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Abstract

Measurements of flavor ratios of astrophysical neutrino fluxes are sensitive to the two yet un-

known mixing parameters θ13 and δ through the combination sin θ13 cos δ. We extend previous

studies by considering the possibility that neutrino fluxes from more than a single type of sources

will be measured. We point out that, if reactor experiments establish a lower bound on θ13, then

neutrino telescopes might establish an upper bound on | cos δ| that is smaller than one, and by that

prove that CP is violated in neutrino oscillations. Such a measurement requires several favorable

ingredients to occur: (i) θ13 is not far below the present upper bound; (ii) The uncertainties in

θ12 and θ23 are reduced by a factor of about two; (iii) Neutrino fluxes from muon-damped sources

are identified, and their flavor ratios measured with accuracy of order 10% or better. For the last

condition to be achieved with the planned km3 detectors, the neutrino flux should be close to the

Waxman-Bahcall bound. It motivates neutrino telescopes that are effectively about 10 times larger

than IceCube for energies of O(100 TeV ), even at the expense of a higher energy threshold.
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I. INTRODUCTION

One of the main goals of future neutrino experiments [1] is to observe CP violation in

neutrino oscillations. The significance of such a measurement goes beyond the determination

of a fundamental parameter of Nature: it can give further qualitative support to leptogenesis,

the idea that the observed baryon asymmetry of the Universe has its source in a lepton

asymmetry generated in neutrino interactions. In some scenarios, it is even quantitatively

related to leptogenesis.

Neutrino telescopes [2], such as the IceCube experiment, aim to observe neutrinos coming

from astrophysical sources. The experiments will provide information on the direction,

energy, and flavor of the incoming neutrinos. In particular, ratios between fluxes of different

flavors arriving to the detector can be measured. Ratios between these fluxes at the source

are predicted by rather robust theoretical considerations.

The modifications of the flavor ratios between source and detector originate from neutrino

oscillations. This means that the relations between the fluxes at the source and the fluxes at

the detector depend on the neutrino parameters in a calculable way. Flavor measurements

in neutrino telescopes can thus provide information on the neutrino mixing parameters

[3, 4, 5, 6, 7, 8, 9]. In particular, there is sensitivity to two yet unknown parameters: the

mixing angle θ13 and the CP violating phase δ.

CP violation in neutrino oscillations can, in principle, be observed via interference terms.

For neutrinos coming from astrophysical sources, such interference terms are washed out, and

the measured fluxes are therefore sensitive only to CP conserving parameters. Specifically,

the measured flavor ratios are sensitive to the combination

∆13 ≡ sin θ13 cos δ. (1)

Since θ13 is experimentally bounded from above and known to be small, it is convenient to

write the flavor ratios in the general form a + b∆13, where a and b are known functions of

the two measured parameters, θ12 and θ23, but independent of θ13 and δ. The b∆13 term

provides a small correction to the zeroth order prediction a. If sin θ13 = 0, or if CP violation

is maximal, i.e. δ = π/2 or 3π/2, the correction term is absent.

If sin θ13 is close to the present experimental upper bound, it is likely to be measured in

near future reactor experiments [10]. In that case, if neutrino telescopes are able to exclude

2



a correction term as large as ±b sin θ13, they will establish that cos δ 6= ±1 and, by that, will

discover that CP is violated in neutrino interactions.

Our goal in this paper is to analyze whether such a discovery of CP violation by neutrino

telescopes is at all possible. More concretely, we do the following. On the qualitative level,

we find what types of sources and what types of flavor ratios provide the strongest sensitivity

to the parameters of interest. On the quantitative level, we estimate the accuracy that is

required in these measurements and in independent measurements of the mixing angles in

order to establish that the CP violating phase is different from 0 and from π. Our final

conclusion is that, with large θ13 and near-maximal CP violation, and under some favorable

circumstances, it may be possible for IceCube (or, more easily, for future, larger detectors)

to establish CP violation in neutrino interactions.

II. FLAVOR RATIOS AND MIXING PARAMETERS

Our goal in this section is to derive analytical expressions for neutrino flavor fluxes that

can be measured in neutrino telescopes and, in particular, in IceCube.

