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PHASE SPACES IN SPECIAL RELATIVITY: TOWARDS

ELIMINATING GRAVITATIONAL SINGULARITIES

PETER DANENHOWER

Abstract. This paper shows one way to construct phase spaces in special
relativity by expanding Minkowski Space. These spaces appear to indicate
that we can dispense with gravitational singularities. The key mathematical
ideas in the present approach are to include a complex phase factor, such as, eıφ

in the Lorentz transformation and to use both the proper time and the proper
mass as parameters. To develop the most general case, a complex parameter
σ = s + im, is introduced, where s is the proper time, and m is the proper
mass, and σ and σ

|σ|
are used to parameterize the position of a particle (or

reference frame) in space-time-matter phase space. A new reference variable,
u = m

r
, is needed (in addition to velocity), and assumed to be bounded by 0

and c2

G
= 1, in geometrized units. Several results are derived: The equation

E = mc
2 apparently needs to be modified to E

2 = s2c10

G2
+ m

2
c
4, but a

simpler (invariant) parameter is the “energy to length” ratio, which is c4

G

for any spherical region of space-time-matter. The generalized “momentum
vector” becomes completely “masslike” for u ≈ 0.79, which we think indicates
the existence of a maximal gravity field. Thus, gravitational singularities do
not occur. Instead, as u → 1 matter is apparently simply crushed into free
space. In the last section of this paper we attempt some further generalizations
of the phase space ideas developed in this paper.

1. Introduction

Phase spaces are a common and important way to model physical systems. For

example, a harmonic oscillator has the energy equation E = p2

2m + kx2

2 , which ex-
presses the energy of the oscillator (pendulum, mass on a string, etc) as a function of
the position and momentum. More generally phase spaces, usually called symplec-
tic structures or symplectic spaces, have been extensively studied. The most basic
symplectic structure is a smooth Manifold with a closed, non-degenerate 2-form,
such as, ω = dpi ∧ dqi. Equivalently, given a manifold of all possible configurations
of a system, the phase space for the system is the cotangent bundle. See [13] for an
introduction to symplectic structures.

Phase spaces within General Relativity have also been studied, for examples
see [2, 3]. Unfortunately, while interesting this work does not seem to lead to
any resolution of important open questions in general relativity, such as cosmic
censorship or the validity of gravitational singularities. Even expanding the phase
spaces to complex number phase spaces does not seem to be sufficient to answer
these questions, but for an example of the complex treatment, see [6].

I wish to thank Cisco Gooding for kindly reading over several drafts of this paper and offering
valuable comments and insights that clarified my understanding in some sections of this paper.
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Although, general relativity and especially special relativity, have survived in-
tense experimental and observational testing [7, 15, 16, 17, 9, 4, 1, 8], the question of
the existence of gravitational singularities is still unresolved. My sense is that most
astro-physicists and general relativist would prefer that gravitational singularities
were not predicted by general relativity, but are willing to accept them if necessary,
because general relativity works so well otherwise. Thus, we have assumed in this
paper that attempting to eliminate the singularities predicted by general relativity
is a desirable result (see for example, [7], chapter 44).

The present paper is motivated by the desire to try to eliminate gravitational
singularities (without changing anything else in a measurable way). It is somewhat
surprising that we seem to be able to make progress within the framework of a
complex phase space set in special relativity, especially as the present construction
is not intended to incorporate gravity. The main difference between the present
work and previous efforts to build relativistic phase spaces is the inclusion of the
proper mass as a dynamic variable, as opposed to a constant scale factor. The
consequences of using the proper mass as an additional parameter (along with
proper time) seem to be significant enough to warrant beginning this study within
the frame work of special relativity.

The present work begins with Minkowski space and changes this to a complex
phase space, a space-time-matter configuration space, by introducing a complex
“phase” factor into the Lorentz transformation. The special relativistic “four”
momentum and “four” position are combined into a single vector (1-form) in C4.
Of course, the proper mass is constant, so we have to work out the transformation
equations (complex Lorentz transformation) for an arbitrary mass, then substitute
the actual mass of interest. Actually, we can show that there is a canonical value of
the proper time as well, so that proper time and proper mass are not that different
after all.

To make the phase factor dynamically significant requires another parameter to
play a role similar to the velocity. This is a another key difference between the
present work and previous phase space developments in general relativity. The
parameter needs to have dimensions of mass over length (or coordinate time). For-
tunately, this ratio is already a parameter of some interest in general relativity
(although only for extremely massive objects), so we have assumed the mass to
length ratio of general relativity to be the parameter we need. Then gravitational
effects become significant in an extreme relativistic limit.

We have tried to introduce the phase factor into the Lorentz transformation in
the most general possible way. However, it turns out to be very simple, i.e., of
the form eiφ. Nevertheless, we have proceeded with the general derivation given
in this paper, because some of the results of the derivation are used in the further
developments in the last section. The outline of this paper is as follows:

(1) State the postulates of the Phase Space.
(2) Decide what forms need to be invariant and derive the conditions on the

complex Lorentz group.
(3) Derive the Phase Space Lorentz transformation.
(4) Consider some of the consequences of these equations.
(5) Consider some generalizations.
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2. Postulates of the Special Relativistic Phase Space

Since the phase space constructed in this paper is built within special relativity,
we certainly need the postulates of special relativity. Briefly, we can recall these to
be: 1. The laws of physics should have the same form (in Cartesian coordinates)
for all Lorentz observers, and 2. The speed of light c, is constant for all Lorentz
observers.

We need another assumption to make further progress, namely the gravity con-
stant, G is also invariant for all Lorentz observers. I assume that most readers will
find this to be a reasonable assumption that is pretty much already assumed in
general relativity. One can imagine that different Lorentz observers could verify
this assumption by doing extremely weak field experiments, so that the Lorentz
character of the reference frames was not disturbed.

In addition, for the following calculations we have used geometric units chosen
so that c = 1 and G = 1. We have denoted the mass to length ratio with the
parameter, u = m

r
. Then, in geometrized units, 0 ≤ u ≤ 1. The transformation

equations derived below require this restriction on u, similar to the restrictions on

v. The particular choice, c2

G
= 1 is made to normalize u as simply as possible.

