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ABSTRACT

We outline a dynamical dark energy scenario whose signatures may be simultaneously tested
by astronomical observations and laboratory experiments. The dark energy is a field with
slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with
a scale tuned to ∼ 10−3 eV, as is usual in quintessence models, and an effective mass mφ

influenced by the environmental energy density. Its forces may be suppressed just below
the current bounds by the chameleon-like mimicry, whereby only outer layers of mass dis-
tributions, of thickness 1/mφ, give off appreciable long range forces. After inflation and
reheating, the field is relativistic, and attains a Planckian expectation value before Hubble
friction freezes it. This can make gravity in space slightly stronger than on Earth. During
the matter era, interactions with nonrelativistic matter dig a minimum close to the Planck
scale. However, due to its sub-gravitational matter couplings the field will linger away from
this minimum until the matter energy density dips below ∼ 10−12 eV4. Then it starts to roll
to the minimum, driving a period of cosmic acceleration. Among the signatures of this sce-
nario may be dark energy equation of state w 6= −1, stronger gravity in dilute mediums, that
may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections
to Newton’s law, close to the present laboratory limits.
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Understanding cosmic acceleration is the deepest problem of modern cosmology. It has
profound implications both for fundamental physics and for the fate of the universe [1]. A
range of ideas have been pursued to explain the acceleration, and to date in all of them, one
is forced to fine tune some dimensional scales to accommodate cosmic acceleration now. This
yields the ‘Why Now’ problem, which may be taken as a clue that we are missing something
important in the formulation of the problem [2]. To compound the puzzle, to date we
have noted other curious coincidences, such as the near matches between the scale of the
cosmological constant, the dark matter density, the neutrino mass, and the laboratory limits
on gravitational force, which are all controlled by a length scale of about a millimeter. While
these may simply be numerical accidents, it is interesting to probe for deeper connections
between them. We can pursue this by formulating models where cosmic acceleration has
other direct observable consequences, as exemplified in [3]-[7].

The main problem in building such models is the range of mass scales which one needs
for nontrivial dynamics. For example, to have a dynamical dark energy instead of the
cosmological constant one needs ultralight degrees of freedom, say scalars, with masses
mφ

<∼ H0 ∼ 10−33eV. These must couple to matter significantly more weakly than gravity
to avoid conflicts with Solar System tests [8]. On the other hand, laboratory tests constrain
new fields to be heavier than about 10−3eV, if they couple to matter gravitationally [9]. So
to make dark energy detectable in laboratory searches and consistent with long range grav-
ity, we need models where its mass changes by at least thirty orders of magnitude between
the Earth and the extragalactic space. Indeed, if the masses of dark fields are fixed by the
current laboratory bounds, we could integrate them out at scales below their masses and
end up with dark energy practically indistinguishable from the pure cosmological constant,
without a direct link to laboratory phenomena.

In this note we will outline a model of quintessence which may be within reach of future
terrestrial searches for sub-millimeter corrections to Newton’s law of gravity. It controls
cosmology at largest scales with a very weak potential, logarithmic in the field value. Yet at
shorter scales, due to large environmental masses as in [10, 11, 12], this field could decouple
at the scales probed by current laboratory tests, but perhaps just barely, so that it could be
revealed by future probes. Its signatures, in addition to possible sub-millimeter gravitational
effects, would include an equation of state w 6= −1, distinguishing it from the cosmological
constant, stronger gravity in less dense mediums, which can influence BBN, and induce
a weak spatio-temporal variation of Newton’s constant, affecting structure formation and
possibly simulating an excess of dark matter abundance over its actual density. This model
could therefore be a useful benchmark for future observational explorations of the signatures
of dark energy.

