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ABSTRACT

We derive the CMB radiative transfer equation in the form of a multipole hierarchy in
the nearly-Friedmann-Robertson-Walker limit of homogeneous, but anisotropic, uni-
verses classified via their Bianchi type. Compared with previous calculations, this
allows a more sophisticated treatment of recombination, produces predictions for the
polarization of the radiation, and allows for reionization. Our derivation is independent
of any assumptions about the dynamical behaviour of the field equations, except that
it requires anisotropies to be small back to recombination; this is already demanded
by observations.

We calculate the polarization signal in the Bianchi VIIh case, with the parameters
recently advocated to mimic the several large-angle anomalous features observed in the
CMB.We find that the peak polarization signal is∼ 1.2µK for the best-fit model to the
temperature anisotropies, and is mostly confined to multipoles l < 10. Remarkably, the
predicted large-angle EE and TE power spectra in the Bianchi model are consistent
with WMAP observations that are usually interpreted as evidence of early reionization.
However, the power in B-mode polarization is predicted to be similar to the E-mode
power and parity-violating correlations are also predicted by the model; the WMAP
non-detection of either of these signals casts further strong doubts on the veracity of
attempts to explain the large-angle anomalies with global anisotropy. On the other
hand, given that there exist further dynamical degrees of freedom in the VIIh universes
that are yet to be compared with CMB observations, we cannot at this time definitively
reject the anisotropy explanation.
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1 INTRODUCTION

There are a number of observed features in the large-
angle temperature anisotropies of the cosmic microwave
background (CMB) that are anomalous under the usual
assumption of statistically-isotropic, Gaussian fluctuations
(see Copi et al. 2007 for a recent summary). Recent analy-
ses have suggested that a small global anisotropy in the form
described by Bianchi models could be to blame (Jaffe et al.
2005). In classical general relativity, the dimension of ini-
tial state space leading to models with such homogeneous
anisotropies is always greater than the limitation of these
models to the exactly isotropic case; furthermore, nearly
isotropic models do not necessarily tend to late-time isotropy
(Collins & Hawking 1973b). Although later work has sug-
gested an inflationary epoch can be responsible for remov-
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ing anisotropies (Wald 1983), this analysis is not complete
(Goliath & Ellis 1999). It is therefore worth investigating
further the observational predictions of such models; whilst
to the skeptic they seem unlikely, the importance of a posi-
tive detection would be great.

Using the CMBmodels developed in Collins & Hawking
(1973a) and Barrow, Juszkiewicz & Sonoda (1985), based
on a specific solution for a type-VIIh universe with only
pressureless matter, Jaffe et al. (2005) showed that known
anomalies such as the low quadrupole amplitude, alignment
of low-l modes, large-scale power asymmetry and the ‘cold
spot’ in the CMB could be mimicked. The work was ex-
tended in Jaffe et al. (2006) to include the dynamical effect
of dark energy, yielding a degeneracy in the ΩΛ - ΩM plane
(which effectively arises through the angular diameter dis-
tance relation, since much of the temperature anisotropy is
generated at high redshift). The degenerate range of param-
eters able to explain the large-angle anomalies was shown to
be inconsistent with the cosmological parameters required to
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explain constraints such as supernovae observations and the
CMB spectrum on smaller scales (i.e. the structure of the
acoustic peaks). A more complete statistical analysis was
performed by Bridges et al. (2007), in which the inconsis-
tency of inferred parameters was confirmed.

There are remaining dynamical freedoms in the VIIh
model which were not explored in the above papers. As
noted in Jaffe et al. (2006), these will need investigation
before any firm conclusions about the compatibility of the
model with observations can be made.

A second important issue, hitherto not considered, is
whether the predicted CMB polarization pattern in the
Bianchi model that best fits the large-angle temperature
anisotropies is consistent with current observations. The
reason for its neglect seems to be that there are cur-
rently no full predictions for polarization in Bianchi mod-
els (Jaffe et al. 2006). In this paper, we address this is-
sue by providing a complete and computationally conve-
nient framework for calculating polarization in these mod-
els, and make a first attempt at confronting the predictions
with the three-year data from the Wilkinson Microwave

Anisotropy Probe (WMAP ; Page et al. 2007). Polarization
of the CMB in anisotropic cosmologies was first discussed
by Rees (1968), where a calculation for Bianchi I mod-
els was outlined. Further consideration has been given to
the problem in Matzner & Tolman (1982), where Bianchi
types V and IX were considered. There are also a num-
ber of papers considering the effect of homogeneous mag-
netic fields on polarization (e.g. Milaneschi & Fabbri 1985;
Fabbri & Tamburrano 1987), although we emphasize that
the resulting Faraday rotation of the polarization is quite
distinct from the purely gravitational effect under consider-
ation here.

