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ABSTRACT

Abundance analyses from high-resolution optical spectra are presented for 19

Type II Cepheids in the Galactic field. The sample includes both short-period

(BL Her) and long-period (W Vir) stars. This is the first extensive abundance

analysis of these variables. The C, N, and O abundances with similar spreads

for the BL Her and W Vir show evidence for an atmosphere contaminated with

3α-process and CN-cycling products. A notable anomaly of the BL Her stars is

an overabundance of Na by a factor of about five relative to their presumed initial

abundances. This overabundance is not seen in the W Vir stars. The abundance

anomalies running from mild to extreme in W Vir stars but not seen in the

BL Her stars are attributed to dust-gas separation that provides an atmosphere

deficient in elements of high condensation temperature, notably Al, Ca, Sc, Ti,

and s-process elements. Such anomalies have previously been seen among RV

Tau stars which represent a long-period extension of the variability enjoyed by

the Type II Cepheids. Comments are offered on how the contrasting abundance

anomalies of BL Her and W Vir stars may be explained in terms of the stars’

evolution from the blue horizontal branch.

Subject headings: stars:abundances – stars:AGB and post-AGB – stars: vari-

ables:other (RVTauri)
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1. Introduction

Wallerstein (2002) remarks that Type II Cepheids “include most intrinsic variables with

periods between 1 and about 50 days, except for the classical Cepheids and the shortest semi-

regular variables of type M.” These bounds on the periods place the Type II Cepheids in

the instability strip between the RR Lyrae stars at the short period limit and the RV Tau

variables at the long period limit. Type II Cepheids fall into two classes: BL Her stars with

periods of 1 to 5 days and the W Vir stars with periods longer than about 10 days with

an indistinct boundary at about 20-30 days separating these stars from the RV Tau stars.

Kraft (1972) drew attention to the period gap (6 to 9 days) between the BL Her and W Vir

stars in globular clusters.

This paper is devoted to abundance determinations of field Type II Cepheids. Com-

positions of these stars have received scant attention from spectroscopists despite hints of

unusual compositions. Oddly, neither W Vir nor BL Her, the two prototypes, have been

subjected to a modern analysis. Quantitative spectroscopy based on modern model atmo-

spheres and CCD spectra seems to be limited to TX Del (Andrievsky et al. 2002)1 ST Pup,

a star with RV Tau-like abundance anomalies (Gonzalez & Wallerstein 1996), and the C-rich

stars V553 Cen and RT TrA (Wallerstein & Gonzalez 1996; Wallerstein et al. 2000). Model

atmosphere analyses based on image-tube photographic spectra were reported for BL Her

(Caldwell & Butler 1978), κ Pav (Luck & Bond 1989) and AU Peg (Harris, Olszewski, &

Wallerstein 1984). Curve of growth analyses and photographic spectra provided abundance

estimates for TW Cap (Anderson & Kraft 1971), W Vir (Barker et al. 1971), and κ Pav

(Rodgers & Bell 1963, 1968). This very mixed bag of abundance estimates is an inadequate

basis from which to draw conclusions concerning the evolution of Type II Cepheids and other

potential origins for abundance anomalies.

The principal prior indication of an anomalous composition for Type II Cepheids con-

cerns the reported deficiency of the s-process elements (relative to the iron abundance) –

see Rodgers & Bell (1963, 1968), Barker et al. (1971) and especially Luck & Bond (1989).

Our interest was driven in part by this indication, but also by the lack of a thorough study

of field Type II Cepheids, and finally by their close relationship to the RV Tau stars for

which abundance anomalies exist. The principal anomaly for some RV Tau stars is one in

which the atmosphere is deficient in those elements that first condense into grains as gas is

cooled, i.e., there has been a separation or winnowing of dust from gas and accretion of gas

by the star (Giridhar et al. 2005). An apparently rarer anomaly is one in which elements

with a low first ionization potential are underabundant (Rao & Reddy 2005). Other RV

1Andrievsky et al. identified TX Del as a first-overtone Type I Cepheid - see below.
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Tau stars have a normal composition. There is ample evidence that the W Vir and RV Tau

stars have much in common. For example, photometry of Type II Cepheids and RV Tau

stars in the LMC shows clearly that the RV Tau stars and the Type II Cepheids define a

common Period-Luminosity-Color relation (Alcock et al. 1998). Given this commonality,

the question naturally arises – What abundance anomalies are shown by the BL Her and W

Vir stars and are those anomalies similar to those shown by the RV Tau stars?

The observations and abundance analyses of 19 Type II Cepheids are described in

Section 2. Results for the individual stars and remarks on their classification as Type II

Cepheids are provided in Section 3. Discussion of the possible anomalous abundances and

their relation to the prior evolution of the stars and to other processes is provided in Section

4. Brief remarks on the spectroscopic calibration of photometric measurements of metallicity

are given in Section 5. Concluding remarks are offered in Section 6.

2. Observations and Analyses

The program stars were observed with the W.J. McDonald Observatory’s 2.7m Harlan J.

Smith reflector and the CCD-equipped ‘2dcoudé’ spectrograph (Tull et al. 1995) in observing

runs in 2004 and 2005. A spectral resolving power R = λ/∆λ ≃ 60, 000 was used and a

broad spectral range was covered in a single exposure.

Spectra were rejected if they showed line doubling, markedly asymmetric lines, or strong

emission in the Balmer lines. It is presumed that the spectra not showing these characteristics

represent the atmosphere at a time when standard theoretical models may be applicable.

This presumption should be tested by analysis of a series of spectra taken over the pulsational

cycle. This remains to be done but we have analysed three stars using spectra taken at

different phases and obtained consistent results. The program stars and dates of observation

are listed in Table 1.

The abundance analyses were performed as described in our earlier papers on the RV Tau

variables. Atmospheric parameters are determined from the Fe i and Fe ii lines by demanding

excitation and ionization equilibrium, and that the iron abundance be independent of the

equivalent width. The adopted parameters listed in Table 1 were determined using Kurucz

model atmospheres and a normal helium abundance (He/H = 0.1). The full abundance

analysis used a Kurucz atmosphere with the parameters in Table 1. Abundances are referred

to the recommended solar photospheric abundances given by Asplund, Grevesse, & Sauval

(2005). Table 1 shows the anticipated average difference in atmospheric parameters (Teff , log

g) between the BL Her and W Vir stars: (Teff , log g) = (5970,1.4) and (5380, 0.6) for the
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BL Her and W Vir stars, respectively.

3. The Program Stars

Harris (1985) provided what is regarded as the reference catalog of Type II Cepheids.

His principal criterion for distinguishing a Type II from a Classical (Type I) Cepheid was

distance from the Galactic plane (|Z|). Our selection of stars was based on his catalog but

includes some recent discoveries. Various photometric indices extracted from the light curves

have been proposed as distinctive marks of a Type II or a Type I Cepheid but the distinction

remains tricky, as many authors remark. In addition, longer period Type II Cepheids overlap

in pulsational properties (i.e., period and luminosity) with the RV Tau variables. Therefore,

not only must population type be examined but variable type too. In the following text,

we comment on the our selection of Type II Cepheids and remark on those with RV Tau

proclivities.

In this paper, the distinction between a BL Her and a W Vir variable is maintained; the

reasons for this will become obvious when the compositions are presented. Here, a BL Her

variable is one with a pulsation period of four days and shorter, and a W Vir variable is a

star with a period of 11 days or longer. Four stars in the sample are of intermediate period

with two judged by composition to be BL Her stars and two W Vir stars.

The stars are discussed in order of increasing pulsation period.

BX Del: BX Del with an estimated |Z| of 0.3 kpc was listed as a Type II Cepheid by

Harris (1985). The metallicity [Fe/H] = −0.2 places BX Del at about the upper limit for

thick disk stars (Reddy et al. 2006).

VY Pyx: This variable was identified as a Type II Cepheid by Sanwal & Sarma (1991).

The composition shows similarities with that of BX Del.

BL Her: This Type II Cepheid is the prototype of the subclass of the shorter period

variables.

SW Tau: The light curve of this bright BL Her star is that of a Type II Cepheid.

The metallicity, [Fe/H] of +0.2, places SW Tau as the most metal-rich star in our sample.

SW Tau is C-rich with the C i lines strong by inspection (Figure 1). This figure shows a

portion of the spectrum of SW Tau, IX Cas (a very C-poor star), CC Lyr (a star of normal

C abundance but having an extreme Fe-deficiency), and BL Her. The four stars have similar

atmospheric parameters and, therefore, to first order the variations in the strength of a given

line from star-to-star reflect abundance differences between the stars.
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AU Peg: AU Peg is a single-lined spectroscopic binary (Harris, Olszewski, & Waller-

stein 1984) with an orbital period of 53.3 days. Harris et al. argue that the secondary is a

more massive compact object. A feature of AU Peg is that it lies close to or just beyond

the red edge of the instability strip (Harris et al 1984; Vinkó. Szabados, & Szatmáry 1993).

Presently, AU Peg is close to filling its Roche lobe and mass transfer between the two stars

almost certainly occured at an earlier time. Dust, as indicated by an IR-excess (McAlary &

Welch 1986), surrounds the binary. Outflow from the system is suggested by the appearance

of P Cygni-like feature accompanying AU Peg’s Hα profile (Vinkó et al. 1998).

DQ And: Harris (1985) listed this star as a Type II Cepheid on the basis of the

estimated distance from the Galactic plane: |Z| = 0.6 kpc. Balog, Vinkó, & Kaszás (1997),

put |Z| at 2.3 kpc. The radial velocity of−231 km s−1 (Harris &Wallerstein 1984) is certainly

not that expected of a Pop. I star. However, the Baade-Wesselink radius puts DQ And on

the period-radius (P-R) relation defined by Classical Cepheids (Balog et al. 1997). The star

is here considered to be of Type II.

UY Eri: With a [Fe/H] of −1.8 and a radial velocity of 171 km s−1 (Harris & Waller-

stein 1984), UY Eri is obviously a Type II Cepheid and member of the Galactic halo. Its

composition is typical of a halo star with [Fe/H] of −1.8 (McWilliam 1997).

