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A new kind of quantum indeterminacy of transverse position is shown to arise from quantum
degrees of freedom of spacetime, based on the assumption that classical trajectories can be de-
fined no better than the diffraction limit of Planck scale waves. Indeterminacy of the angular
orientation of particle trajectories due to wave/particle duality at the Planck scale leads to inde-
terminacy of a nearly-flat spacetime metric, described as a small nonvanishing quantum commu-
tation relation between transverse position operators at different events along a null trajectory.
An independent derivation of the same effect is presented based on the requirement of unitar-
ity in black hole evaporation. The indeterminacy is interpreted as a universal holographic quan-
tum spacetime noise, with a frequency-independent spectrum of metric perturbation amplitude,
〈h2

H〉1/2 '
√
lP = 2.3× 10−22/

√
Hz, where lP denotes the Planck length. The effect is estimated to

be directly measurable using current interferometer technology similar to LIGO and LISA.

INTRODUCTION

Although string theory is sometimes referred to as a fully quantum theory of gravitation, the classical limit of the
theory, in particular the emergence[1, 2] of an approximately classical 3+1 dimensional spacetime from the collective
behavior of an essentially quantum system, is not at all understood. This understanding would be considerable
advanced by obtaining concrete data about quantum deviations from classical behavior of spacetime that directly
expose its quantum degrees of freedom. This paper offers two derivations predicting a new quantum behavior of
nearly-flat spacetime, an indeterminacy of angle or transverse position [3, 4]: one based on wave mechanics at the
Planck scale, the other based on no information loss during black hole evaporation. It then shows that the effect can
be described as a new kind of quantum noise, and analyzes how its effects might be measured using current technology.

Quantum mechanics based on continuous classical spacetime works to the limit of the highest energies and shortest
distances yet tested. In conventional quantum field theory, classical spacetime is predicted to be a good approximation
down to the Planck length lP =

√
h̄GN/c3 = 1.616× 10−33cm, the wavelength where a single quantum has about the

size and energy of a black hole. In particular perturbative field theory suggests that positions in space can be locally
defined and measured to Planck scale precision.

However, there are theoretical reasons to suspect a larger departure from classical spacetime behavior when large
regions of space are considered. The fundamental quantum description of the world is a ray in a Hilbert space, obeying
unitary evolution. This space has a very large dimensionality, say 2N , where N is the number of binary degrees of
freedom, and it is not known how those degrees of freedom map onto a quantum spacetime that approximately
resembles a classical 3+1 dimensional manifold containing quantized fields. Arguments from black hole and string
physics[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], as well as boundary behavior of classical general
relativity[23, 24] and thermodynamics in nearly flat spacetime[25], suggest that the maximum entropy N of a finite
system, corresponding to its total true number of degrees of freedom, scales holographically[16]: for example, a region
of spacetime bounded by null surfaces has total entropy less than one quarter of the area of a bounding 2D surface in
Planck units, much less than would be the case for the entropy of quantized fields. The number of degrees of freedom
of a large (L >> lP ) holographic spacetime is far smaller than it would be in a field theory extrapolated to the Planck
scale.

This information deficit provides an important clue to observable consequences since the dimension of the Hilbert
space is directly related to the number of observables. It is an open question how this quantum behavior of large
spacetime volumes manifests itself to observations from within the spacetime. Up to now, there have not been concrete
predicted observable consequences of the holographic entropy bounds, or indeed of any other quantum property of
spacetime.

The holographic bounds require new correlations between observables. The new correlations may introduce clearly
defined and predictable observational signatures, and perhaps may even be practical to measure in real experiments.
One resulting observable quantum behavior of spacetime is a Holographic Uncertainty Principle [3], an indeterminacy
in transverse position. The effects of spacetime quantization on the Planck scale in some macroscopic experiments
appear on scales much larger than the Planck length— large enough to be measured. This paper derives the effect
using general principles of wave optics; formulates it in terms of a quantum commutation relation between transverse
position observables in free space; and sharpens its interpretation and predicted experimental consequences. In
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particular, it is predicted that spacetime is permeated with a universal “holographic noise” accessible to measurement
by realistic experiments.

The discussion below begins with holographic indeterminacy estimated from diffraction theory of particle trajectories
emerging from Planck-wavelength radiation. Quantum mechanics is built on the idea of wave-particle duality, but
classical spacetime is a manifold defined by classical paths and definite trajectories connecting separated points. In
spacetime defined by propagation of quantum waves, “blurring” in angular eigenstates arises from simple particle/wave
optics: it is not possible to measure the orientation of a trajectory of a particle over a distance L to a precision better
than ∆θ ' (lP /L)1/2. There is thus a quantum limit to the precision to which classical geodesics can be defined. This
picture shows the transverse character of the resulting indeterminacy, and demonstrates the key idea advanced here:
Planck-scale wave effects are optically magnified to much larger scales in experiments with macroscopic baselines.

Observable indeterminacy is then more rigorously analyzed with a simple quantum algebra that introduces a new
nonvanishing commutator between operators for the transverse position observables. In the usual way this leads to
complementarity and uncertainty relations between these observables. An unusual feature of the interpretation is that
these relations hold for any body or particle, since they represent quantum indeterminacy of spacetime itself. The
wavefunctions of spacetime states can be measured by experiments, and this formulation allows statistical predictions
for experimental outcomes.