This is not quite the Schwarzschild radius predicted by general relativity, which is
c2

2G = 1. Whether or not there is a two in denominator (or some other scalar factor
is a matter to be decided by experiment, so for the purposes of this paper I have
omitted the two for simplicity.

I am well aware that the assumption that 0 ≤ u ≤ 1 is likely to be disputed or
rejected by some readers, but I think this requirement is simply a reflection of the
cosmic censorship conjecture: what happens inside the Schwarzschild radius isn’t
observable from the outside, so u will be observed to be bounded above by one (the
development given here does not forbid u = 1). In any case, there is no question
that for ordinary objects u is extremely small, mostly not even measurable. For
example, for the earth, u ≈ 10−10, and for a 1 kg ball of radius 1 m, u ≈ 10−27. u
is still smaller for elementary particles.

I have found little discussion in the literature of the parameter, u. The internet
motion mountain physics text does discuss u, but treats this parameter as force. I
don’t think this is a good idea, because force is such a difficult concept in special
relativity.

3. Invariant Forms

To develop the phase space idea in this paper, we have assumed that the volume
form, dV = dy0 ∧ dy1 ∧ dy2 is invariant with respect to the allowed coordinate
transformations. For the time being we are considering a 3 dimensional space
consisting of two space dimensions and one time dimension, with the usual index
conventions (0 for time, 1 and 2 for space dimensions). To keep the problem as
simple as possible the direction of relative motion is assumed to be along one of
the space coordinates. The second space dimension may not be necessary, but we
have included it for reasons that will become clear as the derivation proceeds.

We begin with the “position” vector, y, and the two tangent vectors, y,s and y,m.
Here “position” vector means position in the complex phase space, not the physical
position. In these expressions, s is the proper time, and m is the proper mass of
the particle. In addition, I have assumed that we can extract the magnitude of the
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two form representing the cross product of tangent vectors (roughly the symplectic
2-form discussed above), using Hodge star duality. Since we don’t have an explicit
metric defined, the definition of the Hodge star dual is quite significant, but I have
defined this in the natural way, i.e., so that we get the answer we would expect if
we had a metric. Apparently the definition that is used below induces a metric on
the space, but the significance of this isn’t entirely clear to me.

In any case, we have assumed the surface area form is invariant with respect
to the allowed coordinate transformations. The following derivation is probably
much more complicated than it needs to be. I have done the derivation this way
to set the stage for generalized equations of motion. However, to obtain just the
complex Lorentz transformations in a simple way, we can just multiply the usual
components of the Lorentz transformation by a complex “phase” factor of modulus
1, and assume a complex conjugated, Lorentz metric.

Continuing with the derivation, from the tangent vectors, we can construct the
area 2-form (symplectic 2-form),

(3.1) dA = δ01kny
k
,sy

n
,mdy0dy1 + δ02kny

k
,sy

n
,mdy0dy2 + δ12kny

k
,sy

n
,mdy1dy2

In this expression I have used the generalized Kronecker delta (anti-symmetric
in k and n, so δ0101 = 1, δ0110 = −1 and δ01kn = 0 for any other choice of k and n) and
there is, of course, no sum on the fixed numerical indices. I have omitted the wedge
product symbol for brevity. For the rest of this section I have assumed the wedge
product unless otherwise stated.

Next we need to define the Hodge star duals of the basis 2-forms, so we can find
∗dA.

Definition 3.1. The Hodge star duals of the basis two forms are defined as follows:
∗(dy1 ∧ dy2) = −dy0, ∗(dy2 ∧ dy0) = dy1, ∗(dy0 ∧ dy1) = dy2

Notice that I have defined ∗(dy1∧dy2) to have the opposite sign of what might be
expected. This is to avoid having to use i to keep the contributions to the volume
formally positive. In addition, to this definition, I have also assumed throughout
this paper that to find the Hodge star dual of a 1 or 2 form we have to use the
conjugated transpose form of the components (this will be clear below). Thus, we
have the following expression for ∗dA:
(3.2) ∗ dA = δ01kn(y

k
,sy

n
,m)†dy2 + δ20kn(y

k
,sy

n
,m)†dy1 − δ12kn(y

k
,sy

n
,m)†dy0

In this expression the †s indicate complex conjugated transpose. Finally, we can
extract the magnitude of the “symplectic 2-form” as the component of ∗dA ∧ dA.
I have called this L2 for reasons that will be explained later.

(3.3) L2 = δ01kl δ
01
np(y

k
,sy

l
,m)†yn,sy

p
,m + δ20kl δ

20
np(y

k
,sy

l
,m)†yn,sy

p
,m − δ12kl δ

12
np(y

k
,sy

l
,m)†yn,sy

p
,m

To derive the complex Lorentz transformation we want to find the sub-group
of SL(3) (special linear group in 3 dimensions) that keeps the righthand side of
equation 3.3 invariant. We start with the transformation equations, yk = Bk

j ŷ
j,

where Bk
j is a 3×3 matrix (with constant complex entries), such that

∣

∣det(Bk
j )
∣

∣ = 1.
Substituting the transformation equation into the righthand side of equation 3.3
and subtracting the righthand side of equation 3.3, we get:

(3.4) (δ01kl δ
01
np−δ12kl δ

12
np+δ20kl δ

20
np)×[(Bk

αŷ
α
,sB

l
β ŷ

β
,m)†Bn

ρ ŷ
ρ
,sB

p
σ ŷ

σ
,m−(ŷk,sŷ

l
,m)†ŷn,sŷ

p
,m] = 0
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In equation 3.4, both Greek and Latin indices are summed over 0,1,2. I am using
Greek indices simply because Latin indices are in short supply and also for editing
purposes. The multiplication operations are all just complex numbers, so we can
rearrange equation 3.4 to get:
(3.5)
(δ01kl δ

01
np − δ12kl δ

12
np + δ20kl δ

20
np)× [(Bk

αB
l
β)

†Bn
ρB

p
σ(ŷ

α
,sŷ

β
,m)†(ŷρ,sŷ

σ
,m)− (ŷk,sŷ

l
,m)†ŷn,sŷ

p
,m] = 0

In this equation the †s indicate the entries in the conjugated transpose, B†. So
for example, (Bk

l )
† is the entry in the kth row and lth column of B†. There is,

of course, no matrix multiplication in this equation, so we can freely move the
transpose operation inside the brackets if we wish.