TX Del: Harris (1985) includes the star in his table of Type II Cepheids. Harris &

Welch (1989) found that the star is a single-lined spectroscopic binary with an orbital period

of 133 days. Schmidt et al. (2005) show that the star has varied in mean brightness, a

characteristic not associated with a Classical Cepheid. Andrievsky et al. (2002) consider

TX Del to be a first-overtone Classical Cepheid.2 Although this identification may ease an

explanation for the star’s solar metallicity, it places this Pop. I object more than 1 kpc from

the Galactic plane. The Baade-Wesselink radius (Balog et al. 1997) places TX Del, as it

does DQ And, on the P-R relation for Classical Cepheids. An explanation as a runaway star

seems unlikely given that TX Del is a binary. We consider TX Del to be a Type II Cepheid

and recall, as did Harris & Welch, the association of Pop. II characteristics and near-solar

metallicity held by metal-rich RR Lyrae stars.

IX Cas: A Type II star according to Harris (1985) who gave |Z| as 0.7 kpc. This is

the primary of a spectroscopic binary (Harris & Welch 1989). The Baade-Wesselink radius

puts the star on the Type II P-R line. The pulsation period of 9.2 days is long for a BL Her

star but the high Na abundance which distinguishes BL Her from W Vir stars places this

star among the BL Her class. The outstanding mark of IX Cas’s spectrum is the weakness

2Our derived abundances are in quite good agreement with those by Andrievsky et al. (2002); the mean

difference in absolute abundance from 12 elements in common is −0.15 dex.
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of the C i lines. Figure 1 shows that the C i lines typically used in our analyses are weak or

absent from the spectrum of IX Cas. Lines near 9050 Å which are normally too strong for

use in the abundance analysis had to be used in the case of IX Cas. The low C abundance

is reminiscent of values found for the weak G-band giants (Sneden et al. 1978).

AL Vir: AL Vir is a Type II Cepheid according to distance from the Galactic plane

(Harris 1985), light curve (Schmidt et al. 2004a), He i 5876 Å emission (Schmidt et al.

2004b), and the Baade-Wesselink radius (Balog et al. 1997). AL Vir with a pulsation period

of 10.3 days marks the transition from BL Her to W Vir stars in our listing of variable by

increasing period. The composition (particularly the lack of a Na overabundance) suggests

AL Vir is a W Vir star.

AP Her: Harris (1985) considered AP Her a Type II Cepheid on the basis of the es-

timated |Z| of 0.4 kpc. At [Fe/H] ≃ −0.8, this may be considered a thick disk star. The

literature on Type II Cepheids is peppered with remarks about the difficulties in distinguish-

ing between Type I and II Cepheids. This is well illustrated by Schmidt et al. (2004a) who,

in a discussion of stars with large period changes, put AP Her with stars that ‘are likely type

II Cepheids’ but later place AP Her among the variables ‘for which the predominance of the

evidence indicates type I classification’. The [Fe/H] confirms that AP Her is not a Classical

Cepheid.

CO Pup: The literature on this star is extremely sparse. Following Harris’s (1985)

listing of CO Pup as a Type II Cepheid, the star has featured in just five papers (according

to SIMBAD), all providing or regurgitating photometry with not a single spectroscopic

observation reported. There appears to be confusion as to whether it is a Type I or II star.

Our estimate of the intrinsic [Fe/H] of −0.6 suggests that it is not a Classical Cepheid.

SZ Mon: This Cepheid is not listed by Harris (1985). Apparently, it was assumed to

be a Classical Cepheid. This assumption was rejected by Stobie (1970) and Lloyd Evans

(1970), largely on the grounds that alternating minima are of different depths. The star is

either a W Vir or a RV Tau variable. If the latter description is correct, the fundamental

period is approximately 32.6 days. SZ Mon has a marked infrared excess (McAlary & Welch

1986).

W Vir: The prototypical Type II Cepheid with an extensive record of published pho-

tometric and spectroscopic observations. As befits the prototype, its composition is broadly

representative of the other W Vir stars. Our results are in fair accord with the first results

given long ago by Barker et al. (1971).

MZ Cyg: Type II according to Harris (1985) with |Z| of 0.9 kpc. The light curve

(Schmidt et al. 2004a) is unlike that of a Classical 21 day Cepheid. Emission in Hα and
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He i 5876 Å occuring coincident with the bump on the rising light curve is taken to be a

discriminant between Type II and Type I Cepheids. Schmidt et al. (2004b) report such

emission for MZ Cyg and thus confirm its designation as a Type II Cepheid. The [Fe/H]

reminds one of the metal-rich RR Lyraes with Pop. II kinematics.

CC Lyr: Harris (1985) estimated a |Z| of 2.7 kpc and, hence, identified it as a Type II

Cepheid. Photometry shows alternating minima of different depths, a characteristic of RV

Tau variables (Schmidt et al. 2004a). CC Lyr has a strong infrared excess, also invariably

a characteristic of RV Tau variables. This star’s spectrum betrays an obvious signature

of dust-gas separation, a mark of warm RV Tau variables. CC Lyr’s spectrum contains

few lines, a reflection of the fact that the atmosphere is highly depleted in many elements

including Fe. Figure 1 shows C i lines but not the Fe i and Ni i lines seen in spectra of the

other three stars. The intrinsic metallicity is about [A/H] ≃ −0.8 as indicated by the S and

Zn abundances which we assume are undepleted. The measured iron abundance is [Fe/H]

≃ −4 which corresponds to a dust-gas depletion of more than three orders of magnitude!

RX Lib: Harris (1985) put RX Lib in his table; the estimated |Z| was 3.2 kpc. Earlier,

Harris & Wallerstein (1984) placed RX Lib in a category ‘Stars thought not to be Cepheids’

remarking that the type for this star is ‘uncertain’. Apparently, observations – spectroscopic

and photometric – have not been published since the mid-1980s on this star. Although the

type may be ‘uncertain’, RX Lib’s composition is similar to that of W Vir.

TW Cap: The metallicity, [Fe/H] = −1.8, and essentially a normal composition for a

halo star suffice to identify this as a Type II Cepheid. The star’s position in the P-R diagram

supports the Type II designation (Böhm-Vitense et al. 1974). Harris (1985) classified the

star thus on the basis of its estimated 2 kpc distance from the Galactic plane.

V1711 Sgr: Harris (1985) listed this star as a Population II Cepheid. In the limited

literature on V1711 Sgr, there is a lone dissenting voice about the classification. Berdnikov

& Szabados (1998) find a difference in amplitude between their light curve and that obtained

about two decades earlier by Dean et al. (1977) and suggest that the star may be a SRd

variable. Presence of an IR excess (Lloyd Evans 1985; McAlary & Welch 1986; Smith 1998)

and a composition bearing the signature of dust-gas separation (see below) together with

the long period suggest that the star may be related to the RV Tau variables. We follow

Harris and include the star among our sample of Type II Cepheids. The period of 28.56 days

reported Berdnikov & Szabados (1998) is adopted and not the 30.5 days listed by Harris

(1985).
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4. Implications of the Chemical Compositions

4.1. The Evolutionary Context

Type II Cepheids in the instability strip above the horizontal branch have evolved from

stars on the blue end of the horizontal branch (BHB) where the stars are He-core burners.

Placement of a star on the horizontal branch following evolution to the tip of the first

red giant branch requires substantial mass loss by processes as yet unidentified. Seminal

calculations about Type II Cepheids were reported by Gingold (1974, 1976, 1977, 1985).

Gingold (1985, Figure 1) shows two evolutionary tracks starting from the BHB that may

bracket the origins of the Type II Cepheids. Figure 2 is an adaptation of Gingold’s figure.

The form of the track appears to depend principally on the mass of the envelope (relative

to the core mass) and weakly on the initial metallicity.

In the simpler of the two tracks, the blue horizontal branch star evolves to the red,

crosses the instability strip as a BL Her variable, and evolves up the AGB to endure thermal

pulses before leaving the AGB tip for rapid evolution to the blue across the instability strip

as a RV Tau star and a brief experience as as a post-AGB star. We refer to this type of

evolution as following a track-direct.

In the alternate path, a star from the more extreme blue part of the BHB evolves

to the red, crosses the instability strip to approach the AGB but experiences a structural

readjustment between the H and He shell burning shells that directs the evolutionary track

back to the blue. The star executes a ‘bluenose’ (Gingold’s parlance) involving two more

transits across the instability strip and returns to the AGB from which after increasing in

luminosity it can make its final departure across the instability strip to the blue as a post-

AGB star. This track makes four crossings of the instability strip: the first three with a

period representative of BL Her variables and the final one as a W Vir or RV Tau variable.

We refer to this type of evolution as following a track-bluenose.

In both evolutionary tracks, the luminosity difference between the earlier one or three

and the final crossings of the instability strip is the key to the period gap in the distribution

function of Type II Cepheids between the BL Her and W Vir variables. This distribution

necessarily depends on the time taken to transit the instability strip on each crossing (Gingold

1985) and on the rate of production of stars evolving along a track-direct and a track-

bluenose.

Metal-rich RR Lyraes discovered by Preston (1959) long posed a puzzle because metal-

rich low-mass stars after the He-core flash settle as He-core burning giants to the red of the

RR Lyrae gap, the so-called clump giants. A clump He-core burning giant evolves up the
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AGB where episodic thermal pulses begin at high luminosity. Such pulses are not predicted

to lead to excursions into the instability strip to the blue of the AGB (see Iben 1991 - his

Fig. 5 and Gingold 1985 - his Fig. 1). Taam, Kraft, & Suntzeff (1976) proposed that severe

mass loss would place giants with a low mass envelope away from the clump and on the

horizontal branch in or to the blue of the RR Lyrae gap. Subsequent evolution of these

horizontal branch stars produces a metal-rich BL Her or W Vir, as above. Gingold (1977)

also showed that even stars placed on the red horizontal branch would, if the envelope mass

were reduced sufficiently, evolve first to the blue. Taam et al. showed that kinematically the

metal-rich RR Lyraes were members of the old (now, thick) disk.

How thick-disk giants lose the required amount of mass (about 0.5M⊙ – Taam et al.