An independent derivation of the effect is then presented, based directly on the assumption that the black hole
evaporation process conserves total degrees of freedom. In order for any black hole and its evaporation products
together to obey unitary evolution, the angular position of evaporation products in flat space must display quantum
indeterminacy: otherwise there would be more distinguishable ways to assemble a hole than there are black hole
states. Holographic uncertainty in angle or transverse position then follows from the time reversal of these continuous
trajectories with an observer put in place of the black hole. This argument allows a quantitative estimate of the
numerical coefficient of the uncertainty.

Finally, estimates are presented of holographic signals in interferometers that make nonlocal comparisons of the
transverse positions of widely separated bodies. Spacetime indeterminacy is shown to create a pervasive universal
holographic quantum noise in the metric with a power spectral density given by the remarkable formula 〈h2

H〉 ' lP .
Estimates of the response of the Laser Interferometer Space Antenna ( LISA) suggest that holographic noise can be
separated from LISA’s instrumental, environmental and gravitational noise well enough to be measured. It may also
be possible to develop purpose-built ground based experiments capable of measuring the effect on a smaller scale, so
that the spectrum and spatial character of the noise can be characterized. If the effect is detected experimentally, it
will confirm the holographic character of unification and allow detailed, quantitative experimental studies of quantum
gravity.

ANGULAR INDETERMINACY FROM PLANCK DIFFRACTION LIMIT

Quantum gravity is sometimes described as a system of Planck scale waves. Local measurements in such a system
can clearly be made with resolution to the Planck length, consistent with the Heisenberg uncertainty principle.
However even in this simple system, nonlocal positions cannot be compared with Planck length precision. They are
subject to uncertainty on a larger scale due to diffraction.

The effect can be described in terms of the emergence of particle trajectories from wave optics. A classical spacetime
is a manifold with well defined paths such as geodesics; indeed, its metric properties are defined by paths composed
of summed infinitesimals. If at a fundamental level spacetime is defined by interactions and propagation of Planck
scale quantum waves, the classical paths emerge as rays that have a fundamental indeterminacy in their angular
orientation, due to their wave properties. This leads to a corresponding indeterminacy in transverse position.

Consider the propagation and imaging of waves of wavelength lP . A Planck length (or equivalently, a Planck time)
of phase delay gradient or tilt added to a plane wave across an aperture of size

∆x(L) = (LlP )1/2 (1)

changes the normal direction by the angle

∆θ(L) = (lP /L)1/2. (2)

This angle and transverse length define the Planck Diffraction Limit for a distance L: an aperture of size ∆x(L)
creates a spot of minimum transverse size ' ∆x(L) at distance L, and can make images that resolve angles as small
as ∆θ(L). A larger aperture can resolve a smaller angle; on the other hand due to quantum indeterminacy, with a
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FIG. 1: The holographic indeterminacy in transverse position ∆xH(L) ' (LlP )1/2 is related to the diffraction limit of Planck
wavelength radiation. Wavefronts with radius of curvature ' L are curved by ' lP across an aperture of size ∆xH(L). Universal
indeterminacy of the angular orientation of a particle trajectory arises because smaller apertures are limited by diffraction and
larger apertures are limited by quantum indeterminacy of particle position within an aperture; thus over length L the angular
orientation of any particle’s trajectory is intrinsically uncertain by ∆θ(L) ' (lP /L)1/2. An aperture of this transverse size
creates a diffraction limited spot of Planck radiation equal to its own size at distance L.

larger aperture one cannot tell where in the aperture any particular particle arrives. Due to quantum complementarity,
if one tries to determine where in an aperture a particle path lies, the angular precision deteriorates to that of a smaller
aperture. (This is the same consequence of wave-particle duality that is familiar from the double slit experiment: you
cannot tell which slit a particle passes through and still preserve the interference pattern from the slits.) Thus no
measurement can define the angular orientation of a single particle trajectory over length L better than ∆θ(L), leading
to a fundamental indeterminacy in defining classical paths over a length L. Correspondingly, ∆x(L) is the smallest
transverse distance where two observers separated by distance L can resolve each other with Planck wavelength
radiation, and the smallest transverse position difference that can be classically defined at that separation (See Fig.
1).

Because of the angular indeterminacy, the classical spatial direction of a particle propagating from an event only
becomes clear over time as the angular uncertainty gradually decreases. This is a simple example of “emergence” of
a classical path from a wave description. The complementary effect advanced here is branching of spacetime metrics:
transverse spatial positions decohere from each other over large spacetime separations.

This simple model illustrates how wave effects at the Planck scale can be optically magnified to much larger scales
over macroscopic distances L. It displays the magnitude of the effect as well as the transverse character of the
uncertainty. Thus we can visualize holographic uncertainty as an effect caused by diffraction of Planck scale waves
out of which a classical spacetime emerges. It is conjectured that since it affects all the paths that define a classical
spacetime, all bodies acquire a quantum interderminacy in transverse position.