We start our discussion with a review of the mechanisms that make the masses of fields
dependent on the medium in which they propagate [10]-[14]. They may provide a way
around the usual decoupling argument, and are most simply formulated for models where
the scalar couples to matter universally1, by interaction Lagrangians Lmatter(g

µνe−2αφ/M4 ,Ψ)
like a Brans-Dicke field. In these cases, the effective potential controlling the propagation of

1Wider classes of models where the coupling changes from species to species were studied in [11].
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a field in a medium is given by

Veff(φ) = V (φ)− T µ
µ e

αwφ/M4 , (1)

where V (φ) is the potential in the vacuum and T µ
µ ∝ −ρ is the trace of the stress energy

of the environment2. The Planck mass M4 and the dimensionless quantity αw = (1− 3w)α
parameterize the couplings of the scalar to matter. Thus in stationary matter distributions,
the minimum of the field φ is at φ∗, where ∂φVeff(φ∗) = 0. The effective mass governing the
dynamics of the field fluctuations about this environmental minimum φ∗ ism

2
φ = ∂φ

2 Veff(φ∗).
In distributions of matter with energy density ρ and pressure p, T µ

µ = −(ρ − 3p), setting
how φ∗ and m2

φ will depend on the energy density of the environment. As the energy density
changes, so will the location of the minimum φ∗. Over cosmological time scales, the evolution
of the zero mode is governed by

3M2
4H

2 =
φ̇2

2
+ V + ρ eαwφ/M4 , (2)

ρ̇+ 3(1 + w)Hρ = 0 , (3)

φ̈+ 3Hφ̇+
∂Veff

∂φ
= 0 , (4)

which come from the Einstein’s equations and the φ field equation in homogeneous and
isotropic, spatially flat FRW universes, that are a good approximation for our universe
from just after the beginning of inflation onwards. The simplicity of the source terms is
ensured by our conventions. Clearly, φ∗ is not an exact solution to these equations, but will
be a good approximation over time scales t ≪ 1/H , if mφ > H . From these equations,
we can immediately find the condition when φ can yield cosmic acceleration. Acceleration
is not automatic: even if ρ is propping φ up on a slope of V , it changes due to cosmic
expansion, and the field φ may slide down V too fast to support cosmic acceleration over
a Hubble time. Indeed, we can check immediately that for the example of nonrelativistic
matter, if φ sits in the minimum of Veff the total energy density changes according to

Ḣ = − φ̇2

2M2

4

− ρ
2M2

4

eαφ/M4 ≃ −3
2
H2, which is clearly too fast to support acceleration.

The criteria for acceleration can be formulated by generalizing inflationary slow roll
parameters to arbitrary fluids. Using critical energy density ρcr = 3M2

4H
2 we see that the

universe will accelerate if

ǫ = | ρ̇cr
Hρcr

| < 1 . (5)

Acceleration will last an e-fold or more if

η = | ǫ̇

3Hǫ
| < 1 , (6)

sustaining potential dominance for at least a Hubble time. We can now find the conditions
for acceleration as follows. Suppose first that mφ > H . Then Eq. (4) tells that φ will

2Our conventions are M2
4Gµν = Tµν for the Einstein’s equations and δSmatter = 1

2

∫

d4x
√
ḡ4 T̄

µν δḡµν
for the stress energy tensor in the Brans-Dicke frame. We will define Einstein frame components of T̄µν by
ρ, p = e3(1+w)αφ/M4 ρ̄, p̄, respectively, for reasons of simplicity, to be noted shortly.
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rapidly settle into the environmental minimum φ∗, during a time scale 1/mφ over which
the Hubble friction is negligible. The direct evaluation of the ǫ parameter then shows that
ǫ = [φ̇2+(1+w)ρeαwφ/M4 ]/V . Then approximating φ ∼ φ∗, differentiating

∂Veff

∂φ∗

with respect

to time and squaring it yields φ̇2 ≃ 9(1 − 3w)2α2
w
H2ρeαwφ/M4

M2

4
m4

φ
ρeαwφ/M4 . Further using ǫ <∼ 1

and mφ > H yields φ̇2 < 9(1−3w)2α2
wρe

αwφ/M4 . Thus generically we can neglect ∼ φ̇2 terms
in ǫ, yielding ǫ ≃ (1 + w)ρeαφ/M4/V . Using this to evaluate η in the limit mφ > H , we find
that η ≃ (1 + w)2. So when mφ > H , cosmic acceleration won’t last longer than only a
fraction of an e-fold unless the environment obeys |w+1| < 1. But that means that an agent
other than φ plays the role of dark energy, and φ is merely a spectator. Hence if φ is to be
dark energy at any time, we must have

mφ
<∼ H , (7)

over the relevant scales. In particular, for our φ to explain cosmic acceleration now we need
mφ