1976) and reduce their envelope to a few per cent of a solar mass is unknown. Observers

may speculate that the He-core flash that precedes He-core burning may lead in rare but

sufficient cases to internal violence and mass loss. This oft-invoked speculation has yet to

find a resonance in theoretical calculations – see recent reports by Deupree (1996) and Dear-

born, Lattanzio, & Eggleton (2006). In the absence of observationally confirmed theoretical

ideas on how severe mass loss is achieved, it is impossible to predict the changes of surface

composition expected of BL Her, W Vir, and RR Lyr stars relative to their initial (main

sequence) composition. Horizontal branch stars including RR Lyr variables must be affected

by the first dredge-up occuring at the base of the red-giant branch and by other subsequent

events such as the mass loss required to account for a star’s position on the horizontal branch.

Principal effects will be on C, N, and O, possibly He, and certainly Li, Be, and B.

Three BL Her stars in our sample (IX Cas, TX Del, and AU Peg) and the W Vir star ST

Pup (Gonzalez & Wallerstein 1996) are known spectroscopic binaries for which previous mass

transfer may have directed their primary star to the instability strip. Although other binaries

may lurk undetected in the sample, well observed stars like W Vir must, if accompanied by

a companion, have a very low velocity amplitude.

4.2. Observed composition and period

The BL Her stars and the W Vir stars occupy different positions along the evolutionary

tracks from the blue horizontal branch to the post-AGB departure from the AGB; the BL

Her stars are closest to the blue horizontal branch and the W Vir stars are presumed to

be leaving the AGB. In light of this difference in staging along the evolutionary tracks, we

distinguish the two classes in discussing their compositions.

The BL Her variables are stars with pulsation periods of four days or shorter plus TX
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Del and IX Cas, stars of intermediate period but with the signature of BL Her stars, i.e, an

overabundance of Na. The BL Her stars have on average a higher [Fe/H] than the W Vir

stars. The W Vir variables are stars with pulsation periods of greater than about 10 days

plus the intermediate period stars AL Vir and AP Her. Among the W Vir stars is CC Lyr

which, as noted above, has a composition indicative of severe dust-gas separation, a common

feature of RV Tau variables. Other W Vir stars offer indications of dust-gas separation and

some have light curves suggestive of RV Tau-like pulsations.

The compositions of the stars are given in Table 2 for the BL Her stars, Table 3 for the

intermediate period quartet, and Table 4 for the W Vir stars. In Figures 2 to 5 displaying

the results as [X/Fe] versus [Fe/H], the BL Her stars (including TX Del and IX Cas) are

represented by unfilled circles, the W Vir stars (including AL Vir and AP Her) by filled

circles. In addition to our sample, we plot the previously published results for the C-rich

BL Her stars – V553 Cen (Wallerstein & Gonzalez 1996) and RT TrA (Wallerstein, Matt,

& Gonzalez 2000) – as unfilled squares, the W Vir stars ST Pup (Gonzalez & Wallerstein

1996) and κ Pav (Luck & Bond 1989) as filled triangles.

Studies of the kinematics of Type II Cepheids show that the examples in the solar

vicinity are primarily thick disk stars with an admixture of halo stars. Initial compositions

of thick disk and halo stars are now known as a function of metallicity. The thin and thick

disk do not have identical compositions as a function of metallicity (Bensby et al. 2005;

Reddy et al. 2006). The differences at a given [Fe/H] are not large. Of relevance to our

discussion is the fact that at a given [Fe/H] the scatter in initial abundance ratios, i.e.,

[X/Fe], is very small for both the thin and the thick disk, at least for the stars now in the

solar neighborhood (Edvardsson et al. 1993; Reddy et al. 2003, 2006). At a common low

[Fe/H], the composition of thick disk and halo stars appear to merge but the scatter in [X/Fe]

at a given [Fe/H] may be more significant for the halo population. Since our sample includes

just two halo stars, this scatter in composition, if real, is unimportant here.

The compositions of the variables are judged relative to their presumed initial compo-

sitions as inferred (usually) from their [Fe/H], but, an alternative is considered in the cases

where dust-gas separation is suspected.
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4.3. The BL Herculis variables

Our sample is augmented by published analyses of the BL Her C-rich variables V553 Cen

and RT TrA.3 Consideration of the C, N, and O abundances led Wallerstein and colleagues to

propose that the atmospheres of the two C-rich variables had been enriched in 12C from the

3α–process followed by operation of the H-burning CN-cycle. The high C abundances pointed

to the 3α-process. Operation of the CN-cycle was indicated by the high N abundances.

Measurement of the 12C/13C ratio for both stars gave results equal to the equilibrium value

for the CN-cycle, an indication that CN-cycling occurred following the 12C enrichment from

the 3α-process. A Na enrichment was attributed to proton capture on 22Ne occuring at the

time of H-burning. This combined operation of the H-burning CN cycle and the He-burning

3α-process and attendant reactions may account for the BL Her stars analyzed here. (The

halo variable UY Eri is not discussed further.)

Prior to a star’s transfer to the horizontal branch, the first dredge-up increased the sur-

face N abundance at the expense of the C abundance. The maximum possible N abundance

post dredge-up is obviously equal to the sum of the initial C and N abundances. Oxygen

is not predicted to be reduced by the dredge-up. The C and N abundances show clearly

that the first dredge-up has not been the primary influence on the stars’ surface abundances.

The C abundance for all but one star (IX Cas) equals or exceeds the initial abundance.

The N abundance except for IX Cas and DQ And exceeds by about 0.6 dex that predicted

by complete conversion of initial C and N to N. The N abundance is approximately that

expected by complete conversion of initial C, N, and O to N but the O abundance is not

depleted but has an abundance similar to or even slightly greater than the presumed initial

abundance. One star – SW Tau – is C-rich with a C/O ratio of about 3. A second – BL

Her – is borderline C-rich with C/O of 0.9. With the remarkable exception of IX Cas (C/O

= 0.005), SW Tau, and BL Her, the other BL Her stars have a C/O ratio in the range 0.1 to

0.4. The C, N, and O abundances signal the presence of 3α-process and CN-cycle products.

A sodium overabundance is an obvious feature of the eight BL Her variables (Figure 3).

The [Na/Fe] ratio over the interval −0.5 < [Fe/H] < +0.2 is independent of [Fe/H] with a

spread of about 0.5 dex and a mean [Na/Fe] = +0.73, a substantial increase over the ratio

of +0.12 for the thick disk (Reddy et al. 2006). Wallerstein and colleagues obtained a Na

overabundance for their pair of C-rich BL Her variables: [Na/Fe] = +0.74 (RT TrA) and

+0.43 (V553 Cen). The mean [Na/Fe] for the W Vir stars excluding the halo star TW Cap,

and the stars (ST Pup, CC Lyr, and V1711 Sgr) affected by dust-gas separation is [Na/Fe]

3Other C-rich variables listed by Lloyd Evans (1983) have periods of 20 days or longer. None have been

subject to quantitative analysis.
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= +0.23, a value consistent with the ratio of unevolved thick disk stars.

The Al abundances of the BL Her stars give a mean [Al/Fe] = +0.13, a value confirmed

by the pair of C-rich variables. The mean [Al/Fe] is slightly less than that of thick disk stars

for which Reddy et al. (2006) gave [Al/Fe] = +0.30. The mean [Na/Al] of the BL Her stars

is +0.60 but the presumed initial ratio for the thick disk stars is −0.18, a factor six change

in the Na/Al ratio occuring in the course of evolution to a BL Her variable. The W Vir

stars show a wide range in Al abundance which we attribute to dust-gas separation but the

upper limit in the range is consistent with the ratio for thick disk stars.

The α-elements, here Mg, Si, S, Ca, and Ti, conform to expectation. At thick disk

metallicities, the ratios [α/Fe] are positive for the dwarfs: [α/Fe] = +0.32 (Mg), +0.22 (Si),

+0.18 (Ca), and 0.21 (Ti) at [Fe/H] ≃ −0.5 (Reddy et al. 2006). (Sulphur was not examined

by Reddy et al. but a value for [S/Fe] close to those of Mg and Si is expected.) Thick disk

stars with [Fe/H] > −0.3 have thin disk abundances with a decline of [α/Fe] to zero at

about [Fe/H] = 0. The observed [α/Fe] ratios versus [Fe/H] are shown in Figure 4. They

match expectation well for the composite index from Mg, Si, and S. The observed [Ca/Fe]

for [Fe/H] < 0 stars is as expected but for the low [Ca/Fe] for AU Peg. AU Peg also shows

a low [Ti/Fe].

Iron-group abundances (here, Cr, Mn, and Ni) shown in Figure 5 as a function of [Fe/H]

follow well the trends expected of disk stars (Reddy et al. 2006): [Cr/Fe] ≃ [Ni/Fe] ≃ 0

and [Mn/Fe] ≤ 0. Two of the stars – BX Del and TX Del – appear to be Sc-poor relative

to expectation. Both are also Ti-poor. The Zn abundances follow expectation, i.e., [Zn/Fe]

≃ 0, with the possible exception of DQ And.

Abundances of heavy elements in Type II Cepheids have occasioned considerable com-

ment beginning with Rodgers & Bell’s (1963) analysis of κ Pav where they reported an

underabundance by about a factor of seven of s-process elements (relative to the Fe abun-

dance). A new analysis of κ Pav was made by Luck & Bond (1989) who found [s/Fe] = −0.4

at [Fe/H] = 0.0. The s-process contribution is here compiled as a simple mean of the derived

Y, Zr, La, and Ce abundances. Neodymium with roughly equal s- and r-process contribu-

tions at the solar composition (Burris et al. 2000) was not included but its inclusion would

not alter any conclusions. The expected [s/Fe] for the thick disk is close to zero. Figure

6 shows that this expectation is found for five of our seven BL Her variables, and C-rich

V553 Cen, and RT TrA. Three BL Her stars – BX Del, VY Pyx, and TX Del – have [s/Fe]

≃ −0.5, a value far from the range shown by thick (and thin) disk unevolved stars. There

is a tantalising hint that the [s/Fe] values offer a bimodal distribution. The low-s stars

are discussed further in the next section on the W Vir stars for which underabundance of

s-process elements is common.
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Europium is taken as the sole measure of the r-process contribution to the stellar com-

position; Eu in the solar composition is about 97% r-process (Burris et al. 2000).4 Europium

abundances for the BL Her variables are shown in Figure 7. A tight relation is seen with

a tendency for [Eu/Fe] to increase with decreasing [Fe/H]. This relation mimics that for

the thick disk but is displaced at a given [Fe/H] to lower [Eu/Fe] by about 0.2 dex. One

presumes that this is an artifact of the analysis and not a consequence of stellar evolution.