We seek the minimal conditions on Bk
l that will satisfy this equation without

restricting the values of yk,s or yk,m. By making a fixed choice of k, l, n and p in the
last term (in the square brackets) and then making the same choice for α, β, ρ and
σ, we can then sum over k, l, n and p in the first term to get the following equations
that constrain Bk

l .

△(B2
2)

†△B2
2 +△(B1

2)
†△B1

2 −△(B0
2)

†△B0
2 − 1 = 0,(3.6)

△(B2
1)

†△B2
1 +△(B1

1)
†△B1

1 −△(B0
1)

†△B0
1 − 1 = 0,(3.7)

△(B2
0)

†△B2
0 +△(B1

0)
†△B1

0 −△(B0
0)

†△B0
0 + 1 = 0.(3.8)

In these equations, △Bk
l indicates the cofactor of the entry in B in the kth row

and lth column. Of course, we also require that detB = eiθ, for some phase angle,
θ.

If we set B =
[

b00 b01 0
b10 b11 0
0 0 1

]

, then we can substitute into equations 3.6 - 3.8, and

detB = eiθ, to get:

(b00b11 − b01b10)(b00b11 − b01b10)− 1 = 0,(3.9)

−b01b10 + b00b00 − 1 = 0,(3.10)

−b11b11 + b10b01 + 1 = 0,(3.11)

b00b11 − b01b10 = eiθ.(3.12)

The choice of b22 = 1 and other entries involving an index of 2 equal to zero is
certainly a special choice (for example, certainly b22 = eiφ would be more general),
but I am calculating essentially a two dimensional case. Notice that equations
3.9 and 3.12 are essentially the same statement: |detB| = 1. Our next task is to
try to make the matrix B physically reasonable by deciding (guessing) how the
usual Lorentz transformation appears in the matrix B. The simplest is to attach a
complex number factor to each entry in the usual Lorentz transformation:

(3.13) B =





(e + if)γ −vγ(c+ id) 0
−vγ(a+ ib) γ(a+ ib) 0

0 0 1





Substituting, this B into equations 3.9 - 3.12,we get the following equations:
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−(a2 + b2)γ2 + v2γ2(a− ib)(c+ id) + 1 = 0(3.14)

−v2γ2(c− id)(a+ ib) + (e2 + f2)γ2 − 1 = 0(3.15)

(a2 + b2)γ2[(e + if)− v2(c+ id)][(e− if)− v2(c− id)]− 1 = 0(3.16)

A straight forward calculation yields,

(3.17) e = a, f = b, c =
((a2 + b2)γ2 − 1)a

v2γ2(a2 + b2)
, and d =

((a2 + b2)γ2 − 1)b

v2γ2(a2 + b2)
.

We are left to decide how to eliminate the last variable. Substituting equations
3.17, using the matrix 3.13, into 3.12 gives the basic conditions on a and b, which
simplifies to:

(3.18)
(a+ ib)2

a2 + b2
= eiθ

Unfortunately, this equation doesn’t seem to say much. It is tempting to suppose
that a2 + b2 = 1, because this choice makes B symmetric, since in that case c = a

and d = b, but it is also possible to find a stronger argument: The magnitude of the
tangent vectors, yk,s and yk,m (using the Hodge star duality in definition one) should

not be explicitly dependent on v. Thus,
∣

∣yk,s
∣

∣

2
= −(a2 + b2)γ2 + ((a2+b2)γ2−1)2

v2γ2(a2+b2) , and

a short calculation (using γ2 = 1
1−v2 , of course) shows that the only solution to

∂
∂v

(
∣

∣yk,s
∣

∣

2
) = 0 is (a2 + b2) = 1. Thus, the whole exercise boils down to multiplying

the usual Lorentz transformation by a complex phase factor, exp (iφ).
In any case, to finish the calculation and interpret exp (iφ) in terms of u, the

next decision we have to make is whether to solve for a or for b. If we let u = m
r
be

a or b, as the case may be, one way we get (a+ ib) = u+ i
√
1− u2 and the other we

get (a+ ib) =
√
1− u2+ iu. In the first case the usual (non-phase space) relativistic

limit is recovered when u = 1 (since the imaginary part of the factor, u+ i
√
1− u2

needs to be zero in this limit). In the second case, the usual relativistic limit occurs
when u = 0. Of course, there is really no reason why the relativistic limit could not
occur when both factors are pure imaginary, so that these considerations would be
reversed. Thus, the simplest choice (I think it does not matter, in fact) is to let

(a+ ib) =
√
1− u2 + iu.

Thus, to summarize our final result:

(3.19) B =





γ(u+ i
√
1− u2) −vγ(u+ i

√
1− u2) 0

−vγ(u+ i
√
1− u2) γ(u+ i

√
1− u2) 0

0 0 1





4. Discussion and Consequences of the Phase Space Lorentz

Transformation

4.1. Effective Metric. At this point it is worth taking some time to try to inter-
pret the transformation physically. This isn’t easy, since the complex phase space
we have constructed appears to be much more of a configuration space than even
the usual Minkowski space. In addition, the corrections appear to be virtually un-
measurable excepting, in the relativistic phase space limit, which entails enormous
gravity fields. Apart from this environment not normally being considered within
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the context of special relativity, the high gravity environment is so beyond our ordi-
nary experience that it is difficult to be sure exactly what the equations are telling
us.

In the first place it is useful to ask if we effectively have a metric. Using the
Hodge star dual in definition 3.1, the matrix B in equation 3.19 is clearly Lorentz

orthogonal. So apparently definition 1 together with the condition, ∂
∂v

(
∣

∣yk,s
∣

∣

2
) = 0,

are sufficient conditions to induce a complex conjugated metric. So for the rest of
the paper we will mostly just use the induced metric to simplify the considerations.

4.2. Complex Phase Space, Energy Equation and Space-Time-Matter.

Following the usual procedure in special relativity, we can define a “four-velocity”
(actually only a “two-velocity” here), by

Definition 4.1.

(4.1) U = (
√

1− u2 + iu)γ < 1, v >

It is not immediately obvious how to construct the phase space “four momentum”
from the four velocity. It is tempting to set P = U(s + im), and in fact, we set
several drafts of this paper with this definition. However, this definition will not do
for reasons that will be explained later. Instead we need to use a scaled parameter,
s+im√
s2+m2

and construct the “momentum per unit length” vector:

Definition 4.2.