This paper is organized as follows. We briefly review
Bianchi models in Section 2, including a more intuitive
derivation of their FRW limit than has previously been pub-
lished. In Section 3 we derive the zero order evolution of
the photon polarization direction along geodesics, and in-
corporate these results into a multipole treatment of the
Boltzmann equation that describes the radiative transfer in
Section 4. Using this, we specialize our model to calculate
the temperature and polarization anisotropies expected in
a VIIh model with favoured parameters (Jaffe et al. 2006)
in Section 5, and discuss the difficulties of reconciling the
results with existing observations. We defer a full statistical
reanalysis of Bianchi signatures, including reionization, to
future work, where we will also explore more fully the extra
dynamical degrees of freedom in the models.

2 BIANCHI MODELS

In this section we give a brief review of the framework
that we use for our calculation. Anisotropic, homogeneous
cosmological models can be classified according to the com-
mutation relations of their spatial symmetry groups. The
most popular classification method is based on Bianchi’s
(1897) classification of three-parameter Lie groups. For the
development of these classifications in the cosmological
context see Taub (1951); Heckmann & Schucking (1962);
Estabrook, Wahlquist & Behr (1968); Ellis & MacCallum

(1969), and for reviews see Wainwright (1997)
and Ellis & van Elst (1998).

We adopt a −+++ metric signature, and will use Greek
spacetime indices (0 → 3) for tensor components in a general
basis, early Latin indices (a, b etc. running from 0 → 3) to
label the vectors of any group-invariant tetrad, and middle
Latin indices (i, j etc. running from 1 → 3) to label spa-
tial tetrad vectors in expressions only involving the spatial
vectors. For the latter, we also use upper-case early Latin
(A, B etc.) when the tetrad is time-invariant (see below). As
usual, round brackets denote symmetrisation on the enclosed
indices and square brackets denote anti-symmetrisation.

A spacetime is said to be homogeneous if it can be
foliated into space sections each admitting at least three
linearly-independent Killing vector fields (KVFs) {ξ} (so
that Lξg = 0, where L denotes the Lie derivative and g

is the metric tensor) with at least one subgroup that acts
simply transitively in the space sections. We denote the ele-
ments of the three-dimensional subgroup by ξi where i = 1,
2, 3. The commutator of two KVFs is also Killing and, since
the ξi form a subgroup, we must have

[ξi, ξj ] = Ck
ijξk. (1)

The Ck
ij = Ck

[ij] are the structure constants of the Lie alge-
bra of the group and are constant in space. (Through the
foliation construction below they may also be shown to be
constant throughout time.) The Jacobi identity,

[ξi, [ξj , ξk]] + [ξj , [ξk, ξi]] + [ξk, [ξi, ξj ]] = 0, (2)

restricts the structure constants to satisfy

Cm
n[iC

n
jk] = 0. (3)

Since a constant linear combination of KVFs will also be a
KVF, one is permitted to perform global linear transforma-
tions:

ξi → ξ
′
i = T j

i ξj , (4)

under which the structure constants transform as a (mixed)
3-tensor. Classifying all homogeneous spacetimes amounts
to finding solutions to equation (3) that are inequivalent
under the linear transformations (4).