Among the W Vir stars, dust-gas separation is unmistakably severe in the case of CC

Lyr and suspected in several other cases. The signatures of severe dust-gas separation are

[S/Fe] and [Zn/Fe] ratios in excess of their normal ratios for thick disk stars of about +0.3

and 0.0, respectively, and negative ratios for [Al/Fe], [Sc/Fe], and [Ti/Fe]. In mild cases, the

effects of separation are limited to the elements of highest condensation temperature (Al, Sc,

and Ti) and, then [Al/Fe], [Sc/Fe], and [Ti/Fe] show negative values but [S/Fe] and [Zn/Fe]

have normal values. In our sample of BL Her variables, none show the signature of severe

dust-gas separation. The trio with a low [s/Fe], also a signature of depletion of the highest

condensation temperature elements, provide weak hints of depletion of Al, Sc, and Ti.

In summary, the composition of the BL Her variables, as suggested by Wallerstein and

colleagues from their analyses of the C-rich pair of variables, has been set by mixing with

the products of 3α- processing, CN-cycling, and p-capture on 22Ne. Other abundance ratios

relative to Fe have their expected values with the exception of low s-process abundances for

a minority of the group.

4.4. The W Virginis Variables

The W Vir stars as a class show evidence in their C, N, and O abundances for the

presence of 3α-process and CN-cycle products in their atmosphere but not the Na overabun-

dance seen for the BL Her variables. A signature of weak dust-gas separation seems present

in some stars with a clear signature of severe separation present for CC Lyr and ST Pup

(Gonzalez & Wallerstein 1996). The sample of W Vir stars has on average a lower (intrinsic)

[Fe/H] than the sample of BL Her stars.

The first dredge-up is clearly not the defining part of the evolutionary history. For four

stars, although the N abundance may be equal to the sum of the initial C and N abundances,

4Luck & Bond adopted the mean of their measured elements from La to Eu as an indicator of the r-

process. This choice includes La and Ce which in the solar mixtures are about 80% s-process and only 20%

r-process.
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the C abundance either remains equal to the initial abundance or exceeds it by as much as 0.8

dex. In two cases, the N abundance exceeds the sum of the initial C and N abundances. The

C/O ratios range from about 2 for MZ Cyg and SZ Mon to 0.06 for W Vir. Although lacking

a counterpart to IX Cas with its low C abundance, the spread in C, N, and O abundances

is similar to that of the BL Her variables.

The striking difference in the [Na/Fe] ratios of the BL Her and W Vir stars (Figure

3) is a clue to their different origins. Setting ST Pup and V1711 Sgr aside, the [Na/Fe] of

the W Vir stars appears independent of [Fe/H] and pulsation period, and consistent with

that found for the thick disk dwarfs but significantly less than that of the BL Her variables.

The exceptions, both with the high [Na/Fe] representative of the BL Her variables, are ST

Pup and V1711 Sgr. ST Pup (Gonzalez & Wallerstein 1996) is seriously affected by dust-

gas separation such that neither the present Fe and nor most likely also the Na abundance

are unaffected. It is impossible at present to correct the observed [Na/Fe] for the effects of

dust-gas separation but a downward revision is certain. V1711 Sgr may be a Na-rich W Vir

star but distortion of the [Na/Fe] ratio by dust-gas separation effects cannot be excluded.

Although V1711 Sgr is not as dramatically affected by dust-gas separation as ST Pup, the

[Na/Fe] may have been increased sufficiently (say, by 0.3 dex) to place it among the BL Her

stars.

Aluminum is in the main less abundant in W Vir than in BL Her stars (Figure 3). All

W Vir stars show a [Al/Fe] less than that of the thick disk dwarfs. ST Pup’s positive [Al/Fe]

is anomalous for a star strongly affected by dust-gas separation (see below).

Abundances of the α-elements (Figure 4) show a greater spread for [Ca/Fe] and [Ti/Fe]

versus [Fe/H] than is the case for the BL Her stars. The spread is greater for [Ti/Fe] than

for [Ca/Fe] and almost absent for [Mg/Fe], [Si/Fe], and [S/Fe]. The appearance of negative

[Ca/Fe] and [Ti/Fe] is consistent with the operation of dust-gas separation.

The r-process element Eu defines a similar [Eu/Fe] versus [Fe/H] relation for the BL

Her and W Vir stars which incorporates the two C-rich BL Her stars (Figure 6).

The s-process abundances show apparently bimodal values of [s/Fe] of about 0.0 or

−0.7, a tendency similar to that provided by the BL Her stars. Given that [s/Fe] ≃ 0.0 is

representative of the thick disk, the anomalous stars are those with negative [s/Fe] values.

As noted above, the s-poor stars have negative [Ti/Fe] and not the positive values expected

of thick disk stars and negative [Sc/Fe] with values of about −1 in four cases. (The W Vir

star κ Pav, as analysed by Luck & Bond (1989), is a typical s-process deficient member of

the class.)

Longer-period W Vir stars and shorter-period RV Tau stars overlap in period and,



– 15 –

therefore, it of interest to comment on similarities and differences in composition. The C, N,

and O abundances of the two groups have very similar ranges and mean values (Giridhar et

al. 2005). Of especial interest in the [Na/Fe] ratio of RV Tau stars. Since many RV Tau stars

show a Fe-depletion from dust-gas separation, we compare not [Na/Fe] but [Na/Zn] because

Zn is generally not depleted and [Zn/Fe] ≃ 0 in unevolved stars. We compile [Na/Zn] for

RV Tau stars from results given by Giridhar et al. (2005) and earlier papers in that series.

The mean value from 21 stars is [Na/Zn] = +0.17 ± 0.03 to be compared with [Na/Zn]

= +0.20 for our W Vir stars and +0.85 for our BL Her stars. Excluded from our sample of

RV Tau stars are two stars with the high [Na/Zn] characteristic of the BL Her stars, CE Vir

where the abundance anomalies are not due to dust-gas separation (Rao & Reddy 2005),

and EP Lyr where the dust-gas separation is so severe that Na is somewhat depleted. The

conclusions are that the distribution of [Na/Zn] ratios (i.e., the [Na/Fe] in the absence of

dust-gas separation) of the W Vir and the RV Tau stars are identical with the majority

showing no sodium enrichment but a minority of perhaps 10 per cent showing the sodium

enrichment of the BL Her stars.

4.5. Accounting for the anomalies

Introduction to the stellar surface of products of internal nucleosynthesis is a well known

phenomenon accounting in principle for a surface composition differing from the presumed

initial composition. The classic case must be that of those S stars with Tc present at the

surface. The qualifying phrase ‘in principle’ recognises that the details of the internal nucle-

osynthesis and dredge up to the surface may not yet be understood. Often, the particular

processes of nucleosynthesis involved are identifiable and it is the modes of transport of the

nucleosynthetic products to the atmosphere that are in doubt.

Such would appear to be the case for the BL Her stars. The atmospheres are contami-

nated, as Wallerstein and colleagues first showed from their analyses of two C-rich BL Her

stars, with 3α-processed material followed by exposure to the CN-cycle. This recipe which

accounts in principle for the C, N, O, and Na abundances of the BL Her stars has yet to be

incorporated into a stellar evolution model that ties the nucleosynthesis and mixing to events

in the life of a low-mass star. The sole remaining abundance anomaly is the appearance of

a low [s/Fe] in three stars. There are hints of anomalously low Ca, Ti, and Sc in a minority.

Such hints lack an obvious nucleosynthetic explanation, even in principle.

In searching for the origin of the abundance anomalies of the Population II Cepheids, one

may begin with the Na abundance difference between the W Vir and BL Her stars. Recall

that the W Vir stars are considered to have evolved from BL Her stars. Sodium destruction
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is highly unlikely to have occured along the track between the BL Her and W Vir phases.

Thus, it seems clear that the W Vir stars observed here cannot be direct descendants of

the BL Her stars observed here; V1711 Sgr may be an exception. Since, sodium production

is highly unlikely to be a feature of the short evolutionary phase from the BHB to the

instability strip, the overabundance of sodium in BL Her stars must be attributed to the as

yet unknown processes involving mixing and mass loss that placed the BL Her progenitors

on the BHB. Continuing this thought we conjecture that the processes which placed the W

Vir progenitors on the BHB did not provide for a sodium overabundance. The unknown

processes in both cases involved 3α-process and the CNO-cycles to similar degrees. Given

that the distributions of C, N, and O abundances are similar for BL Her and W Vir stars,

the difference involving the unknown processes would appear to have been the temperature

at which the CNO-cycles operated. Sodium production by proton capture on 22Ne occurs

at ‘high’ but not at ‘low’ temperatures. We speculate that mixing and mass loss involving

CNO-cycling at high temperatures placed the star near the red end on the BHB with the

star evolving along a track-direct to become a Na-rich BL Her star. When CNO-cycling at

low temperatures was involved, the star was deposited at the blue end of the BHB. This

disposition of progenitors along the BHB and evolution of BHB stars to BL Her and W Vir

stars is discussed further in Section 6.

The anomalies common among W Vir stars but uncommon among BL Her stars are very

unlikely to have a nucleosynthetic origin. Anomalies include the low [Al/Fe], [Ca/Fe], [Sc/Fe],

[Ti/Fe], and [s/Fe] ratios. A catalog of explanations for the anomalies includes the standard

invocation of errors in the atmospheric parameters, non-LTE effects, the inapplicability of

standard atmospheres invoking hydrostatic equilibrium to a low density atmosphere subject

to a pulsation, non-LTE overionization of atoms and ions by Lyman continuum photons

from a shock wave in the pulsating atmosphere, substantial helium enrichment leading to

a systematic overestimate of (say) [Fe/H] but to small(er) effects on ratios such as [s/Fe],

and reduction of the abundance of refractory elements by dust-gas separation in the upper

atmosphere or in a circumbinary disk.