Neutrino telescopes can identify the neutrino flavor (α = e, µ, τ) via its characteristic

interaction topology [11, 12]. IceCube has an energy threshold ∼ 100 GeV for detecting

muon tracks, and ∼ 1 TeV for detecting electron- and tau-related showers. Above an energy

threshold ∼ 1 PeV , it is possible to distinguish between the electron-related electromagnetic

showers and the tau-related hadronic showers. Finally, around E ∼ 6.3 PeV , the Glashow

resonance may allow the identification of ν̄e events [7, 13].

We denote the flux of να + ν̄α measured at the detector by φd
α; the flux of antineutrinos

ν̄α is denoted by φ̄d
α. We consider the following flavor ratios:

R ≡
φd
µ

φd
e + φd

τ

, (2)

S ≡
φd
e

φd
τ

, (3)

T ≡
φ̄d
e

φd
µ

. (4)

Below E ∼ PeV , only R can be measured. At higher energies, S and perhaps T may become

available.
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We denote the flux of να + ν̄α emitted from the source by φs
α. The relation between φs

α

and φd
β is given by

φd
β = Pβαφ

s
α, (5)

where Pβα ≡ P (να → νβ) is the transition probability from a flavor να at the source to a

flavor νβ at the detector.

For propagation over astronomical distance scales, the distance-dependent oscillatory

terms average out, and Pβα depends on mixing parameters only:

Pβα =
∑

i

|Uαi|
2|Uβi

|2. (6)

Here U is the unitary transformation that relates the neutrino interaction eigenstates να

(α = e, µ, τ) and mass eigenstates νi (i = 1, 2, 3):

|να〉 = U∗
αi|νi〉. (7)

We parametrize the matrix U by three mixing angles, θ12, θ23 and θ13, and three CP violating

phases, δ, α1 and α2:

U =















c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13





























eiα1/2

eiα2/2

1















, (8)

where cij ≡ cos θij , sij ≡ sin θij . It is clear from Eq. (6) that Pβα is independent of the

phases α1,2. It depends on the three mixing angles θij and on δ.

Since it is experimentally known that θ13 is small (see Table I), it is convenient to write

down the flavor transition probabilities to first order in ∆13 (see Eq. (1)) [14, 15, 16]:

Pee ≃ 1−
1

2
sin2 2θ12,

Peµ ≃
1

2
sin2 2θ12 cos

2 θ23 +
1

4
sin 2θ23 sin 4θ12∆13,

Pµµ ≃ 1−
1

2

(

cos4 θ23 sin
2 2θ12 + sin2 2θ23

)

−
1

2
sin 2θ23 cos

2 θ23 sin 4θ12∆13,

Peτ ≃
1

2
sin2 2θ12 sin

2 θ23 −
1

4
sin 2θ23 sin 4θ12∆13,

Pµτ ≃
1

8
sin2 2θ23

(

4− sin2 2θ12
)

+
1

8
sin 4θ23 sin 4θ12∆13. (9)

The remaining probabilities can be derived from Pαβ = Pβα and
∑

α Pαβ = 1.
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III. ASTROPHYSICAL NEUTRINO SOURCES AND FLAVOR RATIOS

We consider two types of sources:

• “Pion sources” (denoted by sub-index π) provide the following flavor ratios:

φs
e : φ

s
µ : φs

τ = 1 : 2 : 0. (10)

As concerns the νe − ν̄e decomposition of φe, the situation depends on whether the

pions are produced mainly by pp or pγ interactions:

φ̄s
µ

φs
µ

=
1

2
,

φ̄s
e

φs
e

=











1/2 pp,

0 pγ.
(11)

• “Muon-damped sources” (denoted by sub-index µ) provide the following flavor ratios:

φs
e : φ

s
µ : φs

τ = 0 : 1 : 0. (12)

As concerns the νµ − ν̄µ decomposition of φµ, the situation depends on whether the

pions are produced mainly by pp or pγ interactions:

φ̄s
µ

φs
µ

=











1/2 pp,

0 pγ.
(13)

The expectation is that all sources where the initial stage of neutrino production is

charged pion decays will undergo a transition from a “pion” to “muon-damped” flavor de-

composition at high enough neutrino energies [17]. If energy losses are mainly due to syn-

chrotron radiation and inverse compton emission, the transition region is expected to span

about one decade in energy. The actual threshold energy cannot be determined model inde-

pendently and, furthermore, is likely to differ from source to source. We assume here that,

nevertheless, the transition is such that it will be possible to separate the neutrino events to

lower-energy events from pion sources and higher-energy events from muon-damped sources.