The fiducial classification is achieved by decomposing
the structure constants into irreducible vector and pseudo-
tensor parts:

Cm
ij = ǫijkn

km + aiδ
m
j − ajδ

m
i ,

nijai = 0 (Jacobi identities), (5)

where nij is symmetric and ǫijk is the alternating tensor.
Linear transformations can be used to diagonalise nij and,
since ai is an eigenvector of nij one may take, without loss
of generality:

nij = diag(n1, n2, n3),

ai = (a, 0, 0). (6)

By rescaling (possibly reversing their directions) and rela-
belling the KVFs, we may reduce the structure constants
to one of 10 distinct canonical forms that describe the 10
possible group types (see, for example, Ellis & MacCallum
1969). In these forms, all non-zero ni and a are either ±1
except for the two types with an2n3 6= 0 in which case there
is an additional parameter h ≡ a2/(n2n3).
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In order to express homogeneous tensor fields in an in-
variant way within this space, one must construct a suitable
basis tetrad {ea} that is invariant under the group action,
i.e. satisfying

[ea, ξi] = 0. (7)

Any homogeneous tensor (T where LξT = 0) has compo-
nents relative to this tetrad that are constant throughout
space. The unit normal n to the hypersurfaces of homo-
geneity (satisfying n · ξi = 0) is necessarily group-invariant
([n, ξi] = 0) via the Leibniz property of L, so we can al-
ways take e0 = n. Because of the foliated construction of
the spacetime, one may label the hypersurfaces with a co-
ordinate time t such that nα = −t,α and hence e0 can be
shown to be geodesic. In any homogeneous hypersurface, we
can always construct the spatial part of the group-invariant
tetrad by making an arbitrary choice for ei at a point, and
then dragging this frame out across the hypersurface with
the ξi (see, for example, Ellis & MacCallum 1969).

In general the elements of the tetrad will not commute
so one has

[ea, eb] = γc
abec, (8)

where the γc
ab = γc

[ab] are constant in the hypersurfaces of ho-
mogeneity by the Jacobi identities. The rotation coefficients
encode the covariant derivatives of the tetrad:

Γcab ≡ eαc e
β
a∇βebα, (9)

where eαa are the components of the tetrad vectors in an
arbitrary basis. The rotation coefficients are related to the
γc
ab by

Γabc =
1

2
(−∂agbc + ∂bgca + ∂cgab

+γabc + γcab − γbca) , (10)

where gab ≡ g(ea, eb) are the tetrad components of the met-
ric, γabc ≡ gadγ

d
bc and ∂a is the ordinary derivative along

the direction of ea. By taking e0 = n, we have g00 = −1,
g0i = 0 and, since n is normalized, geodesic and irrota-
tional, γ0

ab = 0. The group-invariance of the tetrad restricts
the form of the spatial components γk

ij : they are related to
the group structure constants by a linear transformation and
can be classified in the same way (and, necessarily, fall into
the same Bianchi type: see MacCallum 1973).

It is always possible to construct the tetrad so that
it is orthonormal; see Ellis & MacCallum (1969) for de-
tails. However, a convenient alternative is the time-invariant

frame used by Collins & Hawking (1973a). In this case,
the tetrad is constructed so that [n, ea] = 0. The Jacobi
identities applied to n, ea and ξi show that this is still
consistent with the tetrad being group invariant. A spe-
cific construction is to start with a group-invariant tetrad
over a hypersurface and to drag the tetrad along the nor-
mal n to cover spacetime. An important consequence is
that the γc

ab are constant throughout spacetime for the
group-invariant tetrad. Moreover, γi

0j = 0 and the only
non-vanishing components are spatial, i.e. γk

ij . Because the
Bianchi classification of the Killing group and tetrad com-
mutators is the same, it is always possible to perform a
global (three-dimensional) linear transformation of the time-
invariant tetrad to bring the γk

ij equal to the canonical struc-
ture constants, i.e. γk

ij = Ck
ij . We shall use upper-case early

Latin indices (A, B etc.) to denote the spatial elements of
this specific time-invariant tetrad.

The spacetime metric can then be written in terms of
the time-invariant tetrad as

g = −n⊗ n + gAB(t)eA ⊗ e
B , (11)

where the basis one-forms eAα = gABgαβe
β
B satisfy eAαe

α
B =

δAB . Here, as usual, gAB denotes the inverse of gAB. The
eA are also group- and time-invariant. We decompose the
spatial part of the metric following Misner (1968):

gAB = e2α(t)
(

e2β(t)
)

AB
, (12)

where β is a matrix with zero trace and the matrix expo-
nential is defined as usual via Taylor expansion, yielding
det eβ = 1. Thus α represents shape-preserving expansion
whilst β represents volume-preserving shape deformation.
The expansion rate of the n congruence is ∇αn

α = 3α̇ and
its shear – i.e. the trace-free, symmetric spatial projection
of ∇αnβ – has components

σAB =
1

2
e2α
(

e2β
)

·
AB. (13)

Here, and throughout, overdots denote derivatives with re-
spect to t. We shall make use of conformal time, η, defined
by dt = eαdη, and we denote derivatives with respect to η
with primes.