Luck & Bond (1989) showed that errors in the atmospheric parameters cannot erase the

low [s/Fe] values, and by extension of their arguments, other anomalous underabundances

(relative to Fe) cannot be attributed to injudicious choices of atmospheric parameters. Non-

LTE effects computed for standard atmospheres deserve examination but are unlikely to

account for example for differences in abundance anomalies between and within the samples

of BL Her and W Vir variables where stars of similar atmospheric parameters can differ in

the degree of their anomalies.

The possibility of Lyman continuum emission leading to departures from LTE ionization
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equilibrium was mentioned by Barker et al. (1971) following a suggestion by Wallerstein,

and discussed in more detail by Luck & Bond (1989). Since the observable heavy elements

from Y to Eu are present in these atmospheres predominantly as singly-charged ions, all with

ionization potentials less than ionization potential of H, the idea has an appeal. Emission in

Balmer Hα and the He i 5876 Å lines is a feature of the rising branch for the longer-period

Type II Cepheids for which s-process and other underabundances are common. The fact

that Eu does not show an abundance scatter like the s-process elements is a strike against

the proposal. It also does not account for the underabundance of Al; Al+ has an ionization

potential of 18.83 eV and Lyman emission at 18.8 eV must be weak and, certainly, Mg present

in the atmosphere as Mg+ with an ionization potential of 15.04 eV is never underabundant.

The idea might be given a stringent test by observing a star at intervals throughout its

pulsation and seeing if the derived composition correlates with the presence of a shock as

revealed by line splitting. The weight of the evidence is that emission from the shock wave

is not a major source of the abundance anomalies.

Addition of extensive amounts of 3α-processed and CN-cycled material might foster the

idea that the reported abundance anomalies are a consequence of analysing the spectrum of

a He-rich atmosphere on the assumption that it has a normal He abundance. To first order,

this incorrect assumption results in [X/Fe] ratios close to the actual values but a [Fe/H]

that is overestimated. Luck & Bond (1989) speculated that a low [s/Fe] ratio, a feature

of normal stars of [Fe/H] < −2, was being associated with a higher [Fe/H] because of an

overlooked helium enrichment. The reader is referred to their paper for arguments leading

to the conjecture’s rejection. Here, we note their point that the kinematics of the W Vir

stars show that they belong to the thick disk and not to the very metal-poor halo. Yet, a

thorough attempt to measure the He/H ratio of the metal-rich variables would be welcomed.

Dust-gas separation is evident in RV Tau variables (Giridhar et al. 2005; Maas, Van

Winckel, & Waelkens 2002) except for the metal-poor and cool variables. In oxygen-rich

gas, the heavy elements are among the first to be removed from the gas as cooling occurs.

The demonstration by Alcock et al. (1998) that the RV Tau and Type II Cepheids in the

LMC define a single period-luminosity-color relation suggests that the longer period Type

II Cepheids in our sample may be susceptible to dust-gas separation. Earlier, we noted

that several of our stars show RV Tau-like photometric behavior and might be promoted

from W Vir to RV Tau status. The signature of dust-gas separation, previously reported

for ST Pup (Gonzalez & Wallerstein 1996), is strikingly evident here for CC Lyr where the

spectrum contains lines of elements having a low condensation temperature (TC), i.e., lines

of C i, N i, O i, Na i, S i, and Zn i, but lines of higher condensation temperature are poorly

represented or not detected at all. Severe underabundances are measured, e.g., [Mg/H] ≃

[Fe/H] ≃ −4 but [S/H] ≃ [Zn/H] ≃ −0.5. Figure 7 constructed for CC Lyr shows the
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characteristic pattern for a strongly affected RV Tau variable; the abundances [X/H] decline

smoothly with increasing condensation temperature. The Mg and Fe deficiencies of CC Lyr

are more extreme than any reported previously for a RV Tau variable. Lines of the elements

normally the most depleted – Al, Ca, Sc, and Ti, for example – could not be detected

in our spectra. CC Lyr has a considerable infrared excess from circumstellar dust. Its Fe

deficiency is typical of values reached in the warm post-AGB stars known to be spectroscopic

binaries (Van Winckel, Waelkens, & Waters 1995). One supposes that CC Lyr may also be

a spectroscopic binary. ST Pup, a W Vir star with a strong infrared excess and signatures

of dust-gas separation, was shown by Gonzalez & Wallerstein (1996) to be a spectroscopic

binary with an orbital period of 410 days.5

The signature of dust-gas separation seems present in other W Vir stars, all of which

show negative [Sc/Fe] values. Since these stars are likely thick-disk members of different

initial [Fe/H], we correct the derived abundances [X/H] for the initial [X/H] of the thick

disk (Reddy et al. 2006) before presenting the TC versus [X/H] plots; all corrections are

small. Figure 8 shows the [X/H] versus TC plots for CO Pup and W Vir. In such cases, as in

the examples of mildly affected RV Tau stars, the scatter in [X/H] at a given condensation

temperature may be significant. This scatter is attributed to the understandable failure of

the condensation temperature to represent fully the complex processes of dust formation

and accretion of gas but not dust by the star. The decrease in [X/H] at the highest TC is

clear for CO Pup. For W Vir, this signature of dust-gas separation is critically dependent

on the Sc abundance. Here and in Figures 9 and 10, the s-process elements are denoted by

unfilled circles. Lack of a clear separation between the unfilled and filled circles referring to

elements of similar TC show that the s-process products did not mix to the surface in the

time that these W Vir stars were on the AGB. A clearer example of dust-gas separation is

provided by V1711 Sgr with Al, Ti, and Sc, all underabundant by more than one dex relative

to Fe (Figure 9). The signature of dust-gas separation also seems evident for SZ Mon, the

W Vir star with a RV Tau-like light curve and a strong infrared excess (Figure 9). The

evidence seems fair for MZ Cyg but weaker for RX Lib (Figure 10) where it relies on the low

Sc abundance. In all cases, the s-process elements are underabundant, as expected when

Al, Sc, and Ti are underabundant. Although several key elements have not been measured

for TW Cap, a halo star, the indication is that dust-gas separation has not affected this

star; Ca, Ti, Sc, and s-process elements have the abundances expected of a star with [Fe/H]

5The dust-gas signatures for ST Pup are rather ragged but this is possibly attributable to larger than

normal uncertainties in the derived abundances resulting from the very few lines available for most of the

elements: [Fe/H] = −1.47 with [S/Fe] = +1.29 and [Zn/Fe] = +1.41 are customary markers of severe

dust-gas separation but [Al/Fe] = +0.19 is not.
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−1.8, a result anticipated from our previous reports on the absence of dust-gas separation

in intrinsically metal-poor RV Tau variables (Giridhar et al. 2005).

Binarity has been advanced as a principal key to the dust-gas separation exhibited by

RV Tau stars; Van Winckel (2003) suggested that ‘binarity may very well be a common

phenomenon among RV Tau stars’. In the present sample, the known spectroscopic binaries

– TX Del, IX Cas, and AU Peg – are not strongly affected by dust-gas separation but all

are BL Her stars for which dust-gas separation is not observed. The affected W Vir star

ST Pup is a binary (Gonzalez & Wallerstein 1996). Investigating the binary nature of the

W Vir stars, not only those affected by dust-gas separation, will call for intensive radial

velocity monitoring in order to resolve the orbital from the pulsational velocity variations.

It is noteworthy that the Fe-deficiency of CC Lyr is similar to that of the A-type post-AGB

stars, all known to be spectroscopic binaries (Van Winckel et al. 1995).

In short, the suggestion is clear: the principal reason for the various abundance anoma-

lies – C, N, and O apart – among the W Vir stars is that their atmospheres have been

partially cleansed of refractory elements. The mass of the convective envelope must be small

to sustain a large deficiency of refractory elements. Perhaps, not coincidentally a small en-

velope is also a condition required to place the immediate progenitors of these variables on

the horizontal branch to the blue of the red clump. There may also be a correlation between

the magnitude of the infrared excess and the visibility of the dust-gas separation. Stars with

a weak dust-gas separation are returning to a normal composition following dissolution of

circumstellar dust. The BL Her stars have yet to evolve to the upper AGB and to commence

dust production and, hence, absence of evidence of dust-gas separation is not surprising.

In discussing the abundance anomalies, we have overlooked the possibility that a con-

tributing factor might be found in conditions existing in the progenitors resident on the

blue horizontal branch. Stars with the lowest ratios of envelope to core mass reside on

the horizontal branch at effective temperatures (Teff > 11500 K) such that severe atmo-

spheric abundance anomalies are created by gravitational settling and radiative levitation

(Behr 2003), e.g., Fe overabundances by a factor of 2 dex have been recorded. These stars

are likely to evolve along a track-bluenose. However, one supposes that such anomalies

are erased by the time that the stars have evolved off the horizontal branch and into the

instability strip. This supposition deserves observational and theoretical attention.
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5. Metallicities from photometry

Accumulation and analysis of high-resolution spectra is a time consuming process. A

variety of statistical properties of the Type II Cepheids may be more readily examined using

a photometric estimate of metallicity provided that the estimate is reliable. Here, we assess

the reliability for three photometric systems which have been applied to Type II Cepheids.

Harris (1981) used Washington photometry to obtain the metallicity [A/H] for a large

sample of Type II Cepheids – see Harris & Wallerstein (1984) for two revisions. There are

13 stars not including CC Lyr in common with our sample. The comparison of our [Fe/H]

and [A/H] is shown in Figure 11. (The [A/H] for CC Lyr with its highly non-standard

composition is expected to depart appreciably from the spectroscopic [Fe/H]: indeed, [A/H]

of −2.2 versus [Fe/H] of about −4.) It is clear from the figure that the photometric and

spectroscopic estimates are well correlated but offset such that [A/H] is overestimated by

about 0.5 dex. The offset is not dependent on the pulsation period of the star. The conclusion

is that the Washington photometry provides, after a 0.5 dex downward revision, metallicity

estimates of satisfactory quality for statistical purposes – see, for example, the distribution

functions for metallicity of Type II Cepheid (Harris 1981).

Diethelm (1990) used Walraven VBLUW photometry to estimate the metallicity of the

shorter period Type II Cepheids. Five stars are in common with our sample including a

RR Lyrae IK Hya (not discussed here). Again, there is an offset between photometric and

spectroscopic estimates: [A/H] is overestimated by about 0.5 dex for the metal-rich stars

and possibly by 0.8 dex at low [Fe/H] (Figure 11).