The dependence of the flavor ratios at the detector on the mixing parameters can be

obtained as follows. One starts from the fluxes at the source (in arbitrary units), Eqs. (10),

(11), (12) and (13). Then, the fluxes at the detector can be found by using Eq. (5) and the

expressions for the transition probabilities (6). Finally, the expressions are put in Eqs. (2),

(3) and (4).
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TABLE I: Experimental ranges of mixing angles [1]

Parameter Best fit 1σ range ‘Future’

sin2 θ12 0.31 0.29 − 0.33 0.31 ± 0.01

sin2 θ23 0.47 0.40 − 0.55 0.47 ± 0.04

sin2 θ13 0.00 ≤ 0.008 0.022 ± 0.003

IV. DESCRIPTION OF ANALYSIS

A. Numerical input

The current best fit values and 1σ ranges of the mixing angles are given in Table I [1].

By the time that IceCube can carry out the measurements that we discuss in this work, it

is likely that the knowledge – from other experiments – of the mixing angles will improve.

Such progress is very significant for our purposes, as we see below. In particular, in order

that the IceCube measurements will be able, even in principle, to show that δ 6= 0, it is

crucial that experiments establish that sin θ13 6= 0. For the sake of our analysis, we assume

that reactor experiments will measure sin2 2θ13 = 0.090 ± 0.013 [10]. (This value for θ13

corresponds to the current 2σ allowed range [1].) For θ12 and θ23 we assume a factor of two

improvement in the accuracy. The resulting ranges which we use to examine the question

of whether IceCube can discover CP violation are given in the column labelled ‘Future’ in

Table I. As concerns the phase, we assume that it will remain unconstrained.

To obtain an understanding of the dependence of the flavor ratios on the mixing parameter

∆13, we use the central values for the two measured angles, θ12 and θ23, and apply the

approximate relations (9). We obtain for the pion source

Rπ = 0.49− 0.15∆13,

Sπ = 1.04 + 0.52∆13,

Tπ =











0.52 + 0.28∆13 pp,

0.23 + 0.22∆13 pγ,
(14)
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and for the muon-damped source

Rµ = 0.62− 0.49∆13,

Sµ = 0.58 + 0.44∆13,

Tµ =











0.30 + 0.38∆13 pp,

0 pγ,
(15)

We emphasize, however, that in our calculations we use the full dependence on the mixing

angles [see Eq. (6)], and not just the leading order (in ∆13) expressions, Eqs. (9), (14) and

(15).

B. Experimental errors

It is not yet clear whether all of the flavor ratios defined in Section II will indeed be

available at IceCube (or any future neutrino telescope). We assume that Rπ, Rµ and Sµ will

be measured, and consider cases where Sπ and Tµ are available or not.

The goal of this work is not to obtain a detailed realistic estimate of the accuracies that

are expected in the relevant measurements. Such an estimate depends on both features of

the astrophysical neutrinos that are not yet known (e.g. the actual total flux), and features

of the detectors that will only become clear when these neutrinos are observed. The main

goal here is to find the accuracies that are required in order to establish that CP is violated.

We thus consider the following experimental accuracies in the measurements of the various

flavor ratios:

1. Rπ: we consider hypothetical accuracies of 5%, 10% or 20%. If the flux is close to the

Waxman-Bahcall bound, then we expect O(100) events, and an error of order 10%

seems realistic;

2. Sπ: In the cases that it is available, we relate the accuracy to that of Rπ, by

assuming a Poisson distribution of the number of events for each neutrino flavor.