P̂ =< y0, y1 >= (
√

1− u2 + iu)γ < 1, v > σ(4.2)

= (
√

1− u2 + iu)γ < 1, v >
s+ im√
s2 +m2

Recall that in this expression s is the proper time and m is the proper mass of
the particle or object under consideration. γ < 1, v > is the usual “2 dimensional”
tangent vector. For the rest of the paper I have adopted the convention of desig-
nating “expressions per unit length” by hatting the usual notation. “Expression”
means the momentum, energy, etc. In addition, we have not concerned ourselves
too much with the distinction between tangent vectors (four velocity) and cotan-
gent vectors (four momentum), since in special relativity the distinction is not too
important.

Clearly, with this definition P̂ is the position vector in a complex phase space.
This is a central aspect of the current phase space construction: an important
feature of the usual theory of special relativity is the merging of space and time.
For example, the separation between events has space and time components, which
are different for different observers. In the present development we are trying to
accomplish a further merging, namely, of mass and space-time to form space-time-
matter.

There is some precedent for doing this already from general relativity and gen-
eral relativistic phase space, but I don’t think the merging in general relativity is
complete. We represent gravity with curvature, but in my opinion the curved space
is still a representation of the physical space (with masses and forces - we can talk
about curved space-time around the Sun, but the Sun is obviously still there), and
not an actual merging of space-time and matter. The Einstein field equations serve
as a “code” for converting matter and energy into a curved space-time model, and
back again, but there isn’t an actual merging.
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In any case, it is of some interest to multiply-out the two complex factors in
equation 4.2 to get:

(4.3) P̂ =

[

(s
√
1− u2 − um) + i(m

√
1− u2 + us)

]

√
s2 +m2

γ < 1, v >

In this expression, recall that for ordinary terrestrial physics or fundamental
particle physics, u and especially u2 are vanishingly small, so that to great ac-
curacy for terrestrial experiments, P̂ = s+im√

s2+m2
γ < 1, v >. In addition, in this

limiting case,
√
s2 +m2 ≈ s, so we can recover the usual momentum vector as

P = (s + im)γ < 1, v >. In this limit the space-time and mass aspects of P have
been separated into the usual position vector and momentum vectors of special rel-
ativity. So in this limit we have only accomplished the merging of space-time and
mass transformation equations into a single expression, essentially a one parameter
special relativistic phase space. This phase space is the special relativistic analogue
of classical phase space.

Before discussing this further it is worth calculating the energy per unit length
of the particle. Using the special relativistic equation, E2 = −P · P, we have
immediately,

(4.4) E2 = s2 +m2

Recall that we are using a complex conjugated, Lorentz metric with η00 = −1,
so that the “four velocity” has constant magnitude equal to -1. It is interesting
to insert the clusters of constants needed to make this equation have metric units
(kilograms, metres and seconds). In this case,

(4.5) E2 =
s2c10

G2
+m2c4

The second term in equation 4.5 is just the usual relativistic mass energy term,
but the first term is new. Apparently this means that as time passes, we must
include the energy of free space inside a spherical ball of radius r = sc, i.e., keep
r on the null cone. If we ignore the mass energy term (which is minuscule by

comparison for terrestrial experiments), then we have E = sc5

G
, so the energy to

radius ratio of a ball of free space with radius r = sc has the colossal value of,

(4.6) Ê =
c4

G
≈ 1.21× 1044joules per metre

Thus, in the present phase space construction, free space has an energy to radius

ratio equal to that of matter that has been compressed to the limiting ratio of c2

G
.

The obvious conjecture is that in this limit matter has been crushed into empty
space. I don’t think this is so far fetched, even from the point of view of general
relativity, since in the latter theory matter is predicted to be crushed into a space-
time singularity. The current approach dispenses with the need for a singularity,
by assumption, to keep u bounded. The concept of energy of space-time gives the
mass energy some where to go, so that we do not need a singularity. Nevertheless,
there are clearly problems with energy conservation, discussed presently.

At this point we can understand what is wrong with using E instead of Ê.
Equation 4.5 seems to say that the energy of a region of space-time-matter, with

a value of u ≈ 1, has a total energy of E =
√
2sc5

G
, so that Ê =

√
2c4

G
. This won’t



9

do, because equation 4.6 says that Ê for free space does not have the factor of√
2. Thus, the conclusion I have drawn from this is simply that energy is not a

relativistic phase space invariant, and instead the important (invariant) quantity

is Ê. If we compute Ê directly using P̂, we get Ê = 1, as expected. This says

the total energy per unit length (of radius) of any ball of space-time-matter is c4

G
.

Evidently energy is not conserved in this relativistic limiting case. We will returned
to this issue.

A less obvious consequence of equation 4.6, and no doubt much more contro-
versial, is that the external gravity field of a “black hole” is apparently zero. This
follows from the direct experiential fact that the gravity field of free space is zero.

Since matter at the extreme limit of c2

G
appears to have been crushed into free

space, there is no external gravity field. The immediate objection is that there
appears to be ample evidence that extremely strong gravity fields (too strong to be
neutron stars) are common in the universe. However, below we have shown that
equation 4.3 seems to suggests that there is a maximal gravity field with u several
times larger than a neutron star, but still well below the critical value of u = 1.

4.3. Addition formula for u. At this point, it would be helpful to try to under-
stand the parameter u a little better. Apparently, u is quite different from v, since
each observer can measure u (for their own reference frame or another observer)
within their own frame, i.e., u appears to be absolute, whereas, v is relative be-
tween observers. Nevertheless, great caution is needed, since we have so little direct
experimental data that illuminates the property being measured by u. In any case,
since there is an upper bound for u, we do have to assume there is a “relativistic
addition” rule. We can calculate the exact expression for addition of u (using a
combination of the polar and algebraic forms for the complex factor of modulus
one):

exp(iφ) = expi(θ1 + θ2) = exp(iθ1)× exp(iθ2) =

(
√

1− u2
1 + iu1)(

√

1− u2
2 + iu2) =

√

1− u2
1

√

1− u2
2 − u1u2 + i(u2

√

1− u2
1 + u1

√

1− u2
2)(4.7)

If we compare the real and imaginary parts of this last expression with the form,√
1− w2 + iw, it is straight forward to verify that

(4.8) w = u2

√

1− u2
1 + u1

√

1− u2
2

satisfies both the real and imaginary parts. It can also be readily verified that
0 ≤ w ≤ 1. Thus, equation 4.8 is the phase space addition formula for u. Notice
that for terrestrial values of u1 and u2 (minuscule), w ≈ u1 + u2 to a high degree
of accuracy. We need to be careful how we interpret this equation: apparently this
equation would apply to say an observer at the center of the earth who made a
further measurement of an object at the surface of the earth. Then u1 would be
for the earth and u2 would be for the object. In particular, we would apparently
not use equation 4.8 to measure the results of say, a collision of two neutron stars
(assuming the stars coalesced into one star).