Strömgren photometry was applied by Meakes, Wallerstein, & Opalko (1991). Excluding

CC Lyr ([A/H] of−2.3), the common stars show that [A/H] and [Fe/H] are roughly correlated

(Figure 11).

In summary, the metallicities may be reliably provided by photometry except for stars

seriously affected by dust-gas separation.

6. Concluding remarks

Our sample of field Type II Cepheids is the first for which extensive data on chemical

compositions are provided. The study complements prior modern analyses of κ Pav, ST

Pup, V553 Cen, and RT TrA. Our data on just two halo (metal-poor) Type II Cepheids

omit key elements – e.g., C, N, and Na – so that no more than a perfunctory interpretation

of these stars is offered. Common to the BL Her and W Vir stars is evidence for addition
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to their atmospheres of 3α-processed and CN-cycled material. The distinguishing mark of

the BL Her stars, the shorter period Type II Cepheids, is their overabundance of Na, an

overabundance not detected among the W Vir stars. The distinguishing mark of the W Vir

stars, the longer period Type II Cepheids, is a composition modified by dust-gas separation

to varying degrees.

Our following discussion assumes that the post-BHB evolution follows the lines given

in Section 4.1 (Figure 2): evolution follows either a track-direct or a track-bluenose and

the order of development is BHB → BL Her → W Vir → post-AGB. Then, there are two

evolutionary puzzles presented by these distinguishing marks:

1: BL Her stars are Na-rich and evolve to become W Vir stars but none of the analysed

W Vir stars with the possible exception of V1711 Sg are Na-rich.

2. W Vir stars have normal sodium abundances and have evolved from BL Her stars

but all of the analysed BL Her stars are Na-rich.

In the case of the first puzzle, the simplest explanation is that a long-period (W Vir or

RV Tau) variable resulting from a Na-rich BL Her star transits the instability strip much

faster than the W Vir star of normal Na abundance. Our discussion of Na abundances of

RV Tau stars showed that BL Her-like Na overabundances are seen in approximately 10 per

cent of the sample. If V1711 Sgr is Na-rich, a similar fraction of our sample of ten W Vir

stars is Na-rich.

Possible resolution of the second puzzle starts with the conjecture that changes to the

sodium abundance are determined prior to residence on the BHB by events associated with

the mass loss (and mixing) required to divert the star from the red clump to the BHB.

Sodium production by proton capture on 22Ne occurs in association with H-burning by the

CNO-cycles only at ‘high’ temperatures. Thus, the BHB may be populated by Na-rich

and Na-normal stars. Stars deposited on the BHB without experiencing sodium enrichment

evolve to Na-normal BL Her stars before becoming Na-normal W Vir stars. The fact that

our sample of nine BL Her stars does not include a Na-normal star may be a consequence

of a lower production rate of Na-normal to Na-rich BHB stars, and a more rapid crossing of

the instability strip by the Na-normal than the Na-rich BL Her stars. Given that a star on

a track-bluenose makes three crossings of the instability strip at a period appropriate for a

BL Her star, we identify the Na-rich BL Her stars with these tracks. These tracks begin at

the blue end of the BHB. The stars on a track-direct start at the red end of the BHB, cross

the instability strip once as a BL Her star and then evolve up the AGB to enjoy thermal

pulses before entering the instability strip as a W Vir or RV Tau star. Such BHB stars are

presumed to lack a sodium enrichment. Examination of a larger sample of BL Her stars is,
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then, expected to provide an example or two of a Na-rich variable.

In seeking to resolve puzzles in stellar evolution, one endeavors to connect the stars with

their progenitors, descendants, and close relatives among field and cluster stars. The vast

majority of our sample are probably thick disk citizens. Close relatives are the RR Lyrae

stars at one extreme and RV Tau and post-AGB stars at the other extreme. We have already

noted similarities between the compositions of the W Vir and RV Tau stars. Progenitors of

the BL Her and W Vir stars are on the blue horizontal branch. Identified BHB stars have

halo kinematics and metallicities and are surely progenitors of very metal-poor variables such

as UY Eri and TW Cap. Thick disk BHB stars have proven elusive: ‘There are, however,

disk RR Lyrae stars in the nearby field, but there are (as far as we know) no corresponding

field BHB stars that have disk kinematics’ (Kinman et al. 2000). It would be extremely

valuable to locate some thick disk BHB stars and to determine their compositions, especially

their Na abundances. Our attribution of BL Her stars to a track-bluenose and W Vir stars

to a track-direct implies the redder BHB stars should have a normal Na abundance and the

bluer BHB stars should be sodium rich.

Fresh insights into the phenomenon of the Type II Cepheids may be gleaned from

abundance analyses of these variables in globular clusters. Published results apply to W Vir

or RV Tau stars (i.e., periods greater than 10 days) in four globular clusters and five post-HB

stars including three variables in ω Cen (cf. Wallerstein’s [2002] review). All variables bar

one in ω Cen have a period representative of W Vir stars and the exception with a period of

4.5 days is likely a BL Her star. Results for the globular clusters M2, M5, M10, M12, and

M28 – one from each cluster with the exception of two from M5 – are provided variously

by Gonzalez &amp; Lambert (1997), Carney et al. (1998), and Klochkova et al. (2003).

Gonzalez &amp; Wallerstein (1994) give abundances for the ω Cen stars. The clusters have

metallicities from [Fe/H] of −1.2 to −1.7 with the stars from ω Cen spanning the range from

−1.7 to −2.1. Thus, the sample is collectively more metal-poor than the large majority of

the variables discussed in this paper.

Perhaps, the most significant conclusion to be drawn from these metal-poor stars is

that there is no evidence that their atmospheres have been affected by dust-gas separation,

a result expected from observations of metal-poor field RV Tau stars (Giridhar et al. 2005).

Interpretation of light element abundances (C to Al) is complicated by the fact that many

clusters show star-to-star correlated abundance variations that are entirely missing from

samples of field stars. Since such variations are present among main sequence members

of a cluster, they cannot be explained wholly as internal processing and mixing. In this

respect, Carney et al. (1998) show that the variable V42 in M5 has the Na enrichment

and O deficiency seen in the most extreme Na-rich and O-poor red giants, i.e., the Na
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and O abundances of V42 may be unrelated to its transition from the red giant to the

horizontal branch. Notwithstanding this novel complication presented by the clusters and

their variables, the preliminary forays into abundance analyses of cluster Type II Cepheids

and their horizontal branch progenitors deserve to be extended: for example, the key elements

of C, N, and O remain almost untouched by the published analyses (see Gonzalez &amp;

Wallerstein for C, N, and O among ω Cen stars, and Klochkova et al. (2003) for C, N, and

O for V1 in M12).6 Extension of the work on cluster variables to the BL Her stars would

also be of interest. This would be of special interest if these BL Her stars are shown to

be Na-rich. Material rich in Na from proton capture on 22Ne is possibly also He-rich. The

pulsational properties of Type II Cepheids are dependent on the He abundance as well as

mass and metallicity (see Bono et al. [1997] for references to these dependencies). Since BL

Her stars in globular clusters have an accurately determined absolute luminosity in contrast

to field stars where the luminosity is never well determined, it may be possible to determine

their helium abundance.

Immediate descendants of the Type II Cepheids are red giants and must be picked out

from the (presumably) more numerous giant stars evolved from clump giants. Anomalous

compositions are a likely indicator. Wallerstein & Gonzalez (1996) and Wallerstein et al.

(2000) noted the similarities between the compositions of the C-rich Type II Cepheids and the

R-type carbon stars (Dominy 1984) where products of the 3α-process are greatly in evidence.

At the other extreme, IX Cas and the Weak G-band giants may be related examples of

stars where the stellar atmosphere is dominated by CNO-cycled products and 3α–processed

products are absent or just a minor contaminant. Although intriguing, these suggested links

between Type II Cepheids and peculiar red giants do not directly suggest an interpretation

in terms of stellar evolution. The observers’ Deus ex machina for linking a Type II Cepheid

to a peculiar red giant may be the He-core flash but, as noted earlier, theoreticians discount

this possibility. Perhaps, the appeal should be not to an episode in the life of a single star

but to one in the evolution of a binary star. Such an appeal, however, may be a forlorn one

in the case of the R-type carbon stars and Weak G-band giants because neither class seem

to have an unusual degree of binarity (Tomkin, Sneden, & Cottrell 1984; McClure 1985).

We thank Ron Wilhelm for helpful correspondence. This research has made use of

NASA’s Astrophysics Data System and the Centre de Donées de Strasbourg’s SIMBAD

6A remarkable result concerns the Al abundance in the ω Cen stars. In four of the five stars, Al was

underabundant by −0.3 to −1.1 as measured by [Al/Fe] but without the attendant Ca and Sc deficiencies

expected from dust-gas separation. Yet more remarkable is the observation that in the fifth star, Gonzalez

&amp; Wallerstein (1994) found a strong Al overabundance ([Al/Fe] = +1.2) in an O-deficient star with a

normal Na abundance.



– 24 –
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Wallerstein, G. 2002, PASP, 114, 689

Wallerstein, G., & Gonzalez, G. 1996, MNRAS, 282, 1236

Wallerstein, G., Matt, S., Gonzalez, G. 2000, MNRAS, 311, 414

This preprint was prepared with the AAS LATEX macros v5.2.