We neglect issues of efficiency in detecting tracks versus showers. This leads to

∆Sπ/Sπ =
√

Sπ(1 + S−1
π )2/(1 +R−1

π )(∆Rπ/Rπ). Using central values from Eq. (14),

we obtain ∆Sπ/Sπ = 1.2(∆Rπ/Rπ);
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TABLE II: Scenarios for experimental accuracies

Scenario ∆Rπ/Rπ ∆Rµ/Rµ ∆Sµ/Sµ (∆Sπ/Sπ) (∆Tµ/Tµ)

(5, 5) 5 5 7 6 5

(5, 10) 5 10 13 6 10

(5, 20) 5 20 27 6 20

(10, 10) 10 10 13 12 10

(10, 20) 10 20 27 12 20

(20, 20) 20 20 27 24 20

3. Rµ: we consider hypothetical accuracies which are at best the same as the error on

Rπ and at worst 20%;

4. Sµ: Following the same line of thought as for Sπ, we use ∆Sµ/Sµ =
√

Sµ(1 + S−1
µ )2/(1 +R−1

µ )(∆Rµ/Rµ). Using central values from Eq. (15), we obtain

∆Sµ/Sµ = 1.3(∆Rµ/Rµ);

5. Tµ: In the cases that it is available, we assume ∆Tµ/Tµ = ∆Rµ/Rµ.

The various scenarios can be defined by the assumed accuracies in Rπ and Rµ: We

denote by (a, b) a scenario where the errors are ∆Rπ/Rπ = a% and ∆Rµ/Rµ = b%. The six

scenarios that we consider are presented in Table II.

We thus consider a hypothetical set of measurements – R, S, T and sin2 θij – which

provide information on θij and δ. The statistical procedure by which this information is

extracted is described in the following section.

C. Statistical procedure

Given a measurement of an observable Y meas = 〈Y 〉 ± σY , we construct χ2(θij , δ) =
∑

Y

[

〈Y 〉−Y (θij ,δ)

σY

]2

, where Y (θij , δ) represents the theoretical description of the Y observable.

The uncertainty σY is given in Table I for sin2 θij and in Table II for R, S and T . A
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statistical handling of the parameters is performed by analyzing the quantity ∆χ2(θij , δ) =

χ2 −minθij ,δ{χ
2}.

We define the N -dimensional “α% CL acceptance region”, for a subset of N out of

the four mixing parameters (θij , δ), by the region in the N parameter space for which

∆χ2
marg < C−1(α,N). Here ∆χ2

marg is obtained by marginalizing ∆χ2 with respect to the

4 −N redundant parameters and C−1(α,N) is the inverse chi-square CDF with N degrees

of freedom, evaluated at the point α. We have compared this procedure to the more compu-

tationally demanding FC construction, (as described in [18] and demonstrated, for example,

in [19]) under the assumption of gaussian measurement errors, for several sample configura-

tions. We have found a reasonable agreement between our simplified method and the full FC

routine, with the former tending in general to supply slightly more conservative acceptance

regions.

We define the “α% CL acceptance interval”, for a specific parameter, by the set of

parameter values for which the condition ∆χ2
marg < C−1(α, 1) is satisfied, with ∆χ2

marg given

by marginalizing ∆χ2 with respect to all of the other parameters.

An “α% CL fraction of coverage” is further defined for a specific parameter as the per-

centage of the parameter range that is included in the α% CL acceptance interval. The

lower is this fraction, the stronger is the exclusion power of the experiment with respect to

the relevant parameter.

We say that a specific value of a parameter is excluded with α% confidence, if this value is

not contained in the corresponding α% acceptance interval. This notion will be used below,

when we discuss the prospects of various measurement scenarios do exclude CP conservation

in neutrino oscillations.

V. RESULTS

A. Neglecting uncertainties in θ12 and θ23

To understand the abilities and difficulties that are intrinsic to the measurements by

neutrino telescopes, we first carry out an analysis where θ12 and θ23 are held fixed at their

current best fit values. In the next section, we will study the implications of the uncertainties

in these angles.
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We begin by choosing specific values for the parameters θ13 and δ, which we call “true

parameters”. Concretely, we assume a true value θ13 = 0.15, and consider mainly three

possibilities for the true value of δ: the two CP conserving ones (δ = 0, π) and the maximally

CP violating one (δ = π/2). We evaluate the flux ratios that theoretically correspond to

these mixing parameters. For the sake of illustration, we assume that the experimental

measurements will obtain these flux ratios as their central values, with errors as specified for

each of our six scenarios. We then perform a fit to θ13 and δ (obtaining, of course, the “true

values” as the best-fit parameters, but with acceptance regions that are different between

the various scenarios).