The field equations are generally more naturally ex-
pressed in a (group-invariant) orthonormal frame, since the
metric derivatives then vanish and one obtains first order
equations for their commutation functions. The spatial vec-
tors of such a frame will be represented with lower-case mid-
dle Latin indices, i, j etc. One can always define a specific
orthonormal frame by (Hawking 1969)

ei = e−α
(

e−β
)

iA
eA. (14)

The orthonormal tetrad is completed with n. The compo-
nents of the shear in the orthonormal frame are

σij = (eβ) ˙ k(i(e
−β)j)k. (15)

Note that this corresponds to the matter shear tensor only
in the case that the fluid flow is not tilted relative to the
hypersurfaces; i.e. the case n = v where v is the fluid 4-
velocity. In this paper, we do not specialize in this way.

2.1 FRW limit

It is instructive to sketch the derivation of the FRW limit
of spacetimes in the time-invariant frame (the calculation in
the orthonormal frame is described in Ellis & MacCallum
1969 and yields identical conditions).

A homogeneous spacetime can only be FRW if the ex-
pansion and 3-curvature are isotropic. Vanishing shear re-
quires βAB = const. and then we can always set βAB = 0
(i.e. diagonalise the spatial metric) with a constant linear
transformation of the eA. After the transformation, the γk

ij

will no longer be equal to the canonical group structure con-
stants (so we denote them with lower-case indices) but we
can perform a further (constant) orthogonal transformation
of the ei (hence preserving β = 0) to bring the γk

ij to the
canonical form up to positive scalings of a, n1, n2 and n3.
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Type a n1 n2 n3
(3)Re2α

I 0 0 0 0 0
V −1 0 0 0 −6

VII0 0 0 1 1 0

VIIh −
√
h 0 1 1 −6h

IX 0 1 1 1 3/2

Table 1. Bianchi groups with FRW limit and their structure con-
stants in canonical form. In the case VIIh, we take a = −

√
hn2n3

for compatibility with the notation of Collins & Hawking (1973a)
and Barrow et al. (1985). Note that a can also be positive, but
this case will be related by a rotation of the sky (constructed
by e1 → −e1 followed by e3 → −e3) and need not be consid-
ered separately. However, the overall parity must be considered;
one way is to consider the transformation e1 → −e1 which re-
verses the sign of a and all ni. The final column is the comoving
3-curvature scalar in the β = 0 FRW limit.

With β = 0, the 3-curvature is

R
(3)

ij =
1

3
R(3) δije

2α

= −1

4

[

2γk
ilγ

l
jk + 2γl

kiγ
l
kj

−γi
klγ

j
kl + 2γk

kl(γ
i
jl + γj

il)
]

. (16)

Zero- and first-order expressions (such as the one above) will
often contain surprising index placement; note that metric
factors are always included where necessary to account for
this.

In terms of the decomposition of γk
ij , one obtains the off-

diagonal element R
(3)

23 = a(n2−n3), yielding the condition

a = 0 or n2 = n3 (17)

if the curvature is to be isotropic. The vanishing of the re-
mainder of the trace-free part further requires

n2
1 + n2n3 = n2

2 + n1n3 = n2
3 + n1n2, (18)

which implies that at least one of the ni are zero and the
remaining two are equal. By examining a complete list of
distinct group types, these conditions yield the spaces with
an FRW limit (Table 1). In each case we can use a volume
rescaling (change of α) to set the non-zero ni to unity or,
if the ni vanish, a to −1. This is enough freedom to set
the γk

ij of the time-invariant frame, with β = 0, equal to
the corresponding canonical group structure constants. For
a universe that is close to FRW, we can therefore treat β
as a small perturbation while working in the time-invariant
frame with γC

AB still in canonical form.