– 27 –
R

el
at

iv
e 

Fl
ux

Wavelength (A)
o

Fig. 1.— The interval 7105–7135 Å for CC Lyr, SW Tau, IX Cas, and BL Her. Note the

absence of the C i lines for IX Cas, and the absence of the Fe i and Ni i lines for CC Lyr.
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Fig. 2.— A HR diagram showing the location of the Population II instability strip and

approximate lines of constant period. Superimposed are two evolutionary tracks for two

stars: the track for the 0.6M⊙ star is a track-direct and that for the 0.536M⊙ is a track-

bluenose (see text). The location of the RR Lyr variables and the approximate positions of

RV Tau variables are marked. (After Gingold 1985)

Table 1: STELLAR PARAMETERS FROM THE Fe-LINE ANALYSIS

Star Period UT Date Model ξb
t

Fe ic Fe iic

(days) Teff , log g, [Fe/H]a (km s−1) log ǫ n log ǫ n

BX Del 1.1 2005 Jul 3 6250, 1.0, -0.2 3.0 7.28 ± 0.16 99 7.19 ± 0.19 24

VY Pyx 1.2 2005 Jan 1 5750, 1.5, -0.4 3.0 7.05 ± 0.13 76 6.97 ± 0.14 12

BL Her 1.3 2005 May 3 6500, 2.0, -0.1 2.5 7.32 ± 0.11 122 7.30 ± 0.13 38

SW Tau 1.6 2004 Oct 8 6250, 2.0, +0.2 3.0 7.69 ± 0.12 115 7.66 ± 0.19 24

UY Eri 2.2 2004 Dec 18 6000, 1.5, -1.8 2.9 5.66 ± 0.15 79 5.59 ± 0.10 17

AU Peg 2.4 2005 Sept 24 5750, 1.5, -0.2 5.3 7.26 ± 0.16 37 7.24 ± 0.15 11

DQ And 3.2 2004 Dec 19 5500, 1.5, -0.5 3.0 7.00 ± 0.16 91 7.00 ± 0.13 15

TX Del 6.2 2004 Aug 9 5500, 0.5, +0.1 3.7 7.56 ± 0.09 59 7.56 ± 0.17 16

IX Cas 9.2 2004 Oct 09 6250, 1.0, -0.4 3.3 6.97 ± 0.11 108 6.93 ± 0.14 35

AL Vir 10.3 2004 May 3 5500, 1.0, -0.4 3.5 7.07 ± 0.09 85 7.04 ± 0.13 27

2005 Jan 30 6500, 1.5, -0.4 3.2 7.04 ± 0.10 92 7.01 ± 0.12 24

AP Her 10.4 2004 Nov 8 6500, 1.0, -0.7 2.7 6.70 ± 0.11 103 6.65 ± 0.17 36

CO Pup 16.0 2004 Dec 19 5000, 0.5, -0.6 4.3 6.81 ± 0.14 130 6.88 ± 0.16 12

SZ Mon 16.3 2005 Jan 30 4700, 0.0, -0.4 3.7 7.02 ± 0.16 59 6.95 ± 0.09 8

W Vir 17.3 2005 Dec 18 5000, 0.0, -1.0 3.8 6.48 ± 0.13 110 6.53 ± 0.13 21

MZ Cyg 21.4 2005 Jul 03 4750, 0.5, -0.2 4.7 7.21 ± 0.16 56 7.27 ± 0.18 8

CC Lyr 24.2 2004 Aug 9 6250, 1.0, -3.5 3.5 3.83 ± 0.04 2 3.73 1

2005 Jul 3 6250, 1.0, -3.3 4.5 3.32 ± 0.04 2 . . . . .

RX Lib 24.9 2005 Apr 24 5250, 0.0, -1.0 2.9 6.50 ± 0.17 61 6.43 ± 0.15 14

TW Cap 28.6 2004 Dec 8 5250, 0.5, -1.8 3.1 5.70 ± 0.13 91 5.73 ± 0.14 31

2005 Jul 3 6000, 0.0, -1.8 3.8 5.66 ± 0.14 33 5.64 ± 0.18 13

V1711 Sgr 28.6 2005 Jul 3 5000, 0.5, -1.2 4.1 6.28 ± 0.16 67 6.28 ± 0.17 15

a The value of Teff is in kelvins; log g is in cgs, [Fe/H] in dex.
b The symbol ξt represents the microturbulence determined from the Fe i lines.
c The column headed log ǫ gives the mean abundance relative to H (with log ǫH = 12.00). The standard

deviations of the means, as calculated from the line-to-line scatter, are given. The quantity n is the number

of considered lines.



– 29 –

Fig. 3.— The [Na/Fe] (top panel) and [Al/Fe] (bottom panel) ratios versus [Fe/H]. The key

to the symbols is given in the top panel. Symbols: unfilled circles – Our BL Her stars, filled

circles – Our W Vir stars, unfilled squares – The C-rich BL Her stars RT TrA and V553

Cen, filled triangles– The W Vir stars κ Pav at [Fe/H] ≃ 0.0 and ST Pup at [Fe/H] ≃ −1.5.
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Fig. 4.— The run of the abundances of α-elements with [Fe/H]. The top panel shows the ratio

[α/Fe] versus [Fe/H] where [α/Fe] is the mean of the ratios [Mg/Fe], [Si/Fe], and [S/Fe]. The

middle panel shows [Ca/Fe] versus [Fe/H]. The bottom panel shows [Ti/Fe] versus [Fe/H].

Symbols are as in Figure 3.
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Fig. 5.— The run of the ratios [Cr/Fe] (top panel), [Mn/Fe] (middle panel), and [Ni/Fe]

(bottom panel) versus [Fe/H]. Symbols are as in Figure 3.



– 32 –

Fig. 6.— The run of the ratio [s/Fe] (top panel) and [Eu/Fe] (bottom panel) versus [Fe/H].

See text for the elements contributing to the mean [s/Fe]. Symbols are as in Figure 3.
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Fig. 7.— Abundances [X/H] versus condensation temperature TC for CC Lyr. Elements are

identified by their chemical symbol.
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Fig. 8.— Adjusted abundances (see text) [X/H] for CO Pup (top panel) and W Vir (bottom

panel) versus condensation temperature TC . Elements are identified by their chemical sym-

bol. Unfilled circles refer to elements made principally by the s-process whose abundance

might have been enhanced by thermal pulses on the AGB.
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Fig. 9.— Adjusted abundances (see text) [X/H] for V1711 Sgr (top panel) and SZ Mon (bot-

tom panel) versus condensation temperature TC . Elements are identified by their chemical

symbol.
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Fig. 10.— Adjusted abundances [X/H] for RX Lib (top panel) and MZ Cyg (bottom panel)

versus condensation temperature TC . Elements are identified by their chemical symbol.
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Fig. 11.— Comparisons of our spectroscopic and published photometric metallicities. The

lefthand panel shows the comparison with the results from Washington photometry (Harris

1985), the middle panel with Walraven photometry (Diethelm 1990), and the righthand panel

with Strömgren photometry (Meakes et al. 1991). The dashed line in each panel indicates

equality between spectroscopic and photometric metallicity. The key to the symbols is given

in Figure 3.
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Table 2: ELEMENTAL ABUNDANCES - THE BL HER VARIABLES

BX Delb VY Pyx BL Her SW Tau UY Eri AU Peg DQ And
Species log ǫ

a
⊙ [X/Fe] n [X/Fe] n [X/Fe] n [X/Fe] n [X/Fe] n [X/Fe] n [X/Fe] n

C i 8.39 -0.02 14 -0.24 6 +0.44 29 +0.77 22 · · · · · · +0.07 5 +0.08 7

N i 7.78 +1.60 3 +1.51 3 +1.09 6 +1.26 10 <-0.1 3 +1.01 4 +0.82 4

O i 8.66 +0.41 2 +0.51 3 +0.23 5 -0.03 6 +0.52 2 +0.35 3 +0.18 3

Na i 6.17 +0.73 3 +0.65 3 +0.96 3 +0.76 3 +0.08 1 +0.55 2 +0.57 4

Mg i 7.53 +0.36 4 +0.47 4 +0.12 1 +0.02 1 +0.29 4 +0.15 3 +0.11 4

Al i 6.37 +0.07 5 -0.01 5 +0.14 3 +0.19 4 -0.72 2 +0.01 1 +0.02 4

Si i 7.51 +0.48 9 +0.33 11 +0.29 18 +0.28 17 -0.34 1 +0.29 6 +0.20 8

Si ii 7.51 · · · · · · +0.61 2 +0.01 3 · · · · · · +0.06 2 · · · · · · +0.23 2

S i 7.14 +0.44 6 +0.54 4 +0.16 6 +0.06 6 · · · · · · +0.52 3 + 0.32 3

Ca i 6.31 +0.08 9 +0.06 5 +0.17 19 +0.17 18 +0.33 11 -0.27 4 +0.13 7

Sc ii 3.05 -0.45 4 0.00 5 +0.08 7 +0.22 8 0.00 11 +0.07 3 +0.10 6

Ti i 4.90 -0.38 2 -0.07 2 +0.14 1 +0.17 3 · · · · · · -0.15 4 -0.03 4

Ti ii 4.90 -0.30 6 -0.16 6 +0.11 29 +0.10 17 +0.22 15 -0.21 2 -0.16 6

Cr i 5.64 -0.24 8 -0.14 6 -0.04 15 -0.05 13 +0.10 6 -0.15 3 -0.06 8

Cr ii 5.64 -0.08 6 -0.06 7 -0.07 17 -0.08 18 +0.08 4 +0.06 4 +0.02 2

Mn i 5.39 -0.29 3 -0.21 5 -0.09 8 +0.13 9 -0.64 3 -0.12 2 -0.12 4

Ni i 6.23 -0.03 12 -0.10 13 +0.07 44 +0.03 45 -0.07 2 +0.09 8 -0.20 20

Cu i 4.21 +0.19 1 +0.31 1 +0.21 1 +0.38 1 · · · · · · · · · · · · -0.33 1

Zn i 4.60 -0.13 2 -0.09 3 -0.01 4 -0.03 4 -0.12 2 -0.23 2 -0.43 2

Y ii 2.21 -0.66 5 -0.62 4 -0.08 7 -0.04 4 -0.42 1 +0.03 1 +0.01 5

Zr ii 2.59 · · · · · · -0.52 2 +0.10 10 +0.03 3 · · · · · · · · · · · · · · · · · ·

Ba ii 2.17 -0.29 1 -0.42 1 -0.02 3 · · · · · · -0.81 3 · · · · · · +0.70 1

La ii 1.13 -0.59 1 -0.48 3 +0.10 7 +0.05 6 · · · · · · -0.41 2 +0.21 3

Ce ii 1.58 -0.53 3 -0.52 3 · · · · · · -0.24 6 · · · · · · +0.10 5 -0.04 9

Nd ii 1.45 -0.74 1 -0.60 1 · · · · · · +0.05 14 · · · · · · -0.21 1 +0.30 6

Sm ii 1.01 · · · · · · -0.59 3 · · · · · · -0.21 4 · · · · · · -0.22 1 +0.16 2

Eu ii 0.52 -0.01 2 -0.16 2 +0.01 1 -0.11 2 · · · · · · +0.15 1 +0.15 1

Fe i 7.45 -0.17 99 -0.40 76 -0.13 122 +0.24 115 -1.79 79 -0.19 37 -0.45 91

Fe ii 7.45 -0.26 24 -0.48 12 -0.15 38 +0.21 24 -1.86 17 -0.21 11 -0.45 15

a Solar abundances from Asplund, Grevesse, & Sauval (2005).
b For each star, we give the mean value of [X/Fe] for element X but for Fe we give the mean [Fe/H] for the Fe i and Fe ii lines. The quantity n is

in all cases the number of considered lines.
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Table 3: ELEMENTAL ABUNDANCES - THE INTERMEDIATE-PERIOD VARIABLES