The phase space development gives us a way to make sense of u for a small
irregularly shaped object for which the value of r to be used in computing the
ratio m

r
is apparently unclear. The value of r always makes sense in the phase
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space approach as r = sc, where s is the minimum possible proper time needed to
measure u. So r is on the light cone. Incidently, this definition makes s have an
inherent value for each object, in the same way that m apparently seems to have
an inherent value. So for example, a steel rod of length L would be understood to
have r = L

2 (observed from the center in the rest frame, which makes s as small as
possible), because according to the phase space development, the rod consists of its
mass and shape as a rod, but also includes a ball of space-time with proper time
s = L

2c .

4.4. Possibility of a Maximal Gravity Field. Before discussing the possibility
of a maximal gravity field, I would like to suggest that the result of general relativity
that assumes that a black hole has an enormous gravity field depends on a principle
that I think is not relativistic: the usual explanation is that the space-time around
the black hole is permanently curved as the matter collapses. A principle such
as this is needed because the source of the gravity field inside the event horizon
has no way of communicating with the external field (at least within the context
of general relativity alone and assuming either weak or strong cosmic censorship).
In my opinion this is not a general relativistic principle because it is not local:
according to the usual explanation the space around the event horizon stays curved
for all time, i.e. for an extended separation of space-time (at least in absence of
encounters with other gravity fields or quantum effects). I think the explanation
that is true to relativity is that space-time must constantly be informed from the
(local) source of the gravity field. Since the source is not available (it is inside the
event horizon), the field vanishes.

I am well aware that gravitons, assumed to be the “messenger” for gravity, are
not predicted to radiate unless the field changes. I think this just means we will
have to devise a more sophisticated model of how gravity fields are sustained, and
electrostatic fields for that matter. The issue here also raises the old debate of
“gravity is curvature of space time” versus “curvature of space time is a represen-
tation of gravity”. The present approach is consistent only with the representation
point of view, because the physics is gone behind the event horizon, so there should
be no curvature as well. I believe the “gravity is curvature” view is too extreme for
the simple reason that we can still go into the lab and do all sorts of non-gravity
physics, say measure a current or a temperature, so it would be very peculiar if
gravity was not also physical. Thus, general relativity is surely a configuration
space, a way to represent gravity geometrically: we can do either physics or geom-
etry. Thus, if the physics is gone (behind the event horizon - or crushed into free
space according to the current development) the geometry must be flat.

Finally, I would like to point out that the phase phase approach considered in
this paper requires one to think of space-time and matter as unified, so I am not
sure that it even makes any sense within the present work to talk about a source of a
gravity field that is separated from the external field. The phase space development
keeps the source and the space-time around the source united by replacing the
singularity with the space-time-matter energy per unit length calculated in equation
4.6. According to equation 4.6 the state of the matter in a ball of space-time-matter,
if any, is irrelevant, since the energy per unit length of radius is constant.

Returning now to equation 4.3, since r = sc = s if c = 1, we can write m = ur =
us to get,
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(4.9) P̂ =

[

(
√
1− u2 − u2) + i(u

√
1− u2 + u)

]

√
1 + u2

γ < 1, v >

In this form the real and imaginary part of P̂ have a very interesting property,
namely, if

(4.10) u =

√

2
√
5− 2

2
≈ 0.78615,

then the real part of P̂ is zero, and the imaginary part takes its maximum value
(= 1). It is unclear to me exactly how gravity manifests itself in the phase space

approach, but I think it makes sense to argue that when the real part of P̂ = 0,
P̂ is entirely “mass like”, which we could understand to be representative of the
state of space-time-matter for which the maximal gravity field occurs. In this
picture gravity is understood to be the propensity of space-time-matter to become
completely mass like. The more mass-like a region of space-time-matter is, then
the stronger the external gravity field. Thus, within the discussion of this paper,
I think the only reasonable interpretation of the existence of the special value of u
given in equation 4.10 is that there is a maximal gravity field at this value of u.

The unique value of u in equation 4.10 is only valid for the hatted variables:
The real part P has a zero at this value of u, but the imaginary part of P has
a maximum at a larger value of u ≈ 0.87. Yet another argument why the hatted
variables are a more natural choice.

Of course, a solid conceptual challenge of the present development is that the
parameter u is not very intuitive, whereas the similar parameter, density, is quite
intuitive and constantly interferes with thinking about u. For example, for a very
large region of space-time-matter, say most of the observable universe, u might be
greater than 0.1, even though the density of matter is near 0. In the phase space
approach a large region of space-time-matter and a compact region of space-time-

matter have an immediate difference in the expression for P̂, namely the value of
s. So, if s is large then the region of space-time-matter is large, etc. In any case,
in the statement “how far a region of space-time-matter is from being completely
space-time like” we have to be very careful not to confuse this with density.

It is important to observe that the value of u considered above, substantially
exceeds the value of u for a typical neutron star (≈ 0.1 − 0.2). Thus, I think
the maximal gravity field concept can be used to explain all of the experimental
evidence for enormous gravity fields. For example, the best evidence for super black
holes asserts that ∼ 3.7 million solar masses reside at the center of our galaxy,
inside of a ball the size of the inner solar system, approximately extending out to
Jupiter [12, 11]. This is certainly an unimaginable region of space, but is far from a
black hole: u ≈ 0.02, so we are not even in the neutron star range. For 3-4 million
solar masses to form a black hole they would need to be confined to a region with
a radius of about 9 - 12 million kilometres. Thus, the latest evidence only directly
supports the black hole singularity idea if we invoke a theory (general relativity)
that says such a massive compact object must collapse to a singularity.