3 PHOTON PROPAGATION

We parameterize the photon propagation direction vector
according to the convention in Barrow et al. (1985); al-
though this unusually places the azimuthal direction along
e1, it more conveniently reflects the symmetries of the fidu-
cial Bianchi classification, which ultimately yields much sim-
pler equations. Thus in the orthonormal frame, the photon
direction has components

pi = (cos θ, sin θ cos φ, sin θ sinφ) (19)

and the photon 4-momentum is

K = E(n+ piei), (20)

where E is the photon energy measured by an observer on a
hypersurface-orthogonal path. It is convenient to introduce
the comoving energy, ǫ ≡ Eeα. In terms of this, the spatial
components of K on the time-invariant tetrad (in which the
geodesic equations take their simplest form) are

KA = ǫ
(

eβ
)

iA
pi. (21)

The energy change along a geodesic follows from differ-
entiating E = −K ·n. The geodesic equation then gives the
exact result

ǫ′ = −ǫeαpipjσij , (22)

where ǫ′ ≡ dǫ/dη. This is equivalent to the integral result
obtained by Hawking (1969). For the evolution of θ and φ,
we make use of the (exact) geodesic equation in the time-
invariant frame (Barrow et al. 1985):

K′
A =

(

e−2β
)

BD

KCKD

ǫ
CC

BA. (23)

We only require the evolution of θ and φ to zero order in β
since the radiation is necessarily isotropic in the FRW limit.
Setting β = 0 in equation (23), we find

θ′ = [a+ (n3 − n2) cosφ sinφ] sin θ (24)

φ′ = [n1 − n3 + (n3 − n2) cos
2 φ] cos θ. (25)

We denote the (complex) polarization 4-vector by P .
It is normalized so that P · P ∗ = 1 and, in the Lorentz
gauge, is orthogonal to K . The polarization P is parallel
transported along the photon geodesic. We are more inter-
ested in the observed polarization P̃ (i.e. the electric field
direction for radiation in a pure state) relative to n. This
is given by screen-projecting P perpendicular to n and the
photon direction p:

P̃α = Hα
βP

β, (26)

where the screen-projection tensor Hαβ is defined by

Hαβ ≡ gαβ + nαnβ − pαpβ. (27)

The evolution of P̃ follows from the parallel transport of P
itself (Challinor 2000):

Hα
β

(

Kρ∇ρP̃
β
)

= 0. (28)

We find for the tetrad components of P̃ in the time-invariant
basis the exact equation

˙̃PA − P̃BσAB − pAP̃
BpCσBC − α̇P̃A + pBP̃CΓABC = 0, (29)

where ΓABC are the rotation coefficients given by the spatial
components of equation (10).1 There is only one degree of
freedom in the projected polarization vector, described by
the angle between it and the êθ direction:

P̃ = êθ cosψ + êφ sinψ (30)

where êθ and êφ are constructed from the orthonormal-
frame vectors. The components on the orthonormal frame
are therefore

1 The metric derivatives vanish in this case since gIJ is constant
in each hypersurface.
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P̃ i =

( − sin θ cosψ
cos θ cos φ cosψ − sin φ sinψ
cos θ sinφ cosψ + cos φ sinψ

)

. (31)

The polarization is first-order in β so we only require the
evolution of ψ at zero order. In this FRW limit, equation (29)
reduces to

2ψ′ = −n1 − (n3 − n2) cos 2φ. (32)

Since we are considering models close to FRW, n3 = n2

(see Table 1) and our evolution equations simplify to

θ′ = −
√
h sin θ

φ′ = (n1 − n3) cos θ

2ψ′ = −n1, (33)

where, for type V universes, one takes
√
h = 1. We see that

the polarization only rotates relative to êθ and êφ in type-IX
universes. These general equations for θ and φ agree with the
specific cases given in Appendix B of Barrow et al. (1985);
the general ψ equation agrees with the previous analysis of
type-IX universes given in Matzner & Tolman (1982).

4 BOLTZMANN EQUATION

In this section, we derive the first-order Boltzmann equation
describing polarized radiative transfer in any Bianchi model
with an FRW limit.