<∼ H0 at horizon scales, unless we introduce some other dark energy by hand.
Now, the vacuum potential V must satisfy some conditions in order to allow for a dynam-

ical setup which won’t violate experimental bounds on deviations from General Relativity,
while still yielding something non-trivial. The allure of the chameleon mechanism is the
environmental screening of the long range forces from matter interior to the mass distri-
butions [12]. Namely, inside masses the environmental mass of the field mφ is shifted up
to a value much larger than in the vacuum, and so the chameleon forces of particles in-
side the distributions acquire efficient Yukawa suppressions, by the exponent of the depth
of the source particle inside the mass distribution, in the units of 1/mφ. The suppressions
die out for particles in the outer layer of the mass, of thickness roughly ∼ 1/mφ(φ) (which
may have to be evaluated at some interpolating value of φ nearer to the boundary of the
matter distribution, rather that its value φ∗ in the core, to account for the variation of the
homogeneous field mode through the matter distribution). This yields the net scalar force
suppression relative to gravity by a factor of roughly ∼ m−1

φ /R, where R is the size of the
source, even if the scalar is ultralight outside of the masses [12]. Clearly, the smaller the
source, the less the suppression, and this is why for laboratory experiments, which work at
a millimeter scale, this still translates to roughly mφ

>∼ 10−3 eV, for couplings of the order of
O(1)×M−1

4 . Another important phenomenon concerns the effective gravitational coupling
of matter. One sees immediately that environmental minima must obey |α∆φ∗| < M4 over
a wide range of scales, where ∆φ∗ is the shift of φ∗ with the change of ρ. Otherwise, the
effective gravitational coupling GN eff ∼ 1

M2

4

exp(αwφ∗/M4) would change too much between

the laboratory and, say, the atmosphere [12]. We should mention that the bounds from
astrophysical gravitational fields may be weaker because of various model-dependent issues
and systematics, such as the type, distribution and amount of dark matter et cetera.

This renders potentials dominated by V ∼ m2φ2 unsuitable for chameleonic dark energy
model building, as follows. For a quadratic potential, the environmental minimum generated
by couplings to nonrelativistic matter lies at αφ∗

M4

e−αφ∗/M4 ∼ α2ρ
M2

4
m2 , and the scalar mass is

m2
φ = m2+α2ρ

M2

4

eαφ∗/M4 . If this field were quintessence, at cosmological scales where ρ ∼ M2
4H

2
0

its mass m2
φ = m2 + α2H2

0e
αφ∗/M4 must be smaller than H2

0 , as explained above, implying
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the same for the vacuum mass, m2 < H2
0 . But then, the environmental minimum would be

at αφ∗

M4
e−αφ∗/M4 > α2ρ

M2

4
H2

0

≫ 1 for relevant environments, implying that αφ∗/M4 and therefore

GN eff change too much with variations of ρ. Conversely, one could suppress variations of
the effective Newton’s constant either by taking m2 ≫ H2

0 , or by taking α → 0, but then
either the field φ should be integrated out at scales below m and cannot be quintessence, or
it would altogether decouple from matter and cease to behave as a chameleon.

Hence other potentials must be considered. Various specific examples were discussed
in [12]-[18]. The works [12]-[15] employed vacuum potentials that can be approximated as
powers V ∼ λ

n
φn for n 6= 2 (positive or negative!), yielding Veff (φ) =

λ
n
φn + 1

2
ρeαφ/M4 . After

adjusting the coupling λ to satisfy αφ∗ ≪ M4 at the minimum, that prevents large variations
of GN eff , the effective minimum is at φ∗ ≃ ( α

2M4λ
)1/(n−1)ρ1/(n−1). Around it, the scalar mass

is dominated by ∂2
φV at the minimum, for n ≥ 2, and is

m2
φ ≃ (n− 1)λ1/(n−1)

( α

M4

)
n−2

n−1 ρ
n−2

n−1 . (8)

This formula breaks down for linear potentials with n = 1, where the correct derivation
yields γ = 1/2. Indeed, for the linear potential V = V0− qφ, ∂2V = 0 and so the scalar mass

is entirely an environmental effect: m2
φ ≃ α2ρ

M2

4

eαφ/M4 ∼ ρ. Thus generically

mφ ∝ ργ , (9)

where γ = n−2
2(n−1)