Although the phase space approach discussed in this paper is not intended to be
a theory of gravity, the concept of a maximal gravity field seems to force a certain
structure on a region of space-time-matter with u = m

r
equal to the maximal value.

Apparently, for such a region to be stable, u needs to have the maximal value for
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any internal value of r, i.e., for any ball of space-time-matter interior to the region
we need to have u equal to the maximal value for the whole region to be stable.
Then the density function with respect to the observer’s rest frame at the center,
should be structured to keep u constant for any internal value of r. If the region has
radius R and mass M , then it is straight forward to show that the density function
needs to be ρ(r) = 3M

4πRr2
. With this density function for any r inside the region of

space m
r
= ρ(r)V (r)

r
= M

R
, where V (r) is the volume of a ball of space of radius r.

Therefore, as the observer sights along a radial line from the origin, the density
of matter inside the region is observed to drop as a function of the inverse square.
Of course, it is not clear exactly what this r means, since our experience with
general relativity is that the gravity field affects our observation of r. However, it
seems reasonable to suppose that at least asymptotically, r has some resemblance
to ordinary radial distance.

However that may be, the above density function suggests that a region of space
with the maximal u need not have a hard surface. This is important, because
accretion disk theory suggests that the hard surfaces of neutron stars and the event
horizons of black holes should be observationally distinguishable [14, 5].

In addition, it is hard not to wonder if there is some sort of duality relationship
between the parameter u and the inverse square law for gravity (in the Newtonian
limit). Recall that we are imagining that gravity is the propensity of a region of
space-time-matter to be mass-like, so if the density of matter is reduced as the
inverse square of r, this might explain why the gravity field decreases as the inverse
square of r.

Another point of interest is that the energy in free space is not “mass like”,
because if it were, then free space would have a gravity field so large that it would
be opaque. I think the phase space approach offers a way-out of the problem posed
by the prediction of enormous amounts of background energy (both the present
approach and quantum field theory): space-time energy simply does not generate a
gravity field. Only, mass like energy generates gravity fields. Specifically, only the
mass part (imaginary part) of P̂ generates a gravity field.

4.5. Violation of Conservation of Energy. As already mentioned, one of the
most startling predictions of the phase space development given here is that in ex-
tremely high gravity fields conservation of energy apparently does not hold. What
is conserved for all values of u and v is the energy to length ratio of any region of

space-time-matter, c4

G
. Of course, if u is much less than 0.1 or so, the general phase

space reduces to the special case of Minkowski phase space, where conservation
of energy is correct to a high degree of approximation (I think deviations are not

experimentally verifiable). The energy equation, 4.5 reduces to c4

G
for u << 1. For

example, for a 1 kilogram mass with assigned proper time, s, such that sc = 1

metre, the energy calculated using equation 4.5 differs from c4

G
by about 3× 10−53

percent. Since the extreme high gravity environment is so unfamiliar experimen-
tally, it is hard to know what this conclusion means, but apparently we experience
conservation of energy in the low gravity environment, because the space-time en-
ergy is so enormous and so far undetectable. Hence, we only detect masslike energy,
unmixed with space-time energy, so energy appears to be conserved, i.e., E = m

for all Lorentz observers.
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4.6. Symplectic Relativity Revised. In the usual theory of special relativistic,
Hamiltonian Mechanics (non-quantum) the Hamiltonian is constant, i.e., H = m,
where m is the rest mass of the particle. In the current development, H =√
s2 +m2, so we can continue the development with a time dependent Hamil-

tonian, even within special relativity. Actually, we can treat the rest mass as a
variable too, deriving a two parameter special relativistic symplectic mechanics.

Apparently, a better choice would be to use the hatted Hamiltonian, Ĥ = c4

G
, but

I am not sure how hatted symplectic mechanics works. A complex Hamiltonian,

such as, Ĥ = s+im√
s2+m2

also seems possible. Obviously, if the special relativistic

phase space approach is viable, it would be a good plan to work-out some of these
ideas before exploring the impact on quantum mechanics. Evidently, we need to
use hatted energy and momentum operators and I don’t know what these would
be. However, the last section of this paper may help.

5. Some Further Possible Developments of the Special Relativistic

Phase Space Approach

In this section we will consider two possible further developments of the special
relativistic phase space, namely adding more parameters and deriving equations
of motions from the Lagrangian given in equation 3.3. In both these discussions,
v remains constant. Another possibility that I haven’t discussed in this paper is
extending the phase space to general relativity, i.e., a simplectic space in which both
proper mass and proper time are included as parameters. I just don’t understand
the present phase space approach well enough at this time, to know how to extend
it to general relativity.

5.1. More Parameters. Having taken the plunge of forming a two parameter
complex phase space, merging space-time with matter, it is reasonable to wonder
if that is all we can do. For example, an obvious and appealing choice is to add the
charge to mass ratio, w = q

m
, to our list of parameters, v and u (adding the current

would be another possibility). There is even a convenient cluster of constants with
dimension of charge to mass, namely,

√
ǫoG, where ǫo is the permittivity of free

space. At first glance this cluster of constants will not do, because in metric units,
the value of

√
ǫoG ≈ 10−11 , whereas the the charge to mass ratio of an electron

is 1.76 × 1011coul/kg. Of course, the charge to mass ratio of many particles (and
large bodies) is zero, so apparently

√
ǫoG cannot serve as a boundary value (lower

or upper) in the sense of c and c2

G
. However, on further reflection, in the phase

space development, w = q
m

or the current, q
s
are not really appropriate parameters,

since we have ignored the whole point of the phase space approach, namely, that
space-time and matter have been unified. Thus, the parameter that we want in the
phase space approach of this paper is a combined parameter, such as, w = q√

s2+m2

or possibly w = q
s+im

. Maybe an even better choice is a hatted parameter, ŵ = qG
rc2

,
where r is the relativistic Compton radius for the phase space. We have calculated
r below.

For any of these parameters, w (or ŵ) can be reconciled with the “boundary”
cluster of constants if we include the solid angle factor in the cluster to get,

√
4πǫoG.