NONCOMMUTING SPATIAL POSITION OBSERVABLES

It is useful to construct a simple quantum theory of holographic indeterminacy, based on a nonvanishing commu-
tation between spatial observables of position. Consider two particles at rest relative to each other separated by
distance L12. Introduce transverse position operators x̂1 and x̂2 for the two particles in the same spatial direction x
orthogonal to their separation vector. Let ψ(x1, x2) denote a wavefunction, the amplitude for the particles to be at
positions (x1, x2). We interpret ψ not only as a particle wavefunction, but as a spatial wavefunction of any possible
particles— the amplitude that particles or a bodies at separation L12 lie at transverse positions x1, x2 relative to their
classical separation vector. In normal quantum mechanics in unquantized spacetime these are commuting observables,
[x̂1, x̂2] = 0; a classical spacetime by its nature has well defined positions so its wavefunction is an eigenstate of both,
x̂1ψ(x1, x2) = x1ψ and x̂2ψ(x1, x2) = x2ψ. (Indeed, classically, the particles by definition have vanishing transverse
displacement from their separation vector so x1 = x2 = 0; in normal quantum mechanics on a classical spacetime
background, depending on the state of particles there is generally uncertainty in position so the displacement observ-
ables no longer vanish, but their commutator still does.) Posit now that spacetime quantization results in a new small
but nonvanishing commutator between the position operators,

[x̂1, x̂2] = −ilPL12. (3)

To be covariant, this relation is understood to refer to the observables evaluated at times corresponding to events
separated by a null trajectory (see Figure 2). (Note that this commutator differs from others recently proposed to
mimic holographic behavior[26, 27].)

It can be seen that this relationship is simply a more precise statement of the indeterminacy analyzed in the previous
section. We again suppose that classical spacetime is an emergent system and that classical paths are defined by rays
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FIG. 2: Coordinates used in Eq. (3). World lines in spacetime are shown for particles 1 and 2; commutation relation refers to
transverse position operators at events on a light cone. In this figure the y transverse dimension is suppressed.

of Planck wavelength massless particles with energy p0 = l−1
P . Flat spacetime is defined by straight trajectories so up

to a phase, the spatial quantum wavefunction for a family of parallel, classical spacetime null paths corresponds to a
plane wave,

ψ = exp[i(p0t− px)], (4)

where x denotes 3-position and p denotes the 3-momentum vector. A particular classical path or particle trajectory
connecting events is specified by a definite 3-direction p̂ and by a transverse position. Label the three spatial directions
x, y, z, and let p̂ lie along the z axis, so transverse positions lie in the x, y plane. Without loss of generality, choose
a classical path with x = y = 0 and zero transverse momentum, px = py = 0. Spacetime wavefunctions describe
deviations from classical paths by having a nonzero amplitude for transverse momentum and transverse spatial
displacements. At any time t1 a Planck particle has the usual Heisenberg commutation relation between transverse
momentum and position in the same direction,

[x1, px1] = −i. (5)

The transverse momentum px1 of a Planck particle at event 1 is related to the transverse position displacement at
event 2 by the angular deflection of the plane wave,

px1/p0 = px1lP = x2/L12, (6)

and combining equations (5) and (6) at any two positions t1, x1 and t2, x2 on a light cone yields Eq. (3). Again
the “particle” in this exercise is a proxy for a quantum behavior of paths in the spacetime metric, rather than an
observable physical particle. The relation (3) is posited to hold for any position measurements.

Clearly these simple arguments do not constitute a fundamental theory of emergent spacetime. Nevertheless, they
are sufficient to calculate new phenomenological consequences of holographic spacetime quantization. Equation (3) is
conjectured to apply because it obeys required symmetries, matches holographic bounds on degrees of freedom, and
(as explained below) is consistent with local and global behavior of quantum states during black hole evaporation.
The exact numerical factor is not determined by general considerations, although a lower bound of order unity is
derived in the following section.

The relation is defined for particles at rest which defines the transformation properties in other frames. In partic-
ular a large boost along the separation vector, which shrinks L12 in the observer frame, correctly reduces to small
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indeterminacy in the limit of a local experiment. In the x direction, Eq. (3) makes an assertion about transformation
properties for bodies not at rest in the observer frame: the indeterminacy in x is independent of the x boost. In other
words, it does not depend on the relative transverse motion of the body and the observer but is again consistent with
being an invariant property of spacetime. Moreover it is independent of particle momentum, and therefore mass, as
required for an indeterminacy in position associated with all bodies in space regardless of their specific properties.
Like the diffraction indeterminacy just discussed, it leaves the two transverse directions x and y independent of each
other.

The two observables x1, x2 now become complementary variables subject to quantum indeterminacy via the Heisen-
berg uncertainty relation

∆x1∆x2 > lPL/2. (7)

Here ∆x1,∆x2 denote the width of the wavefunction in the two positions, and therefore the joint quantum indeter-
minacy in measurements of the position observables in a particular state. This expresses the same indeterminacy
discussed above in the context of Planck diffraction. A system can be put into a squeezed state where one of the
observables has a small uncertainty, but the sum of the uncertainties is minimized when ∆x1 = ∆x2 and therefore
∆x2

1 > lP z/2, yielding the holographic uncertainty relation. This is also the typical state of quanta detected from
evaporating black holes, as described below.