, or γ = 1/2 for n = 1. When the matter couplings of φ are of the
gravitational strength, α ∼ 1, this means that for all reasonable power law potentials, with
integer powers, once the environmental mass mφ is fixed by the laboratory bounds on Earth,
mφ

>∼ 10−3 eV, for ρEarth ∼ g/cm3 ∼ 1021 eV4, it can decrease at most by a factor of

(M2
4H

2
0

ρEarth

)γ ≃ 10−33γ , (10)

as the energy density changes to the cosmological background density. Having started
at mφ

>∼ 10−3 eV, the effective environmental mass can therefore decrease down only to
mφ

>∼ 10−3−33γ eV. For φ to be quintessence, suspended in slow roll on a potential slope
at very large distance scales, this must be smaller than H0 ∼ 10−33 eV, which therefore
requires γ ≥ 1. Otherwise, the field φ will be too heavy to have any significant dynamics at
the horizon scale, and dark energy must come from other quarters, if at all3, which is what
happens with all integer powers.

The exception to this conclusion is the logarithmic potential V ∼ lnφ. To see that it
evades the arguments above, we note that to get the mass of φ for this case, we can take the
limit of Eq. (8) when n → 0−. Then, γ → 1, and so mφ ∼ ρ. In this case, the effective mass
will change by the full range of density ratio between the cosmological and terrestrial scales,
spanning over thirty orders of magnitude. Hence, the logarithmic potential can give us a

3One can check that similar arguments also apply to, for example, exponential potentials. In that case,
one also finds that the quintessence mass scales as (9) with γ < 1 and that generically it is impossible to
keep |αφ∗| < M4 over a wide range of density variations.
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chameleonic, or changeling quintessence which could have evaded the laboratory searches for
deviations from Newton’s law at the current level of sensitivity, but may remain close to the
bounds, within the reach of the future tests.

Figure 1: Environmental effective potential.

To explore the physics of our logarithmic dark energy changeling, we now turn to a
specific model. Suppose that the vacuum potential of the scalar is V = −µ4 ln

(

φ/M
)

,

where4 M >∼ M4. Potentials like this may arise in theories with two conical extra dimensions,
after their stabilization [20], or by integrating out some heavy fields which couple to the
scalar φ, such as in the MaVaNs models of [5] which also employ logarithmic potentials.
However in contrast to MaVaNs, our φ couples universally to all ‘light’ matter, and dwells
in a different regime, as exemplified by the sign and our choice of the scale M . As we will
see later, we will need µ ∼ 10−3 eV, which is usual for quintessence models that can fit
the data. We won’t commit to any particular mechanism explaining how such scales may
arise (and in particular why there aren’t larger corrections to V , which of course is the
full cosmological constant problem that we can’t solve yet [1]), instead focusing on their
implications for observations. Nevertheless, we note that obtaining such potentials may only
require tunings in the gravitational sector, if the scalar φ is a Brans-Dicke-like field, obeying
weak equivalence principle, since there exists a Brans-Dicke frame to which matter couples
universally. Then, the effective potential including the environmental correction from a
medium obeying equation of state p/ρ = w is

Veff(φ) = −µ4 ln
( φ

M

)

+ (1− 3w)ρ eαwφ/M4 . (11)

It is given in Figure (1) for a fixed value of ρ, and for w < −1/3. For w = −1/3 the
environmental term is absent, whereas for w > 1/3 it changes sign and convexity (since
αw = (1− 3w)α).

4We will work with M not much greater than the Planck scale, to comply with the arguments about
absence of ultraweak forces and trans-Planckian cutoffs in plausible UV completions of gravity [19].
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Let’s examine cosmological history of such a theory, and see what are its predictions.
We will work with the assumption that our universe was shaped by inflation, at some high
scale Λ ≫ µ4 and with w ≃ −1. Then, during inflation, the scalar field φ is controlled by
Veff(φ) = −µ4 ln

(

φ
M

)

+ 4Λ e4αφ/M4. The minimum of this potential is at αφ∗

M4
≃ µ4

16Λ
≪ 1,

and the effective scalar mass there is m2
φ ≃ 256α2Λ2

M2

4
µ4 ≫ H2

inflation. In fact this is generically so

large that the field φ is completely non-dynamical during inflation. It is frozen out extremely
efficiently.