CMB polarization is generated by Thomson scattering
and is therefore expected to be only linearly polarized. We
can describe the radiation distribution function in terms of
Stokes parameters f , q and u where f gives the expected
number density of photons per proper phase-space volume
irrespective of their polarization state. The parameters q and
u describe linear polarization relative to a basis that we take
to be êθ and êφ for propagation along pi. Then (f + q)/2
is the expected phase-space number density of photons that
would be found in the êθ linear-polarization state, and (f +
u)/2 is the same for the state rotated by 45 deg (towards
êφ). In the absence of scattering, f is conserved along the
photon path in phase space and q and u are conserved if
referred to bases that rotate like P̃ in equation (28). We
parameterize f , q and u by the photon-direction angles θ
and φ and by comoving energy ǫ. Since these parameters are
defined relative to a group-invariant tetrad, f is independent
of position in the hypersurfaces of homogeneity. The same
is true for the Stokes parameters since the basis on which
they are defined is constructed in an invariant manner.

The Lagrangian derivative of f in phase space is

Df

Dη
=
∂f

∂η
+
∂f

∂θ
θ′ +

∂f

∂φ
φ′ +

∂f

∂ǫ
ǫ′, (34)

and is only non-zero because of scattering. The quanti-
ties ǫ′, θ′ and φ′ are given by equations (22) and (33).
Anisotropies are formed through the last term in equa-
tion (34) and by Thomson scattering off electrons with a
non-zero peculiar velocity; both effects are first order. The
remaining terms ‘advect’ the resulting pattern on the sphere
using the zero-order transport equations. The energy de-
pendence of the anisotropies is therefore proportional to
ǫ∂f̄/∂ǫ where f̄ is the Planck distribution function in the
FRW background. We define the dimensionless temperature
anisotropies Θ(θ, φ; η) by

f(K ; η) = f̄(ǫ)

(

1− d ln f̄

d ln ǫ
Θ

)

. (35)

Polarization is generated by scattering the anisotropies and,
since Thomson scattering is achromatic, the polarization has
the same ǫ spectrum as the anisotropies. We can therefore
introduce dimensionless ‘thermodynamic-equivalent’ Stokes
parameters Q(θ, φ; η) and U(θ, φ; η) as

(q ± iu)(K ; η) = − df̄

d ln ǫ
(Q± iU). (36)

The quantities Q±iU have spin-weight 2, i.e. under a change
of basis

êθ+iêφ → eiχ(êθ+iêφ) ⇒ Q±iU → e±2iχ(Q±iU).(37)

Expressed in this way, the time dependence of the tem-
perature anisotropies obeys:

∂Θ

∂η
=

DΘ

Dη
− ∂Θ

∂θ
θ′ − ∂Θ

∂θ
φ′ − eαpipjσij , (38)

where the first term on the right describes the Thomson
scattering kernel (Section 4.3), the next two describe ad-
vection of the patterns on the sphere, and the final term is
gravitational redshifting in the anisotropic expansion due to
the shear. The advection terms are more transparent when
interpreted as being due to the spatial dependence (relative
to a parallel-propagated rather than time-invariant basis)
transforming to angular dependence through free streaming.
For polarization, we have

∂(Q± iU)

∂η
=

D(Q± iU)

Dη
− ∂(Q± iU)

∂θ
θ′ − ∂(Q± iU)

∂φ
φ′

±2i(Q± iU)ψ′, (39)

where the last term arises from polarization rotation. Again,
the first term on the right describes Thomson scattering (see
Section 4.3).

We expand the temperature anisotropies in terms of
spherical harmonics about the propagation direction:

Θ(p) =
∑

lm

Θm
l Y

m
l (p) . (40)

For polarization, we expand in spin-weighted spherical har-
monics2 as

(Q± iU)(p) =
∑

lm

(Em
l ± iBm

l ) Y±2
m
l (p). (41)

Note that the Bianchi models are not parity invariant; the
mirror universe can be obtained using the standard trans-
formations

Θm
l → (−1)lΘm

l

Em
l → (−1)lEm

l

Bm
l → (−1)(l+1)Bm

l , (42)

or, equivalently, flipping the signs of a and all ni (which
inverts the direction of the e1 axis).