Up to a numerical factor, this indeterminacy yields entropy limits consistent with covariant entropy bounds. For a
sphere of size L, particle trajectories are defined only to within solid angle ∆θ2 ' lp/L, yielding ' L/lP independent
directions for quantized modes. Each direction has ' L/lP modes up to a Planck scale cutoff, so there are ' (L/lP )2

independent modes or degrees of freedom. In normal field theory, there would be ' (L/lP )2 independent directions
and ' (L/lP )3 degrees of freedom.

Since ψ is interpreted as a spacetime wavefunction, the shape of ψ is shared by all bodies in a local region to a
precision given by Eq. (3) where L12 is the size of that region. This broader interpretation is necessary because any
purely local experiment cannot detect the holographic uncertainty associated with a distant measurement. That is,
x, y positions commute locally so bodies within a local region cannot have different holographic wavefunctions; they
have to be squeezed into the same spacetime state to a precision given by the holographic uncertainty for that local
region. Thus the whole spacetime metric (and all the bodies in it) shares in the new quantization reflected in Eq. (3)
and uncertainty reflected in Eq. (7).

Similarly, observations that “collapse” the spacetime wavefunction also collapse all x, y positions nonlocally into
the same spacetime eigenstate, up to a precision given by the coherence scale L12. For a covariant formulation, the
radial dependence should be interpreted as a spreading of ψ with separation, a “many-worlds” quantum branching of
metrics with propagation along a light cone. This interpretation preserves the agreement of the effect with covariant
entropy bounds, which are defined in terms of light-cone volume. This property has consequences for the spatial
and temporal coherence scales of the observable uncertainty, as described below: measured displacements ∆x(L) are
coherent over a temporal and spatial extent of order L.

In this formulation of the holographic indeterminacy, transverse position, which is normally a classical observable
that commutes with position operators at different points, now exhibits noncommuting quantum behavior. In this
interpretation there is no “true” classical transverse position that is merely blurred by propagation; any transverse
position is quantum-indeterminate without a true classical value. The difference is important in experimental design
since a true quantum indeterminacy in position can be measured interferometrically. If the transverse sensitivity is pre-
cise enough, we can measure quantum-gravitational commutation relations applied to transverse position observables
of macroscopic bodies.

HOLOGRAPHIC INDETERMINACY FROM UNITARITY OF BLACK HOLE EVAPORATION

The simple behavior conjectured in Eq. (3), and its interpretation as a spacetime indeterminacy, are supported
by consideration of what happens during black hole evaporation. Although in principle the holographic information
deficit could appear in subtle and unobservable nonlocal correlations between particle states, the trajectories (and
states) of evaporated particles from black holes evolve in a way consistent with the specific and simple behavior
suggested by holographic indeterminacy in transverse position or angle.

The number of distinguishable angles at large distance can be related to counting the quantum states of the particles
evaporated from a black hole. One can visualize independent “pixels” on the surface of a hole, each of area l2P 4 ln 2;
black hole thermodynamics tells us that the number of such pixels is the number of binary quantum degrees of freedom
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FIG. 3: Angular size as a function of separation. From a black hole, the angular extent of a typical RH -scale evaporated particle
wavefunction scales like RH/L until the fundamental universal “Planck diffraction limit” is reached, and like L−1/2 beyond
that. In this way the evaporated particles have the same entropy as the hole. Note that the universal limit also implies that
classical trajectories only gradually emerge with a well defined angular orientation when they are much longer than a Planck
length.

of the black hole, or the logarithm of the Hilbert space dimension of the quantum hole state[14]. Once such a hole has
completely evaporated, unitarity of quantum evolution requires the number of degrees of freedom of the evaporated
products to equal those of the hole.

For a black hole of radius RH , define as above a Planck diffraction distance LH = R2
H/lP . As described above, this

distance is about where one Planck wave of wavefront curvature across an aperture of radius RH corresponds to a
radius of curvature LH . If the black hole were a lens, with waves longer than a Planck length it would not be able to
distinquish angles smaller than ∆θH = RH/LH due to Planck scale diffraction.

The hole’s “pixels” each subtend solid angle π∆θ2H . Thus there are not enough degrees of freedom in the hole to
separately specify all the distinguishable distant angular trajectories that would classically be available to particles
evaporating from the hole, beyond the distance ' LH . Reverse the trajectories to consider inwards moving particles:
for any shell beyond LH , in a classical spacetime the number of distinguishably different directions from which a
particle of wavelength less than or equal to RH can aim at and still hit the hole exceeds the number of pixels in the
hole. Thus were there no holographic uncertainty, it would be possible to find many distinguishable inward trajectories
for particles (coming from different angles separated by less than ∆θH , from beyond LH) that would end up creating
exactly indistinguishable black hole states. Since this would violate unitarity, there must be a contradiction.

Holographic uncertainty offers a way to resolve the contradiction in a way that respects the continuity of the
trajectories of evaporated particles. The distant spacetime does not have so many independent degrees of freedom: all
those apparently different inward traveling particle states are not actually independent states. The problem is solved
for black holes of any size if the holographic limit on the number of angular states as a function of distance applies
to flat spacetime generally. (see Fig. 3). As discussed above this would be a consequence of the new commutation
relation of spatial position.