The resulting 90% CL acceptance regions in the θ13 − δ plane are presented, for the six

scenarios, in Figs. 1, 2 and 3. As can be seen in the figures, for some cases, the neutrino

telescope measurements can mildly improve our knowledge of θ13 compared to the reactor

constraint.

As concerns δ, the 90% CL fraction of coverage in case that all the relevant observables

will be measured is shown in Fig. 4, for true θ13 = 0.15 and scanning values of true δ

between 0 and π. Since only CP-even quantities are considered, the results for δ = π + θ

are equal to those for δ = π − θ. We can make the following statements:

1. If the neutrino telescope measurements reach the accuracy assumed in this work, they

are likely to exclude a certain range of δ.

2. If the Dirac phase is small (that is close to 0 or π), the excluded range will be quite

significant.

3. The combination of all available observables is usually significantly more efficient than

partial combinations.

4. The power of combining measurements is particularly significant as resolutions get

worse and in the large phase (δ ∼ π/2) case.

5. If only Rπ is measured, no range of δ will be excluded.

The main question that we are asking is the following: Given a hypothetical situation

where δ ∼ π/2, will IceCube be able to establish CP violation, that is, exclude 0 and π

from the acceptance interval in δ? The answer depends of course on which of the various
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scenarios described in Table II, if any, will indeed be achieved in the experiment. The main

lessons that we draw from our calculations are the following:

(5,5): Measuring Rµ and Sµ with an accuracy that is significantly better than 10 percent

will enable a discovery of CP violation in neutrino oscillations.

(5,10): With this scenario, the sensitivity to CP violation is only marginally affected if

either Tµ or Sπ are removed from the analysis. Studying the acceptance interval for δ, one

finds that CP violation may be established even without either Tµ or Sπ. This result will be

further qualified when we elaborate on the scenario, below.

(10,10): If both Tµ and Sπ are measured, with an accuracy ∼ 10%, than the required

accuracy on Rπ can be somewhat relaxed.

((5,10,20),20): If the flavor ratios from muon-damped sources cannot be measured with

an accuracy significantly better than 20%, then even an excellent measurement of flavor

ratios from pion sources will not exclude CP conservation.

We learn that the (5, 10) scenario gives a reasonable sense of the minimal required set

of measurements and accuracies in order that a discovery that CP is violated in neutrino

oscillations will become possible. Further insight into the role of each of the five observables

in achieving this goal is given in Fig. 5, depicting the flavor ratios as a function of δ and

the χ2 composition for true δ = π/2. While measurements of Rπ and Rµ at the assumed

accuracies suffice to exclude δ = π, at least one of Sπ or Tµ needs to be added in order to

exclude δ = 0.

The probability that CP conserving values of δ will be excluded as a function of the

true δ, within the four scenarios (5,5), (5,10), (5,20) and (10,10), is shown in Fig. 6. To

produce this plot, we generated a large sample (1000) of random sets of observables with

the prescribed statistics, then checked for each realization whether δ = 0 or π is contained

in the resulting acceptance interval. For example, with zero uncertainties in θ12 and θ23, the

conditional probability to exclude CP conservation in the (10,10) scenario given maximal

phase is about 50%. Note that statistical fluctuations may lead to erroneous exclusion of

CP conservation even with sin δ = 0. The fact that the (10,10) scenario is more likely than

(5,20) to establish CP violation is suggestive for future detector optimizations: If the errors

on θ12 and θ23 at the time of analysis are significantly reduced, then it may be preferable to

improve the detection efficiency at the higher range of the spectrum, E > 100 TeV , even at

the cost of somewhat weaker efficiency at lower energies.

11



B. Taking into account uncertainties in θ12 and θ23

As a first step in this analysis, we considered the present ranges for θ12 and θ23 (see Table

I). The potential of neutrino telescopes to exclude a range of δ can be seen from Fig. 4

(upper right panel). The impact of the uncertainties in θ12 and θ23 can be understood by

comparing it to the upper left panel. We learn that, with present accuracies, the excluded

ranges are weaker by 30-50% compared to the idealized case of zero uncertainties. (The

importance of this ingredient in the analysis was noted in [20].)