At the end of inflation, the energy in the inflaton potential Λ will be converted into
radiation. During this stage, the universe will rapidly become radiation-dominated, with
ρradiation ≫ ρmatter. Ignoring the possibility of massive matter decays, we can place a bound
on the ratio of ρradiation/ρmatter by scaling it up from matter-raditation equality to the re-
heating temperature: ρradiation/ρmatter

>∼ Treheating/eV, which can be as high as 1020 or so.
In reality this ratio will be even higher because many of the nonrelativistic species today
will have behaved as relativistic particles in the early universe. Now, the presence of mas-
sive particle species may generate a different effective potential for φ, shifting the location
of the environmental minimum. The environmental potential coming from nonrelativistic
species is Veff(φ) = −µ4 ln

(

φ
M

)

+ ρmatter e
αφ/M4 , with a minimum at αφ∗

M4
≃ µ4

ρmatter
, and

a mass around it m2
φ ≃ α2ρ2matter

M2

4
µ4 ≃ α2ρmatter

µ4

ρmatter

ρradiation
H2

radiation. During the radiation phase

ρradiation ≫ ρmatter , and so m2
φ ≪ H2

radiation. This minimum, if at all present, will be too
shallow to affect cosmological dynamics of φ.

Thus we can ignore ρmatter during the radiation epoch. The effective potential for φ
changes to the pure logarithmic term, where the field is massless and initially close to the
origin, where inflation left it: φinflation ≃ µ4M4

16Λα
. However generically the field will have a lot

of kinetic energy after being released from its inflationary state. To see that, introduce ρ̃ =
Λe4αφ/M4 as the total energy density during inflation. Just before the end of inflation, where

Λ starts to decay, the time variation of Λ will pull along φ, ˙̃ρ >∼ 4αφ̇
M4

ρ̃, whence φ̇ <∼
˙̃ρ

4αρ̃
M4.

With efficient reheating we can estimate
˙̃ρ
ρ̃
≃ Hinflation, so that φ̇ <∼

M4Hinflation

4α
, or φ̇2 <∼ Λ

48α2 .
While by no means precise, this argument at least shows that at the end of inflation, the
field φ will generically convert a significant fraction of vacuum energy into its kinetic energy,
by the universality of its couplings to all types of matter and equipartition of energy. The
precise amount would depend on the model of inflation and reheating. Having so much
kinetic energy after inflation is not dangerous for cosmology because it will dissipate quickly
due to Hubble friction/redshift. Since we can neglect nonrelativistic matter at this stage,
and because the potential energy density at this time is V ∼ µ4 ≪ Λ, we can in fact ignore
the effective potential altogether. As a result the field will evolve as a pure massless mode in
a radiation-dominated universe, where it will stop more or less after a Hubble time, travelling
a distance ∆φ ∼ φ̇initial/Hinflation

<∼ M4

4α
≫ φinitial before it stops [21]. At that point, it will

have an expectation value φ <∼ M4

4α
, a tiny potential energy, V <∼ µ4 ln(4αM

M4
), and a tiny mass5

m2
φ ≃ α2ρmatter

M2

4

≪ H2
radiation, giving a slightly stronger effective gravitational coupling GN eff

to matter than to radiation, by at most a factor of about <∼ e1/4 ∼ 1.28 or so. For the rest
of the radiation era, the field will simply just wait there.

5For as long as ρmatter > µ4.
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We should comment here on the implications of the enhancement of GN eff for Big Bang
nucleosynthesis. A difference between the value of Newton’s constant in the early universe,
and specifically at the time of BBN and its value measured presently in terrestrial experi-
ments would affect relic abundances, and so BBN gives us strong limits on the variation of
GN [22]. However, our calculated maximal value of GN eff above, is the value of Newton’s
constant at nucleosynthesis as seen by nonrelativistic particles, with masses m ≫ MeV at
that time. Indeed, we recall that – as illustrated in e.g. Eq. (1) – the effective Newton’s
constant which a species sees is GN eff ∼ 1

M2

4

eαwφ/M4 , where αw = (1 − 3w)α. Thus the

relativistic particles, which are controlling the expansion rate of the universe at that time,
would feel an effective Newton’s constant much closer to its terrestrial value. Even the
maximal value which we estimated above, felt by heavy particles, may be consistent with
the new BBN bounds on ∆GN/GN 0 that allow it to be ∼ 20% [23, 24], although stronger
bounds may be inferred from different data [25]. Hence BBN data may probe this aspect
of our model, similarly to what happens in general scalar-tensor theories [10]. This should
be explored in more detail. We need to also stress that the bounds from Oklo are easy to
comply with. By the time the Oklo reactor started, the field would have settled into its
terrestrial minimum, pulling GN eff down to its familiar value.