From the point of view of the black hole, or for that matter any observer, it is an illusion to suppose that smaller
angles at large distance have any objective classical meaning. A typical photon from the evaporation has a wavelength
RH and carries about 1 bit of information, entangled with the remaining hole.[28] (Longer wavelengths are suppressed
by a graybody factor in the Hawking radiation formula.) Far from the hole, there is not enough information to
distinguish smaller angles than ∆θH ' RH/lP for all the photons. Internally-identical hole states produce particles
having a range of transverse positions at larger distances which therefore must not actually be distinguishably different
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after all to the hole. A distant observer can measure those precise transverse particle positions, but that observer
then inhabits a branch of the wavefunction that no longer includes a definite position for the hole, which is itself
subject to the same transverse positional uncertainty from the point of view of the observer. Small angular differences
distinguishable far from the hole cannot be distinguished by the black hole itself.

A more detailed version of this argument allows a quantitative estimate for the numerical coefficient for the holo-
graphic uncertainty by counting the number of degrees of freedom of a black hole and its evaporation products. Let
the dimension of the black hole Hilbert space be DH = 2NH . Let the dimension of the Hilbert space of its evaporata
be Dγ = 2Nγ . Describe the degrees of freedom Nγ in terms of radial and transverse eigenstates, Nγ = N‖ +N⊥. The
radial part for each photon describes its arrival time/radial position and/or its energy/radial momentum. For unitary
evolution we require DH = Dγ ; the states of the evaporata also apply after the hole is gone so for this argument we do
not need to consider “entanglement entropy” which mixes the hole and evaporate states [28]. We know the entropy
of the black hole which tells us that NH = A/(l2P 4 ln 2), thus N⊥ < A/(l2P 4 ln 2), where A = 4πR2

H . We conjecture
that holographic uncertainty is responsible for the limited number of N⊥ states, such that at distance L the number
of states is N⊥ = 4πL2/π∆x⊥(L)2. Furthermore we should only count states actually coming from the hole (those
whose time reverse trajectories hit the hole) so we set ∆x⊥ = RH . Thus in the end we equate the entropy of a black
hole of radius RH(L) (the of number degrees of freedom as measured by pixels in the event horizon) to the number
of angular directions available in a sphere of radius L for a hole of this size (as measured by the ratio of the sphere
area 4πL2 to black hole cross section πR2):

SH(A = 4πR2
H) =

4πRH(L)2

l2P 4 ln 2
=

4πL2

πRH(L)2
; (8)

this is satisfied with the universal transverse uncertainty,

∆xH(L) = RH = (4 ln 2/π)1/4(Llp)1/2, (9)

and a width for the angular uncertainty at distance L,

∆θH(L) = ∆xH/LH = (4 ln 2/π)1/4(lp/L)1/2. (10)

A black hole of radius RH only starts to “notice” the holographic uncertainty beyond a distance

LH = (4 ln 2/π)−1/2(R2
H/lP ). (11)

This estimate yields a numerical prefactor close to unity as assumed below.

DETECTION OF HOLOGRAPHIC NOISE

Spectrum and Character of Universal Holographic Noise

The hypothesis of holographic indeterminacy, Eq. (3), and its interpretation as a branching of metrics predicts new
physical effects that appear to be detectable with current technology.

The arguments above suggest that holographic indeterminacy should be regarded not as just a propagation effect on
a classical background but as an intrinsic quantum indeterminacy in transverse position. We should think of a family
of classical metrics or “histories”[29, 30, 31] that peel away from each other as light cones expand, such that at large
distances there is a superposition of transverse positions rather than a sharply defined classical position eigenstate.
In that case it is possible to study the effect using measurements of transverse position of macroscopic bodies, using
interferometry. Measurements of position that appear classical in small spacetime volumes are predicted to show
holographic indeterminacy over macroscopic distances and times.

Any kind of interferometer measures only differences of light paths, each of which is a radial (and not a transverse)
distance. On the other hand in some configurations, the differences between these radial distances does measure
the precise transverse position of a body. If holographic uncertainty represents an intrinsic uncertainty in spacetime
position states, it should be measurable as an added quantum indeterminacy in transverse position measurements.
An interferometer with arm length L displays a typical transverse positional uncertainty

∆xH ' (lPL)1/2 = 4× 10−16(L/1m)1/2 cm, (12)
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approximately coherent over length L for a time L. In terms of metrological accuracy, (radial) positions are measured
to this precision by interferometers currently in operation— for example LIGO, the Laser Interferometer Gravitational
wave Observatory [32, 33, 34]. Detectability depends both on the system noise and the configuration.

We can make the general statement that any triangle configuration that measures the relative positions of three proof
masses in a 2D plane must be accompanied by holographic indeterminacy in those positions to agree with holographic
entropy bounds. This can be seen simply by counting spatial pixels. At holographic measurement precision, the
number of distinguishable positions in a triangle of of scale ' L is ' (L/∆x)2 ' L/lP , the maximum allowed for
a system confined to a plane. Including the same precision in the orthogonal direction or allowing for rotations of
the triangle leads to ' (L/lP )2 distinguishable positions in a 3D volume of scale L, the maximum number of degrees
of freedom permitted by covariant entropy bounds. Without a holographic uncertainty in measurement precision, a
triangle interferometer would be able to measure a larger number of distinguishable spatial positions than allowed by
holographic bounds.