As a second step, we assumed experimental errors on sin2 θ12 and sin2 θ23 that are reduced

by a factor of two compared to the present (see Table I). The results are shown in Fig. 4

(lower panel). By comparing to the upper right panel, we learn that such an improvement

will entail an exclusion power stronger by about 20% compared to the situation that present

uncertainties remain.

Concerning the probability that CP violation will be established, we repeat the analysis

with the present and with the assumed future uncertainties for the four leading scenarios.

The results are shown in Fig. 6. Without an improvement in the determination of θ12 and θ23,

only the very optimistic scenario (5,5) allows a discovery. With the assumed improvements,

the more realistic (5,10) scenario also has over 30% probability to make such a discovery.

The (5,20) and (10,10) scenarios are not powerful enough to do so.

C. Discussion

A related analysis has been performed previously in Refs. [6, 8], which highlighted the

synergy between neutrino telescopes and terrestrial experiments. The conclusion in Refs.

[6, 8] regarding the impact of neutrino telescopes on the issue of CP violation is more

pessimistic than ours. The main difference lies in the fact that Refs. [6, 8] consider the

information of one type of sources at a time, and indeed we agree with the pessimistic

conclusion in this case. What we show, however, is that by combining the two types of

sources that we considered, the ability to exclude CP conservation improves considerably.

Actually, if this combination of sources is indeed available (and the experimental accuracy is

similar to or better than our (10,10) scenario), the exclusion power that neutrino telescopes

have on δ will be comparable to the proposed superbeams [21]. (This situation actually
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reinforces the point made in [6]: since the δ-dependencies of the IceCube and the superbeam

measurements are different, the information from the two will be complimentary.)

Ref. [22] points out that variations in the flavor ratios between sources can reach the

ten percent level and consequently play an important role in the investigation of the mixing

parameters from astrophysical neutrinos. In particular, the resulting uncertainties may

wash-out the effects of the ∆13 terms, especially in the case of low θ13. We agree that

flavor composition uncertainties at the source would tighten greatly the requirements on

the experimental precision. There are two reasons, however, why we think that this issue

may have only limited consequences for our purposes. First, by the time that this analysis

can be carried out in IceCube, the theoretical analysis of neutrino spectra, which is only

at its beginning [17, 22], is likely to improve considerably. In particular, higher quality

electromagnetic data, from radio to TeV photon energies, will become available. Second,

our study is relevant only for the case of large θ13 where, as we have argued, 10% accuracy

might be just enough for our purposes if a global analysis of flavor-dependent spectrum will

be possible.

The general trends reflected in our results can be simply understood, based on Eqs. (14)

and (15). We rewrite them as follows:

Rπ = 0.49 [1− 0.05(s13/0.15) cos δ] ,

Sπ = 1.04 [1 + 0.08(s13/0.15) cos δ] ,

Rµ = 0.62 [1− 0.12(s13/0.15) cos δ] ,

Sµ = 0.58 [1 + 0.11(s13/0.15) cos δ] ,

Tµ = 0.30 [1 + 0.19(s13/0.15) cos δ] . (16)

We learn the following:

• The ratios related to muon-damped sources are more sensitive to the cos δ-dependent

terms than those related to pion sources;

• To be sensitive to the cos δ-dependent terms, the accuracy should be of order 10% or

better;

• The required accuracy scales with s13. If, for example, s13 ∼ 0.05, sensitivity to cos δ

will be achieved only with accuracy better than 5%, which seems out of reach for

IceCube.
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VI. CONCLUSIONS

We have studied the potential of combining measurements of flavor ratios in neutrino

telescopes with observation of θ13 6= 0 by reactor experiments in constraining δ, the CP

violating phase in the lepton mixing matrix. We reached the following conclusions:

• Since the neutrino telescopes are sensitive only to the combination ∆13 ≡ sin θ13 cos δ,

they can constrain δ only if sin θ13 is not too small [6].

