 2z)

]

+O

(

fε3δ2

H0

)

, (C18)

where the subleading terms are suppressed by a factor of λcH0 or z. We will only use the lowest order piece,

∆DL(z) = ∆Dcorr
L (z) ≈ −

〈v2o(1)〉
3H2

0

f ′

(

z

H0

)

=
C2k3eq
H4

0

∫ ∞

0

dyT 2(y)

[

y cos(keqzy/H0)

keqz/H0
− 3

sin(keqzy/H0)

(keqz/H0)2
− 6

cos(keqzy/H0)

(keqz/H0)3y

+ 6
sin(keqzy/H0)

(keqz/H0)4y2

]

. (C19)

APPENDIX D: TRANSFORMING FROM THE STANDARD POST-NEWTONIAN GAUGE TO THE

SYNCHRONOUS GAUGE

In the standard post-Newtonian gauge discussed in Section II, we can rewrite the metric in terms of conformal
coordinates,

ds2 = a2(η)
[

−
(

1 + 2Φ(1) + 2Φ(2)

)

dη2 +
(

1− 2Φ(1) − 2Φ(2)

)

δijdX
idXj

]

, (D1)

where we will only need this to Newtonian order, and now the scale factor is a(η) = (η/η0)
2. We will define η0 ≈ 3t0

to be the conformal time today. This new time coordinate is related to that of Sections II - V by

η = 3

(

t

t0

)−2/3

t

[

1− r2

9t2
+O

(

r4

t4

)]

=
3

a
t+O

(

tε2
)

, (D2)

and the radial coordinates are related by

R =

(

t

t0

)−2/3

r

[

1 +
r2

9t2
+O

(

r4

t4

)]

=
r

a
+ O

(

rε2
)

, (D3)

where R =
√

(X1)2 + (X2)2 + (X3)2. Thus, we see that the potentials are the same as before, to Newtonian order,
except that they now are in terms of comoving distance X i and conformal time η. We also now use Cartesian
coordinates for simplicity.
Our goal is to transform to the synchronous gauge, with new coordinates x̃µ = (τ, x̃i), where the line element has

the form

ds2 = a2(τ)g̃µνdx̃
µx̃ν = a2(τ)

[

−dτ2 + g̃ijdx̃
ix̃j
]

. (D4)

In this gauge, g̃ττ = −1 and g̃τi = g̃iτ = 0. We make the following ansatz for the new coordinates:

η = τ + f(1) (τ, x̃) + f(2) (τ, x̃) +O
(

τ0ε
4
)

(D5)

and

X i = x̃i + hi
(1) (τ, x̃) + hi

(2) (τ, x̃) +O
(

x̃iε2
)

, (D6)
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where hi
(1) ∼ δx̃i, hi

(2) ∼ δ2x̃i, f(1) ∼ δτ0ε
2, f(2) ∼ δ2τ0ε

2, and τ0 ∼ η0 is the time today. We are also assuming that

we have the growing mode only, for which we have the power law scalings Φ(1) ∝ τ0 and Φ(2) ∝ τ2.
In order to find the new metric, we will need the relations

a2(η) = a2(τ)

[

1 +
4

τ
f(1) +

4

τ
f(2) +O

(

ε4
)

]

(D7)

and

Φ(1)(η,X) + Φ(2)(η,X) = Φ(1)(τ, x̃) + Φ(2)(τ, x̃) + Φ(1),ih
i
(1) +O(ε4) +O(δ3) . (D8)

Using these and the coordinate transformations (D5) and (D6), we find

g̃ττ = −
(

1 +
4

τ
f(1) +

4

τ
f(2) + 2Φ(1) + 2Φ(1),ih

i
(1) + 2Φ(2) + 2ḟ(1) + 2ḟ(2)

)

+ ḣi
(1)ḣ

i
(1) = −1 , (D9)

implying

2

τ
f(1) +Φ(1) + ḟ(1) = 0 (D10)

and

4

τ
f(2) + 2Φ(1),ih

i
(1) + 2Φ(2) + 2ḟ(2) − ḣi

(1)ḣ
i
(1) = 0 . (D11)

Similarly, the time-space component of the new metric is

g̃τi = −f(1),i − f(2),i + ḣi
(1) + ḣi

(2) + hj
(1),iḣ

j
(1) +O

(

ε3
)

= 0 (D12)

and this implies

− f(1),i + ḣi
(1) = 0 (D13)

and

− f(2),i + ḣi
(2) + hj

(1),iḣ
j
(1) = 0 . (D14)

Equations (D10), (D11), (D13) and (D14) are solved by

f(1) = −τ

3
Φ(1) +

A

τ2
, (D15)

f(2) = −τ

5
Φ(2) +

2τ3

45

(

∇Φ(1)

)2
+

B

τ2
− τ

6
hi
0Φ(1),i , (D16)

hi
(1) = −τ2

6
Φ(1),i + hi

0 (x̃) , (D17)

and

hi
(2) = −τ2

20
Φ(2),i +

τ4

120
Φ(1),ijΦ(1),j −

τ2

12
Φ(1),jih

j
0 +

τ2

12
Φ(1),jh

j
0,i + h̃i

0(x̃) , (D18)

where the arbitrary constants A and B and functions hi
0(x̃) and h̃i

0(x̃) represent residual gauge freedoms associated
with synchronous coordinates. Setting A and B to zero will give us comoving coordinates. We can imagine comoving
coordinates to be fixed on some spacelike hypersurface from which the worldlines of freely falling particles emanate. If
we set all of the clocks carried by these particles to the same time on this spacelike hypersurface, then A = B = 0. The
residual functions hi

0 and h̃i
0 correspond to simply changing the coordinates on the spacelike hypersurface from which
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worldlines emanate, and we will set hi
0 = h̃i

0 = 0. Using this solution for the appropriate coordinate transformation,
we find the spatial part of the new metric to be

g̃ij = δij

[

1 +
4

τ
f(1) +

4

τ
f(2) − 2Φ(1) − 2Φ(2) − 2Φ(1),kh

k
(1)

]

− f(1),if(1),j + h(1)i,j + h(1)j,i

+h(2)i,j + h(2)j,i + h(1)k,ih(1)k,j +

[

4

τ
f(1) − 2Φ(1)

]

[

h(1)i,j + h(1)j,i

]

+O(ε4) +O(δ3)

= δij −
τ2

3
Φ(1),ij −

τ2

10
Φ(2),ij +

τ4

60
Φ(1),ijkΦ(1),k +

2τ4

45
Φ(1),ikΦ(1),jk +O

(

ε2
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+O(δ3) . (D19)
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