Consider two beams heading towards each other across arm 1 of a triangle. They traverse an identical path in
opposite directions, then are directed to the third point of the triangle along arms 2 and 3. Their travel time on those
arms, which is measured when they come together, is affected by the holographic indeterminacy of the transverse
positions of the ends of arm 1. Two beams on the same path leaving later, by more than a coherence time, will
be affected by indeterminacy in the same way but with new random values. Thus an experimental signature of
holographic indeterminacy is a new source of noise in some kinds of position measurements.

The effects of holographic indeterminacy can be expressed as new kind of quantum noise in the metric, with a
universal spectrum. Like gravitational radiation, holographic noise is a nonlocal effect, not detectable in any local
experiment. Similarly we can discuss it in terms of an equivalent fractional distortion of the metric. In an experiment
on scale L, measurements of positions at times separated by more than L are associated with the transverse uncertainty
∆xH ' (lPL)1/2 and hence a dimensionless transverse fractional distortion h = ∆xH/L ' (lP /L)1/2. This can
be regarded as a result of an equivalent noise spectrum in the classical metric associated with indeterminacy in
defining classical paths and position observables. Let 〈h2

H(f)〉 denote the perturbation power spectral density per
frequency bandwidth as a function of frequency f , and let hH,rms = 〈h2

H(f)〉1/2 denote the measured root-mean-
square holographic metric noise. In a detector with scale L, the estimates above of the coherence and amplitude
of the indeterminacy suggest that in a time L, the typical displacement is ∆xH ' (lPL)1/2; the detected spectrum
hrms,det is independent of frequency f at low frequency,

hrms,det ' hH,rms ' (lP /L)1/2L1/2, (f < L−1), (13)

and falls off at high frequency like

hrms,det ' (lP /L)1/2f−1/2, (f > L−1). (14)

We interpret this result as a universal power spectrum of holographic quantum noise in the spacetime metric itself,
inherent in the indeterminacy of transverse positions. For any system on scale L, at low frequencies (that is, for
f < L−1) the universal spectrum is flat with frequency and is given by the remarkably concise expression,

〈h2
H〉 ' lP , (15)

or in more familiar experimental units,

hH,rms '
√
lP = 2.3× 10−22/

√
Hz. (16)

It should be emphasized that apart from numerical factors of the order of unity, and geometrical factors depending on
the system configuration and the spatial character of the noise, this spectrum is predicted with no free parameters.

The detectability of this holographic noise depends on the sources of system noise and the configuration of an
interferometer. It is a quantum noise, so its effects on observable signals depend on the correlations of nonlocal
position observables measured by an apparatus. The estimates below lead to optimistic assessments of the possibility
of experimental studies of its spectrum and spatial character.

Although holographic noise is an effect of spacetime quantization, on scales larger than the Planck length it is much
larger than the effects of virtual quanta that would be predicted from a standard quantized spin-2 graviton field. The
spatial character of the metric disturbance is also apparently not the normal transverse-traceless modes of classical
gravitational waves (h+ and h× polarizations) or their spin-2 quantized counterparts, but is better described as shear
modes, with no propagating classical counterparts.
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Detectability with LIGO-like interferometers

In the case of LIGO, the coherence time for the indeterminacy is about a light travel time over 4 km (smaller for
the 2 km interferometer) corresponding to a frequency of about 77 kHz. At lower frequencies, the metric perturbation
amplitude spectrum contributed by holographic noise thus corresponds to the universal value, Eq. (16). This is a
higher noise level (by about a factor of 5) than the equivalent strain amplitude of LIGO system noise in recent science
runs; Figure 1 of [34] shows strain amplitude spectra as low as hrms ' 5 × 10−23/

√
Hz near ' 100Hz. The level of

currently allowed excess strain noise from stochastic gravitational wave backgrounds is even lower, by about an order
of magnitude.[34]

At first glance this result seems to rule out the possibility of holographic noise. However, holographic noise does not
have the same effect as gravitational wave or instrument noise. In particular, transverse positions of the distant proof
masses are not actually measured in LIGO since it operates in a Michelson configuration, so one Michelson setup on
its own is not sensitive to holographic noise. The proof mass suspensions in LIGO reduce radial noise as much as
possible, thus they isolate degrees of freedom so that transverse noise does not leak into the signal. In operation the
system is placed into a state where holographic indeterminacy is “squeezed” into the undetected transverse positions
of the distant proof masses (see Fig. 4). It is possible that a small fraction of transverse holographic noise leaks into
the LIGO signal, perhaps even enough to contribute a detectable source of noise, but the system is not optimized to
measure it.