2 For a brief review, see Appendices A-C
of Lewis, Challinor & Turok (2002).
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4.1 Gravitational redshifting

The effect of the shear on the observed temperature pattern
reads
(

∂Θ

∂η

)

shear

= −eαpipjσij , (43)

which is a pure quadrupole. In terms of spherical harmonics,
(

∂Θ2
2

∂η

)

shear

=

√

2π

15
(σ33 − σ22 + 2iσ23) e

α

(

∂Θ1
2

∂η

)

shear

=

√

8π

15
(σ12 − iσ13) e

α

(

∂Θ0
2

∂η

)

shear

= −
√

4π

5
σ11e

α

(

∂Θ−m
2

∂η

)

shear

= (−1)m
(

∂Θm
2

∂η

)∗

shear

, (44)

where σij are the components of the shear in the orthonor-
mal frame. We see that shear injects power at l = 2, but
subsequent advection generally transports this to higher l.

4.2 Advection equations

The advection part of the Boltzmann equation for the tem-
perature is
(

∂Θ(θ, φ)

∂η

)

advec

≡ −∂Θ(θ, φ)

∂θ
θ′ − ∂Θ(θ, φ)

∂φ
φ′, (45)

with θ′ and φ′ given by equations (33). Making use of the
results

sin θ
∂sY

m
l

∂θ
=

l

l + 1

√

[(l + 1)2 −m2][(l + 1)2 − s2]

(2l + 1)(2l + 3)
sY

m
l+1

+
ms

l(l + 1)
sY

m
l − l + 1

l

√

(l2 −m2)(l2 − s2)

(2l − 1)(2l + 1)
sY

m
l−1

cos θsY
m
l =

1

l + 1

√

[(l + 1)2 −m2][(l + 1)2 − s2]

(2l + 1)(2l + 3)
sY

m
l+1

− ms

l(l + 1)
sY

m
l +

1

l

√

(l2 −m2)(l2 − s2)

(2l − 1)(2l + 1)
sY

m
l−1 (46)

which follow from standard recursion relations
for the related Wigner functions Dl

−ms(φ, θ, 0)
(e.g. Varshalovich, Moskalev & Khersonskii 1998), we
find for the advective contribution to the time derivative of
the multipoles

(

∂Θm
l

∂η

)

advec

=

l+1
∑

l′=l−1

fm
ll′Θ

m
l′ . (47)

Here,

fm
l,l−1 =

√

l2 −m2

(2l − 1)(2l + 1)

[

im∆n+ (l − 1)
√
h
]

fm
l,l = 0

fm
l,l+1 =

√

(l + 1)2 −m2

(2l + 1)(2l + 3)

[

im∆n− (l + 2)
√
h
]

(48)

with ∆n ≡ n3 − n1. Note that ±f
−m
ll′ = ∓f

m
ll′

∗, as required
by the reality of Θ(θ, φ) in equation (47).

For polarization, we have
(

∂(Q± iU)

∂η

)

advec

≡ −∂(Q± iU)

∂θ
θ′ − ∂(Q± iU)

∂φ
φ′

±2iψ′(Q± iU). (49)

We write
(

∂(Em
l ± iBm

l )

∂η

)

advec

=

l+1
∑

l′=l−1

g±
m
ll′(E

m
l′ ± iBm

l′ ), (50)

which may be expressed

(

∂Em
l

∂η

)

advec

=
1

2

l+1
∑

l′=l−1

[( g+
m
ll′ + g−

m
ll′)E

m
l′

+i ( g+
m
ll′ − g−

m
ll′)B

m
l′ ] ,

(

∂Bm
l

∂η

)

advec

=
1

2

l+1
∑

l′=l−1

[( g+
m
ll′ + g−

m
ll′)B

m
l′

−i ( g+
m
ll′ − g−

m
ll′)E

m
l′ ] . (51)

We see that there are two modes of propagation; one trans-
fers power amongst l and the other mixes E and B-modes.
The mixing terms are

g+
m
l,l − g−

m
l,l = −2in1 +

4
(√

h− im∆n
)

m

l(l + 1)
,

g+
m
l,l+1 − g−

m
l,l+1 = g+

m
l,l−1 − g−

m
l,l−1 = 0. (52)

Polarization is generated from Thomson scattering as a pure
electric quadrupole (see Section 4.3) butB-modes can subse-
quently be produced through advection. This happens in all
nearly-FRW Bianchi models except type I. The n1 term in
equations (52) arises from the polarization rotation ψ′; the
remaining terms are from the evolution of the photon direc-
tion relative to the invariant frame. For the power transfer,
we find

g+
m
l,l + g−

m
l,l = 0,

g+
m
l,l−1 + g−

m
l,l−1 = 2

√

(l2 −m2)(l2 − 4)

l2(2l − 1)(2l + 1)
×

[

(l − 1)
√
h+ im∆n

]