After radiation-matter transition, ∝ ρmatter term in the effective potential will be of the
order of M2

4H
2. The environmental minimum for φ at the largest scales will become more

prominent, and its location, as previously calculated, will be at αφ∗

M4

≃ µ4

ρmatter
. Now, in dilute

universe before structure formation, but after radiation-matter transition, ρmatter will be
below eV4, approaching µ4 from above. This means, that the minimum has been shifting
towards the Planckian values, where the field has been laying in wait. Yet, as long as α < 1,
the field will not shift from where it went during the radiation epoch. The reason is that as
long as ρmatter > µ4, it’s mass is still given by m2

φ ≃ α2ρmatter

M2

4

. So by arranging α < 1/
√
3,

we can still keep m2
φ < ρmatter

3M2

4

= H2
matter , holding the field up on the logarithmic slope by

Hubble friction.
On the other hand, at shorter scales structure will begin to form around the primordial

gravitational wells generated during inflation, where matter will agglomerate and the local
matter density will increase manyfold over the uniform background value. In these regions,
the environmental minima for φ will be closer to the origin and deeper, with m2

φ ≫ H2
matter.

Hence where collapse began the field φ will fall back to the environmental minimum, oscil-
lating around it instead of sticking to its post-inflationary value. In these regions, therefore,
the field will behave as a component of cold dark matter, and its uniform energy density
inside the region will begin to redshift as ∼ 1/a3, yielding the scaling of φ ∼ 1/a3/2, similarly
to unified dark matter models [17, 18]. This stage of evolution can reduce the field value by
as much as ∼ 107 inside large scale overdensities. Moreover, at shorter scales gravitational
cooling of the field [26] will lead to the collapse of the field energy to the core of the dis-
tribution, as in scalar field dark matter models, and to virialization with collapsing matter
[27]. This will further reduce the value of the scalar field around the central overdensity
to φ ≪ M4, sweeping it into the center. Finally, where the matter overdensity reaches the
scales of ρ ∼ 106 eV4 and beyond, the field mass will be mφ

>∼ 10−16 eV, so that the leftover
field oscillations in time will occur at frequencies >∼ sec−1 about the minimum, so that we
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may replace it with its time average, φ∗. So the long range effects of fields in these regions
should be suppressed by the conspiracy between its environmental mass and the thin shell
effect. Overall however one must be careful about picking the field boundary conditions in
determining the long range forces as these depend sensitively on the evolution of matter and
field distributions. To set up the long range fields, in general one therefore needs to look at
the full history of the system. It is also possible that the field may leave some imprint in
the large scale structure, since it will be more active in the beginning of the collapse. The
precise description of these imprints is beyond the scope of this work, but we expect that
because the imprints arise due to stronger gravity, they may affect our determination of dark
matter abundance, leading us to overestimate the abundance of dark matter in structures
which are at an early stage of their formation. Presumably this may lead to the possibility
of direct astronomical tests and it would be interesting to develop further.

Back at cosmological scales, the evolution will eventually dilute ρmatter to below µ4. At
this time, the universe will become dominated by the small residual potential energy in the
field, V <∼ µ4 ln(4αM

M4
) ∼ µ4. The environmental minimum will shift to αφ∗

M4
> 1. However,

the effective field mass at the largest scales will change to m2
φ ≃ µ4

φ2 , which is initially

m2
φ ≃ 16α2µ4

M2

4

. So the field will remain away from the minimum, and will start to slowly roll

towards it as ρmatter dips below µ4. To ensure that the universe accelerates right away, we
need to enforce Eq. (7). At this time, Eq. (7) translates to

α <∼
1

4
√
3
. (12)