On the other hand the radial positions are already measured more precisely than the holographic noise level,
and a different configuration designed to be sensitive to transverse position should detect the holographic noise. A
different interferometer design including remote measurements over three arms, possibly with shorter arms but with
comparable measurement precision in proof mass position, could detect the transverse holographic noise component.
The spacetime wavefunction shape is coherent over large regions so it is not necessary for all three arms to be part of
the same phase-coherent interferometer. That is, because positions commute to higher precision in smaller regions,
proof masses in close proximity share similar spacetime wavefunctions: if one mass is in a squeezed state, a nearby
mass in a separate interferometer shares that squeezing and its signal can detect that transverse uncertainty. Thus
two disconnected Michelson interferometers yield about the same result as one connected system over similar paths,
displaying the quantum weirdness of holographic indeterminacy (see Fig. 5). Such a system might be optimized to
operate at much higher frequencies than LIGO, on a scale of ' 1m or less, avoiding many sources of environmental
noise. The flat spectrum predicted in Eq. (16) provides a clear observational target for design studies over a range of
frequencies and coherence scales.

Holographic noise displays quantum weirdness in a new way: the spacetime wave function branching created by
an interferometric measurement creates a macroscopically coherent difference, like Schrödinger’s cat, only applied to
position instead of vitality. The difference itself is still microscopic of course— the scale ∆x is much smaller than a
Bohr radius— but remarkably, applies coherently to the wavefunction of a macroscopic spacetime region. Indeed, the
positional displacement is coherent over a region of spacetime size ' L; the holographic noise in any two detectors
in the same spacetime region should be highly correlated even if there is no connection between them other than
spatiotemporal proximity. The holographic effect could not be measured in any local experiment, but requires a long
baseline separation to appear. This weirdness is imposed by the holographic lack of degrees of freedom.

Measurement with LISA

The proposed Laser Interferometer Space Antenna (LISA[35, 36]), with arm lengths L ' 5× 106 km, is an interfer-
ometer designed with a triangle configuration and therefore capable of making transverse position measurements.

Radial distances are measured between proof masses in each of LISA’s three spacecraft across the three ' 5× 106

km baselines. The detailed configuration of LISA proof masses and optical benches within each spacecraft is not
yet finalized but it may be that there will be a separate proof mass for each beam, two within each spacecraft (see
Fig. 6). For holographic uncertainty, the situation reduces in any case to the same as a single mass per spacecraft
since the two proof masses in close proximity share the same local classical spacetime state, so that the transverse
uncertainty of one shows up in the measured radial displacement signal of its partner, whether or not the transverse
degrees of freedom of the masses themselves are precisely monitored. With the interpretation here, this must be the
case since position observables all commute locally. With all three arms working, holographic indeterminacy must
then show up as a new contribution to the signal that we seek to measure, the holographic noise. This signal is a
nonlocal propagation effect, like a gravitational wave, although as seen below the signatures are different.
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FIG. 4: Sketch of the spacetime wavefunction shape at proof mass positions in different interferometer configurations. At
each vertex contours are shown of probability amplitude of transverse position in a particular spacetime state. The size of the
contours is greatly exaggerated, but the distortion is not. A connected equilateral triangle (LISA-like configuration at right) has
a minimum overall indeterminacy when the wavefunction is approximately isotropic at each vertex, leading to a lower bound
on the level of holographic noise. A Michelson setup (at left), with only two arms, can squeeze uncertainty into the unobserved
direction, thereby minimizing the holographic indeterminacy (and noise) in the signal at the detected vertex.

FIG. 5: Sketch of interferometer layouts to detect holographic indeterminacy. Transverse and radial positions are simultaneously
measured in triangles (left) on different scales, 1 and 2 say, allowing studies of the amplitude and coherence of the holographic
noise. Alternatively (right), a pair of Michelson interferometers can be arranged so as to avoid squeezing uncertainty out of the
detected signals, since proof masses in close proximity share nearly the same spacetime wavefunction (whose contour shapes
are again sketched). Metrology with current techniques is adequate to detect the effect for baselines as small as ' 1m.

Let ∆x and ∆r denote the standard deviation in the measured position of each mass along its own transverse and
radial directions, relative to a classical value that vanishes in the absence of holographic noise. In spacecraft 1, let 12
and 13 denote the two masses, labled by their corresponding distant spacecraft 2 and 3. According to Eq. (7), each
of the proof masses has a conjugate transverse time-delayed positional uncertainty as viewed from its distant partner,

∆x12∆x21 = (lPL)/2. (17)

In normal LISA operating mode the two masses in each spacecraft at a given time share almost the same classical
metric, so if the spacetime wavefunction is isotropic we can also set

∆r13 = cos(30◦)∆x12. (18)

Simultaneous local position measurements in the same spacecraft must (nearly) commute with each other in the usual
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FIG. 6: Schematic layout of one design for LISA proof masses and interferometers within each spacecraft, from[35]. The scale
of the spacecraft is ' 1 m and the arm length to the other spacecraft ' 5× 109m. The components are not drawn to scale and
the detailed optical paths are only indicative. In the text, these two masses in spacecraft 1 are named 12 and 13 according to
their corresponding distant spacecraft. The interferometer measures the position of each proof mass only along its own radial
direction (n̂). Along this axis, the position is measured to the distant spacecraft. For classical spacetime, this interferometer
geometry produces an interferometer signal insensitive to transverse noise in the proof mass positions. However, the radial
motion of one mass is partly along the transverse direction of the other, so if the two masses and their optical benches share
the same (locally classical) coherent position state of spacetime metric, the transverse interdeterminacy relative to the distant
partner of mass 12 shows up in the radial position of mass 13, and vice versa.

way (whether or not they are actually measured by the system), so once a radial position local spacetime state is
determined for mass 13 it also fixes the transverse position local spacetime state for mass 12 and vice versa. This
introduces observable variations ∆r13 ' cos(30◦)∆x12 and so on for the other pairs. Since the interferometer measures
the changes in r between three pairs of masses, the transverse indeterminacy enters into the signal stream.