To make the reconciliation we first need to recalculate the standard relativistic
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expression for the Compton radius of an electron,

(5.1) r =
e2

4πǫomc2
= 2.817940325× 10−15.

using the phase space approach of this paper. The factor ofmc2 in the denominator
needs to be replaced with the phase space expression for the total energy per unit
length of a region of space filled by the electron, given in equation 4.6. So we want

to replace mc2 with rc4

G
. This gives,

(5.2) r =
e2G

4πǫorc4

Solving for r, we get,

(5.3) r =
e

c2

√

G

4πǫo
≈ 0.13767776994× 10−35metres

This seems like an interesting result: the phase space approach appears to predict
that the electron Compton radius is only about 9% of the Planck Length. Of
course, it would be quite significant if r worked-out to exactly the Planck length.
I have searched for a simple way to adjust the above calculation, but can’t find
a suitable method. Obviously, we could start by normalizing both lengths over
the same angle (the Compton radius is averaged over a solid angle, whereas the
Planck length is averaged over a polar angle), but doing this doesn’t make the
two lengths equal. Evidently charge quantization is independent of spacial-energy
quantization measured by Planck’s constant. Why this is so when we have the
energy equation, E = hν, clearly also an electromagnetic equation, is baffling. For
the record, the ratio of the Planck Length L to the phase space Compton radius is
L
rc

=
√
2hǫoc
e

≈ 11.4675833875.
In any case, the extended value of r is presumably a great success of the phase

space approach, since quantum field theory works best if r is just assumed to be
zero. There is a problem with this calculation that perhaps makes it not particularly

useful, namely, the vast majority of the energy in the expression E = rc4

G
is not

accessible by any known means (at least, short of applying immense gravity fields),
so it will not really contribute in a practical experiment. So perhaps equation
5.1 will remain the practical Compton radius. This is also likely, simply because
the phase space version of the Compton radius does not depend on the mass of the
particle. It is perhaps worth mentioning that the utility of the relativistic Compton
radius calculated in equation 5.1 must mostly be a coincidence, since the energy
factor used in the denominator, E = mc2 is not accessible except for the highest
energy experiments, e.g., an electron-positron annihilation.

Continuing with the calculation of the relativistic phase space “charge to mass
ratio” of an electron: using r from equation 5.3 in w = q√

s2+m2
, and inserting

the appropriate constants (q = e), w works out to w = .8613270258 × 10−10.
Comparing, this is exactly equal to,

√
4πǫoG, at least to ten decimal places. The

electron “charge to mass” ratio is actually smaller than
√
4πǫoG, but according to

Maple the difference is of order 10−80.

Alternatively, if we define w = q(s−im)
s2+m2 then the real part works out to .8613270258×

10−10 and the imaginary part works out to −.4223547307 × 10−31. Then |w| =
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.8613270258× 10−10. This time |w| differs from
√
4πǫoG in approximately the for-

tieth decimal place. The hatted version works-out to exactly, ŵ =
√
4πǫoG, which

isn’t surprising.
Unfortunately, it does not look like w (any version) is going to be a very useful

parameter, because the relativistic phase space Compton radius does not depend on
the mass. So ŵ =

√
4πǫoG for any particle with non-zero charge. Evidently, in the

space-time-matter-charge configuration space, in geometrized units (4πǫo = 1), the
“charge to mass ratio” of any particle with non-zero charge is 1. This is apparently
similar to the fact that in the usual theory of special relativity, the four velocity
has magnitude -1 for any particle. Probably the complex version of w will be the
most useful, because we can study the components.

More generally, the difference in magnitude between the standard value of the
charge to mass ratio of an electron, 1.76 × 1011coul/kg, and cluster of constants,√
4πǫoG, seems to refute the idea that clusters of constants serve as boundary

values for relativistic parameters. In particular, without the possible reconciliation

available with the phase space approach, even the idea of u and its boundary of c2

G

would be suspect, since we would have found a simple counterexample in w. So the
reconciliation explained above is of theoretical interest, since it saves the day for
the idea that certain relativistic parameters are bounded by universal constants (or
clusters of constants) that I have assumed have the same values for all observers.
In any case, we can continue with a sketch of the phase space development with
more parameters.

The next important step would be to decide on a number system with which
to express the additional parameters. The quaternions seem to be the best bet,
but I don’t know what to do with the fourth generator (only three generators
seem to be needed: one for each of v, u, and w). The fourth generator needs to
be a physical quantity commonly parameterized by all of the proper time, proper
mass and the charge. Also, the quaternions have anti-commutative multiplication
between imaginary generators, and I don’t know what that means (why would
ui× wj = uwk = −wj × ui?). Perhaps this is just what we need, since the metric
we have been using for section 4 and 5 of this paper is actually a symplectic two
form, which also anticommutes. The numbers that we use need to have the complex
numbers as a subfield, so for example, the Dirac or Pauli matrices are out. In any
case, we can construct the velocity vector in an extended phase space in Q2, (Q for
quaternions):

(5.4) U = (
√

1− u2 − w2 − z2 + iu+ jw + kz)γ < 1, v >

In this equation i, j, and k are the generators of the quaternions, and z is the
unknown fourth parameter. This expression is going to have to be interpreted
very carefully, because charge is invariant in special relativity. In any case, we can
conjecture that the momentum form is given by:

(5.5)

P̂ =< y0, y1 >= (
√

1− u2 − w2 − z2+iu+jw+kz)γ < 1, v >
s+ im+ jq + kn

√

s2 +m2 + q2 + n2

In this equation n is the proper parameter that is associated with z. Then it
is tempting to conjecture that the revised energy equation will just work-out to
E2 = s2 + m2 + q2 (assuming n = 0), using units in which c, G and 4πǫo are all
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1. The justification for this conjecture is that whatever the actual formulation is,
the resulting tangent vector (form) will have magnitude of -1. Thus, there will be
some extended momentum vector, and E2 will still be equal to −P · P. Inserting
the appropriate constants,

(5.6) E2 =
s2c10

G2
+m2c4 +

q2c4

4πǫoG

Presumably this expression will need to be re-scaled in some way to give equation
4.6. But for now we can see that the contribution to the total energy from the charge

term in equation 5.4 is E = qc2√
4πǫoG

. For q = 1.6× 10−19coul, E ≈ 1.3× 103joules,

which is enormous (approximately 16 orders of magnitude larger than the mass
energy of an electron). However, the phase space approach gives no clues as to
how this energy can be accessed. We can interpret this result as simply the stored
energy due to the charge, in the same way that the phase space approach developed
in this paper predicts that there is a huge amount of energy stored in free space.
So far we do not know how to access the energy stored in free space, either. It is
straight forward to show that the ratio between the charge energy and the space-
time energy per unit length is just the phase space Compton radius that we found
before (equation 5.3).