TX Delb IX Cas AL Vir AP Her

Species log ǫa
⊙

[X/Fe] n [X/Fe] n [X/Fe]c n [X/Fe]d n [X/Fe] n

C i 8.39 -0.04 19 -1.76 2 +0.05 11 +0.06 14 -0.09 10

N i 7.78 +1.23 6 +0.95 7 +0.88 3 +0.77 6 +0.92 6

O i 8.66 +0.36 3 +0.27 4 +0.81 2 +0.61 3 +0.69 3

Na i 6.17 +0.61 2 +1.02 3 +0.26 3 +0.22 3 +0.29 1

Mg i 7.53 +0.08 2 +0.10 1 +0.30 1 · · · · · · +0.36 1

Al i 6.37 +0.28 3 +0.28 4 +0.06 3 · · · · · · · · · · · ·

Si i 7.51 +0.32 14 +0.36 16 +0.41 17 +0.44 13 +0.53 11

Si ii 7.51 · · · · · · +0.16 1 +0.43 2 · · · · · · +0.64 2

S i 7.14 +0.27 6 +0.32 5 +0.29 6 +0.36 5 +0.39 4

Ca i 6.31 +0.07 5 +0.17 13 +0.01 14 +0.03 17 +0.23 21

Sc ii 3.05 -0.23 3 +0.11 8 -0.37 8 -0.32 9 -0.38 8

Ti i 4.90 · · · · · · +0.17 2 +0.15 4 · · · · · · 0.11 1

Ti ii 4.90 -0.18 1 +0.17 11 +0.10 8 -0.02 18 0.11 31

Cr i 5.64 0.00 4 -0.07 11 -0.17 13 -0.23 11 -0.16 10

Cr ii 5.64 -0.08 3 -0.09 16 -0.20 12 -0.20 15 -0.16 16

Mn i 5.39 -0.06 4 -0.13 8 -0.26 6 · · · · · · -0.21 5

Ni i 6.23 +0.03 27 +0.04 35 +0.07 43 +0.06 36 +0.07 25

Cu i 4.21 · · · · · · +0.13 1 +0.14 1 · · · · · · +0.03 1

Zn i 4.60 · · · · · · 0.00 4 +0.14 3 0.00 2 +0.06 1

Y ii 2.21 -0.29 4 -0.07 11 -0.76 6 -0.56 1 · · · · · ·

Zr ii 2.59 -0.55 2 +0.03 11 -0.54 2 -0.38 3 -0.25 7

Ba ii 2.17 · · · · · · +0.13 1 · · · · · · -0.58 1 · · · · · ·

La ii 1.13 -0.42 15 +0.17 7 -0.49 6 · · · · · · 0.00 1

Ce ii 1.58 -0.83 3 -0.16 11 -0.79 3 -0.70 1 · · · · · ·

Nd ii 1.45 -0.49 9 +0.02 9 -0.49 7 · · · · · · · · · · · ·

Sm ii 1.01 · · · · · · -0.19 4 -0.35 5 · · · · · · · · · · · ·

Eu ii 0.52 -0.39 1 +0.27 2 +0.11 2 · · · · · · +0.39 2

Fe i 7.45 +0.11 85 -0.48 108 -0.38 85 -0.41 92 -0.75 103

Fe ii 7.45 +0.11 27 -0.53 34 -0.41 27 -0.44 24 -0.80 36
a Solar abundances from Asplund, Grevesse, & Sauval (2005).
b For each star, we give the mean value of [X/Fe] for element X but for Fe we give the mean [Fe/H] for the Fe i and Fe ii lines.

The quantity n is in all cases the number of considered lines.
c Analysis for 2004 May 3
d Analysis for 2005 January 30



– 40 –

Table 4: ELEMENTAL ABUNDANCES - THE W VIR VARIABLES

CO Pupb SZ Mon W Vir MZ Cyg CC Lyr RX Lib TW Cap V1711 Sgr

Species log ǫ
a
⊙ [X/Fe] n [X/Fe] n [X/Fe] n [X/Fe] n [X/Fe]c n [X/Fe]d n [X/Fe] n [X/Fe]e n [X/Fe]f n [X/Fe] n

C i 8.39 +0.23 3 +0.57 3 -0.23 4 +0.73 4 +3.37 4 +3.58 18 +0.19 1 · · · · · · <-0.1 1 +0.81 5

N i 7.78 +1.33 2 · · · · · · · · · · · · +0.39: 2 +4.04 1 · · · · · · +1.12 2 · · · · · · <+0.8 2 +0.42 1

O i 8.66 +0.29 2 +0.04 2 +0.74 3 +0.18 2 +3.96 1 +3.96 3 +0.49 3 +0.70 2 <+0.5 1 +0.95 3

Na i 6.17 +0.15 4 +0.44 2 +0.36 3 +0.09 3 +2.75 1 +3.04 1 +0.02 1 · · · · · · · · · · · · +0.60 4

Mg i 7.53 +0.18 4 +0.33 3 +0.67 5 -0.02 3 +0.34 3 +0.54 3 +0.85 3 +0.45 2 +.38 2 +0.59 4

Al i 6.37 -0.45 3 -0.85 1 -0.13 3 -0.58 3 · · · · · · · · · -0.15 1 · · · · · · -0.87 1 -0.95 1

Si i 7.51 +0.19 5 +0.37 8 +0.55 8 +0.27 7 · · · · · · · · · +0.53 5 +0.64 6 +0.52 2 +0.46 8

Si ii 7.51 +0.30 2 · · · · · · +0.71 2 · · · · · · · · · · · · · · · +0.57 2 +0.46 2 +0.48 2 +0.87 2

S i 7.14 +0.55 2 +0.64 2 +0.74 4 +0.73 4 +3.20 4 +3.60 5 +0.42 4 +0.40 1 +0.33 1 +1.13 4

Ca i 6.31 -0.37 6 +0.21 3 -0.03 8 -0.45 6 · · · · · · · · · -0.05 5 +0.35 18 +0.29 10 -0.12 9

Sc ii 3.05 -0.96 3 -1.06 2 -1.03 4 -0.87 5 · · · · · · · · · -1.22 5 +0.19 6 -0.14 8 -1.26 3

Ti i 4.90 -0.39 8 · · · · · · -0.17 9 -0.51 3 · · · · · · · · · -0.04 4 +0.38 3 · · · · · · · · ·

Ti ii 4.90 -0.28 9 -0.85 5 +0.02 6 -0.35 3 · · · · · · · · · -0.24 4 +0.37 24 +0.04 5 -0.85 4

Cr i 5.64 -0.49 9 -0.04 3 -0.47 9 -0.03 2 · · · · · · · · · -0.33 5 -0.18 6 +0.01 2 -0.40 9

Cr ii 5.64 -0.34 5 -0.13 7 -0.26 4 -0.11 4 · · · · · · · · · -0.36 4 -0.13 9 -0.15 4 -0.13 17

Mn i 5.39 -0.35 6 -0.18 4 -0.46 5 -0.39 3 +1.00 2 · · · · · · -0.30 2 -0.45 3 · · · · · · -0.16 5

Ni i 6.23 -0.12 24 -0.11 7 -0.05 24 -0.15 11 · · · · · · · · · +0.09 10 +0.06 16 -0.14 2 -0.12 7

Cu i 4.21 -0.27 2 -0.15 1 -0.25 2 -0.01 1 · · · · · · · · · -0.28 1 -0.03 2

Zn i 4.60 -0.13 3 -0.03 2 +0.16 4 -0.03 3 +3.05 2 +3.01 2 +0.20 4 +0.28 2 +0.01 2 +0.22 4

Y ii 2.21 -1.53 1 -1.42 1 -1.92 1 -0.80 2 · · · · · · · · · -0.38 1 -0.08 3 -0.11 1 -0.26 1

Zr ii 2.59 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · -0.01 2 -0.24 1 · · ·

Ba ii 2.17 -0.40 1 · · · · · · -0.36 2 -0.90 1 · · · · · · · · · -0.42 2 · · · · · · -0.10 2 -0.10 2

La ii 1.13 -0.83 2 -0.96 3 -0.54 3 -1.32 1 · · · · · · · · · -0.09 1 +0.22 4 · · · · · · · · ·

Ce ii 1.58 -0.72 5 · · · · · · -0.69 7 -0.97 3 · · · · · · · · · -0.70 1 +0.08 4 · · · · · · -0.23 7

Nd ii 1.45 -0.58 4 · · · · · · -0.53 5 -0.83 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · -0.39 1

Sm ii 1.01 -0.40 2 -0.31 1 -0.55 4 -1.03 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · -0.28 1

Eu ii 0.52 -0.11 2 -0.37 1 +0.12 1 -0.27 1 · · · · · · · · · -0.01 2 +0.05 2 · · · · · · +0.34 1

Fe i 7.45 -0.64 130 -0.43 59 -0.97 110 -0.18 56 -3.62 2 -4.11 2 -0.95 61 -1.75 91 -1.79 33 -1.17 67

Fe ii 7.45 -0.57 12 -0.50 8 -0.93 22 -0.24 9 -3.72 1 · · · · · · -1.02 14 -1.72 31 -1.81 13 -1.17 15

a Solar abundances from Asplund, Grevesse, & Sauval (2005).
b For each star, we give the mean value of [X/Fe] for element X but for Fe we give the mean [Fe/H] for the Fe i and Fe ii lines. The quantity n is

in all cases the number of considered lines. c Analysis for 2004 August 9
d Analysis for 2005 March 7
e Analysis for 2004 December 8
f Analysis for 2005 July 3
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