Let L1 denote the measured length of the arm opposite spacecraft 1 from the signals in spacecraft 2 and 3.
Independent measurements (meaning, those separated by more than a light travel time) have a standard deviation
∆L1 from adding in quadrature,

∆L2
1 = ∆r223 + ∆r232 = cos2(30◦)(∆x2

21 + ∆x2
31), (19)

and likewise for the other arms. If all three arms are being measured, so all the pairs are uncertain,

∆L2
1 + ∆L2

2 + ∆L2
3 = cos2(30◦)(∆x2

21 + ∆x2
31 + ∆x2

12 + ∆x2
32 + ∆x2

13 + ∆x2
23). (20)

The sum now includes all three conjugate pairs. For each conjugate pair the sum has a lower bound from Eq. (7), so
there is a lower bound on the summed uncertainty in the measured arms.

This argument only works if both masses in each spacecraft have r measured relative to a distant spacecraft, and
those spacecraft have r measured relative to each other; this is what allows the transverse component to be measured.
If only one of the two arms linked to a given spacecraft is working, the whole spacecraft is placed in a position
eigenstate along the direction of working arm and the uncertainty does not appear since its transverse position is not
measured. By the same token, if any one of the three arms is not working, the holographic noise need not appear in
the other two arms, because, like LIGO, the spacecraft can be placed in local spacetime states corresponding to small
uncertainty in the radial directions of the measured arms (see Fig. 4). The third arm collapses the wavefunction of
each spacecraft into a state where the uncertainty is unavoidably detected.

In the case of LISA the coherence time is the light travel time across an L ' 5 million kilometer LISA arm, about
17 seconds (or 60 millihertz frequency). The most sensitive frequency for LISA for gravitational waves is about ten
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millihertz so LISA is operating in the low-frequency, infrequent sampling regime. Setting aside factors of the order of
unity, the holographic noise signal has an amplitude spectrum given by Eq. (16) up to the high frequency turnover at
f ' 60 mHz due to LISA arm length. This should be compared with instrumental and environmental noise sources.
Above about 1 millihertz, with a long LISA data stream (of order a year say), the astrophysical gravitational-wave
background from white dwarf binaries[38] should not be confusion limited so the instrument noise dominates at
relevant frequencies. The reference design shot noise level is about[35, 37] hrms ' 4× 10−21/

√
Hz (in position units,

∆xrms ' 2× 10−9cm/
√

Hz).
Thus, using conservative estimates, the universal holographic noise is less than raw instrument noise in LISA by

about a factor of 20. With many sampling times it is nevertheless possible to estimate the instrumental noise sources
well enough to detect the presence of the smaller extra holographic noise signal. If the noise sources can be separately
estimated[39], after an observing time τ it is possible to detect the holographic noise if hH is less than the instrument
sources by a factor of up to ' (fτ/2)1/4, or about a factor of 40 after a few years. For the nominal estimate in Eq.
(16) that amounts to about a 2σ detection.

Detailed study of the effect requires separation of holographic noise from other noise sources. A full analysis
requires additional modeling and careful experimental design, but it is clear that a number of diagnostic options
exist. For example, the fact that the interferometer response from holographic indeterminacy is not the same as
that produced by gravitational waves can be seen simply from the fact that gravitational wave signals appear in
a Michelson setup (with only two arms working) and holographic signals do not. (With two arms, it becomes a
LIGO-like configuration where no measurement is made of one arm and the transverse degree of freedom is isolated
from the measured one, allowing the spacetime states of the spacecraft to spread in the unmeasured direction.) Even
with all three arms working there are distinguishable differences in the behavior of different noise sources: at low
frequencies, gravitational waves, which are area-preserving transverse modes, are invisible in a symmetric Sagnac
signal combination that measures the difference in total pathlength of beams travelling in the two opposite directions
all the way around the triangle[39, 40, 41, 42, 43, 44, 45, 46]. Holographic uncertainty still appears as noise in
the Sagnac signal since signals combined in one spacecraft are monitoring the transverse length of the opposite arm
including its indeterminacy. Most sources of instrument noise appear in both Michelson and Sagnac combinations,
again differing from gravitational wave and holographic signatures. The experimental signature of the holographic
noise is thus significantly different from other sources of noise or stochastic gravitational-wave backgrounds.

It seems likely that holographic noise is detectable with interferometers if holographic entropy bounds apply in
nature and manifest themselves according to the interpretation presented here. The character of the noise including
its spacetime correlations will reveal concrete signatures of the holographic nature of spacetime quantization. Detection
of the effect will lead to a natural interpretation of holographic entropy bounds in terms of a classical spacetime metric
emerging from Planck-scale waves, a construction that may allow a concrete contact of experiments with fundamental
theories of quantum gravity. Further study is warranted of new experiments capable of measuring holographic noise,
including more detailed modeling of the LISA response.

I am grateful to P. Bender for useful comments on details of LISA system design.
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