Notice that we will most likely need to use a parameter with unit modulus, so
equation 4.6 still holds. We then have space-time energy, charge energy, and mass
energy all intermixed in any region of space-time-matter-charge.

We haven’t discovered how to include charge in such a way that the charge
remains invariant (with respect to changes in v) in the appropriate special cases,
so the suggestions here can’t be correct, but gives some idea of how a further
development in this direction might go.

5.2. Derivation of Equations of Motion. As previously observed the phase
space Lorentz transformation (equation 3.19) can be derived simply using a complex
conjugated metric, but one reason to use the Lagrangian in equation 3.3 is so we
can apply an action principle to derive a set of equations which we can then solve
to find a general expression for P. First recall equation 3.3:

(5.7) L2 = δ01kl δ
01
np(y

k
,sy

l
,m)†yn,sy

p
,m + δ20kl δ

20
np(y

k
,sy

l
,m)†yn,sy

p
,m − δ12kl δ

12
np(y

k
,sy

l
,m)†yn,sy

p
,m

In this expression the yk’s are understood to be the components of the generalized

phase space (simplectic) momentum vector P or P̂. I have already given one special

case for P̂ in definition 4.2. Then the yks and −iykm partials are tangent vectors.
The factor of −i in front of the m partial arises because m is the imaginary part of
the complex parameter, σ = s + im. To keep the equations as simple as possible,
we will continue in accordance with equation 3.19, and assume that y2 = 1. For
the following derivation I am assuming that the particle follows a stationary path
defined by the Euler-Lagrange equations for L2. Recall [10] that these equations
are as follows:

(5.8)
∂L2

∂yk
− D

Dm
(
∂L2

∂ykm
)− D

Ds
(
∂L2

∂yks
) = 0

In these equations D
Dm

and D
Ds

are “total” derivatives, i.e., the chain rule should

be applied when differentiating ∂L2

∂yk
m

and ∂L2

∂yk
s

. We have used the special notation,
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because for example, the expression ∂L2

∂yk
m

doesn’t have explicit dependence on m,

so the ordinary partial of this expression with respect to m would be zero. This
is not what we want. Also, in the second term on the left hand side of equation
5.6, factors of i that arise from differentiating with respect to m, have canceled.
For simplicity, I am assuming that k = 0, 1. In any case, substitution of equation
5.5 into equation 5.6 and simplifications yields the system of partial equations that
govern the motion of the particle in the special relativistic phase space discussed in
this paper.

(y1s)
2y0mm − y0sy

1
sy

1
mm − 2y1my1sy

0
sm + (y0my1s + y1my0s)y

1
sm +(5.9)

(y1m)2y0ss − y0my1my1ss = 0

(y0s)
2y1mm − y1sy

0
sy

0
mm − 2y0my0sy

1
sm + (y1my0s + y0my1s)y

0
sm +(5.10)

(y0m)2y1ss − y1my0my0ss = 0

Since equations 5.7 and 5.8 both involve second order partials in every term, the
momentum vector defined in 4.2 obviously satisfies both equations.

The system of equations in 5.7 and 5.8 has many solutions. For example, < f(s+
im), f(s−im) > satisfies both equations for any twice differentiable f (differentiable
in the sense of multi-dimensional calculus-f(s−im) is obviously not analytic, unless
f is constant). We would like a solution that linearizes to the momentum vector
defined in 4.2. One possibility is,
(5.11)

< y0, y1 >=< γ(exp((
√

1− u2+iu)(
s+ im√
1 + u2

))−1), vγ(exp((
√

1− u2+iu)(
s+ im√
1 + u2

))−1 >

It can be readily verified that any vector of the form,

(5.12) < y0, y1 >=< A exp(a(s+ im)), B exp(b(s+ im)) >

satisfies 5.7 and 5.8, where A,B, a and b are arbitrary (complex) constants.
Hence, the solution in equation 5.9.

Frankly, I do not understand what the solution in equation 5.9 means. Certainly,
v is constant, so this equation is not about actual motion, just configuration space
motion. If ŷ =< y0, y1 >, then certainly both the tangent vectors, ŷs and ŷm have
magnitudes of −1, using the complex conjugated Lorentz metric (explained section
4). It is entirely unclear to me what kind of boundary conditions to impose on the
system in 5.9.

Since the constants, a and b in equation 5.10 do not need to be real, we must
have wave solutions as well. In fact, the solution in 5.9 is already a wave with an
increasing amplitude.

6. Conclusion

In this paper we have developed a complex phase space within the context of
special relativity. Minkowski space (space-time) is changed to a space-time-matter
configuration space in C2 or (C4), by including a complex phase factor in the
Lorentz metric and allowing the proper mass to be treated as a parameter. Unfor-
tunately, the limiting case for which u ≈ 1 is the domain of enormous gravity fields,
so full interpretation of the results will probably require generalizations of the tech-
niques discussed in this paper to general relativity. Nevertheless, the phase space
approach seems to provide an alternative to gravitational singularities: matter is
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crushed into free space as u increases past u ≈ .79 and there is a stable maximum
gravity field with a soft surface.

According to the development in this paper, the special relativistic phase space
expression for the energy is E2 = s2 +m2. Among other things, this equation says
that ordinary space-time contains an unfathomable amount of energy. Apparently,
the quantity that is invariant in the phase space is the energy to length ratio,

E = c4

G
. I have discussed a number of other consequences as well, such as the

baffling similarity (but not equality) of the phase space Compton radius and the
Planck length.

Finally, I have considered some further developments of the approach. It cer-
tainly seems likely that more parameters can be added, that an interesting two
parameter Hamiltonian mechanics can be constructed (using either energy or en-
ergy per unit length), which should have consequences for quantum mechanics, and
that the general equations of “motion” in space-time-matter have many possible
solutions.
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