• Neutrino telescope may exclude at 90% CL up to 30% of the a-priori allowed range

for δ, even with present accuracies in θ12 and θ23.

• Since the ∆13-term is maximized in size for cos δ = ±1, the exclusion region is largest

if CP is nearly conserved [6].

• Reduced uncertainties in θ12 and θ23 can enlarge the excluded region to about 50% of

the a-priori allowed range, and give sensitivity even for cos δ ∼ 0.

• Measuring flavor ratios of fluxes from muon-damped sources will further strengthen

the exclusion power (compared to measurements based on solely pion sources). Their

significance is particularly important for cos δ ∼ 0.

A more specific question that we posed is whether, in case that the CP violating phase δ

is large (∼ π/2), the measurements of flavor ratios among neutrino fluxes from astrophysical

sources can establish that the phase is indeed different from 0 or π, and by that prove that

CP is violated in neutrino interactions. Our conclusions regarding this question are the

following:

• sin θ13 must be large, between current 1− 2σ upper bounds.

• The neutrino flux must not be lower than the Waxman-Bahcall bound. If the flux

is smaller, a larger neutrino telescope may still achieve this goal, within a reasonable

time scale (<∼ 10 years).

• Neutrino flux from muon-damped sources must be identified, and the related flavor

ratios measured with accuracy better than 10%.
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• The uncertainties on θ12 and θ23 must be reduced by other experiments by a factor of

about two.

Even if all these conditions are met, the probability of excluding CP conservation in neutrino

oscillations is at best 60%.

The strongest sensitivity to cos δ arises in flavor ratios related to muon-damped sources.

On the theoretical side, a more careful study of the transition at high energy from pion-source

to muon-damped source is important for better understanding of this crucial ingredient in

our analysis [22]. On Nature’s side, the lower the transition energy, and the sharper the tran-

sition, the higher statistics of events from muon-damped source that will become available

and, consequently, the better chances are that a neutrino telescope will contribute signifi-

cantly to understanding CP violation in neutrino oscillations. Finally, on the experimental

side, a neutrino telescope that is effectively ten times bigger than IceCube, for neutrino

energy ∼ 100 TeV (see Section VA), is well motivated by our arguments.

The fact that establishing CP violation in IceCube, an experiment under construction, is

not manifestly impossible is exciting. While a combination of several favorable circumstances

is required to achieve such a goal, it is worth to refine this analysis, to prepare for a fortunate

case that these circumstances are fulfilled by the parameters of Nature and by the capabilities

of neutrino telescopes.
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FIG. 1: 90%CL (2 d.o.f.) allowed regions for true δCP = 0.

17



0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

δ C
P

θ
e3

 

 

0 0.05 0.1 0.15 0.2

Rπ, sin22θ
13

Rπ, Sπ, sin22θ
13

Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, Tµ, sin22θ
13

(5,5)

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

δ C
P

θ
e3

 

 

0 0.05 0.1 0.15 0.2

Rπ, sin22θ
13

Rπ, Sπ, sin22θ
13

Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, Tµ, sin22θ
13

(5,10)

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

δ C
P

θ
e3

 

 

0 0.05 0.1 0.15 0.2

Rπ, sin22θ
13

Rπ, Sπ, sin22θ
13

Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, Tµ, sin22θ
13

(5,20)

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

δ C
P

θ
e3

 

 

0 0.05 0.1 0.15 0.2

Rπ, sin22θ
13

Rπ, Sπ, sin22θ
13

Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, Tµ, sin22θ
13

(10,10)

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

δ C
P

θ
e3

 

 

0 0.05 0.1 0.15 0.2

Rπ, sin22θ
13

Rπ, Sπ, sin22θ
13

Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, Tµ, sin22θ
13

(10,20)

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π

δ C
P

θ
e3

 

 

0 0.05 0.1 0.15 0.2

Rπ, sin22θ
13

Rπ, Sπ, sin22θ
13

Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, sin22θ
13

Rπ, Rµ, Sπ, Sµ, Tµ, sin22θ
13

(20,20)

FIG. 2: 90%CL (2 d.o.f.) allowed regions for true δCP = π.
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FIG. 3: 90%CL (2 d.o.f.) allowed regions for true δCP = π/2.
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