Similarly, we must also demand that V > 0, which implies 4αM > M4, and that the period
of acceleration lasts at least an e-fold or so, ∆t >∼ 1/H0. A stronger bound on M comes
about as follows. As time goes on and φ rolls down the logarithmic slope, the slow roll will
improve, as m2

φ is decreasing with the increase of φ, as m2
φ ≃ µ4

φ2 . Thus solving the field

equations (2)-(4) in the slow roll regime, we find that

µ2M4√
3

∆t ≃
∫ φ

φ0

dφφ ln1/2(
M

φ
) , (13)

where φ0 is the value of φ at the beginning of acceleration, φ0
<∼ M4

4α
. The integral is

extremized by taking φ0 =
M4

4α
, and φ = M , because the log potential will vanish there, and

so if there are no higher order corrections that can prevent the potential from going negative,
acceleration will only last until φ reaches M . Beyond that, acceleration will cease, and in
fact the universe may even collapse, as has been recently studied in [28]. So substituting

φ = Me−x/2, the integral reduces to M2

23/2

∫
2 ln( 4αM

M4
)

0 dx
√
x e−x. By using 4αM > M4 and Eq.

(12), we can maximize it with an Euler gamma function Γ(3
2
). The error is tolerable, as one

can verify by using the saddle point approximation. Thus, the total duration of the late

accelerating phase cannot be longer than ∆t ≃
√

3π
32

M2

µ2M4

. The logarithmic plateau needs to
be wide enough to accommodate at least an e-fold of inflation during this time, which, after
setting H0 ≃ µ2

√
3M4

and requiring H0∆t >∼ 1, implies that

M >∼ (
32

π
)1/4 M4 ≃ 1.78M4 . (14)
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This will suffice to explain the observed cosmic acceleration. We note that the criticisms of
the MaVaNs model [29] (see also [30]) are easily circumvented here, since φ is in the slow
roll regime, independently of the matter terms from the onset of acceleration.

Now if we don’t take M too large, avoiding UV cutoffs much higher than the Planck
scale [19], the scalar may have matter couplings to within an order of magnitude of the
gravitational couplings. To see it we can combine (12) and inequality 4αM > M4 into

M4

4M
< α <∼

1

4
√
3
. (15)

Since the scalar coupling to matter is governed by

gφ ∼ α

M4
, (16)

and its mass in terrestrial environments, where ρmatter ≫ µ4, is

mφ ∼ αρmatter

M4µ2
∼ α

10
eV , (17)

when M is not too large there remains a chance that φ could be within the reach of the
future laboratory searches, after further improvements in sensitivity. Moreover, in this case
φ will be rolling noticeably after an e-fold or so. Hence it would behave as w 6= −1 dark
energy.

To summarize, we have delineated a dark energy model which, while tuned as it stands
now, can be tested at several different observational fronts. It is based on a light scalar,
with slightly sub-gravitational couplings to matter and a mass which depends on the envi-
ronmental energy density. Outside of dense matter distributions this field will be light, and
may yield significant long range effects. In particular, if it has logarithmic self-interaction
potential, like those that can arise in theories with conical extra dimensions [20, 31], or is
generated radiatively [5], it can be quintessence, with mass mφ

<∼ H0. At the largest scales
however, this field will couple to matter in contrast to typical quintessence models, albeit
slightly more weakly than gravity. In the early universe it will have an expectation value that
is larger than in the terrestrial minima, which would make gravity slightly stronger. This can
have consequences for BBN. During structure formation, before the field decouples in deeper
potential wells around denser matter distributions, it may have affected cosmic structures.
We have not analyzed this in detail here, and it would be very interesting to determine pre-
cisely what kind of signatures can arise. They may imitate an excess in the amount of dark
matter. Finally, at the scales governing terrestrial physics, this field will become sufficiently
massive so that its long range force may be suppressed by the thin shell effect discussed in
the context of chameleons. Hence it may have avoided detection to date. However, its effects
may be probed by future searches for sub-millimeter corrections to gravity. We believe that
this represents an interesting framework for testing gravity and dark energy in a correlated
manner. Testing models which involve correlations between modifications of gravity at short
and long scales will probe the robustness of General Relativity and its greatest failure, the
cosmological constant. It is therefore important to scrutinize such ideas further. Perhaps,
ultimately, we might even end up getting surprised!
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