,

g+
m
l,l+1 + g−

m
l,l+1 = 2

√

[(l + 1)2 −m2] [(l + 1)2 − 4]

(l + 1)2(2l + 1)(2l + 3)
×

[

−(l + 2)
√
h+ im∆n

]

, (53)

which are not affected by polarization rotation. Note that

±g
−m
ll′ = ∓g

m
ll′

∗, (54)

as required by the reality of E(θ, φ) and B(θ, φ) in equa-
tion (50).

4.3 Scattering equations

We use a standard Thomson scattering kernel in the form
derived by Hu & White (1997) (see also Dautcourt & Rose
1978):
(

D(Em
l ± iBm

l )

Dη

)

= τ ′
(

−(Em
l ± iBm

l )

+
3

5
δl2(E

m
2 − 1√

6
Θm

2 )

)

,
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(

DΘm
l

Dη

)

= τ ′
(

−Θm
l (1− δl0)

+
1

10
δl2(Θ

m
2 −

√
6Em

2 ) + δl1ũm

)

, (55)

where τ ′ = neσte
α gives the scattering rate in conformal

time, and

ũ−1 =

√

2π

3
(u2 + iu3)

ũ0 =

√

4π

3
u1

ũ1 =

√

2π

3
(−u2 + iu3) (56)

are the dipole moments of the electron peculiar velocity in
the orthonormal frame. It follows from equation (55) that
Thomson scattering of the temperature quadrupole gener-
ates polarization that is an E-mode quadrupole.

5 IMPLEMENTATION FOR VIIH UNIVERSES

5.1 Field equations

The complete set of field equations are available from, for ex-
ample, Wainwright (1997). Naturally, these reduce at zeroth-
order to the standard Friedmann and acceleration equations,
so that

eα0
dη

dz
=

−1

H(z)

= −H−1
0

(

ΩΛ,0 +ΩK,0(1 + z)2

+ΩM,0(1 + z)3
)−1/2

, (57)

where ΩM,0, ΩΛ,0 and ΩK,0 have their usual meanings,
(1 + z)−1 = eα−α0 and H = α̇. The Friedmann constraint
equation relates the group parameter h to the curvature (see
Table 1): h = H2

0e
2α0ΩK,0.

The evolution of the shear is required at first order and
is provided by the trace-free part of the spatial evolution
equations,

σ̇ij = −3Hσij − S
(3)

ij (58)

in the orthonormal frame. Here,

(3)Sij ≡ R
(3)

ij − Rδ
(3)

ij/3 (59)

is the trace-free part of the intrinsic 3-curvature of the ho-
mogeneous hypersurfaces. Also, we have assumed a perfect
fluid (i.e. zero anisotropic stress) and the shear equation (58)
holds only at first order. It is convenient that, in the VIIh
case, (3)S12 and (3)S13 are zero to this accuracy, and, further-
more, no coefficient of β12 or β13 enters into the expression
for (3)Sij , so that one may study a simple model in which
σij = 0 except for σ12, σ13 ∝ e−3α. The linear constraint
equations show that the matter in such a model contains
vorticity, i.e. the separation of neighbouring particles rotates
relative to inertial gyroscopes.

Whilst it is not prohibitively difficult to implement a
numerical solution for the most general case, we defer such
a treatment to a later paper. Instead, we take advantage

of the simplified solutions to derive the polarization in the
favoured models of Jaffe et al. (2006).

We shall adopt the standard assumption that the CMB
signal from global anisotropy adds linearly to that from inho-
mogeneities. This is clearly correct insofar as the linear-order
perturbations are concerned; however, given that generic
anisotropy modes grow towards the initial singularity, there
is no guarantee that standard inflationary mechanisms for
generating inhomogeneities can be invoked. Ignoring this po-
tential inconsistency is pragmatic, but investigation would
certainly be necessary if the resulting models gain any sig-
nificant observational support.

5.2 Tilt decay

To be consistent with our assumption of small departures
from FRW symmetry, we assume that all peculiar velocities
are small. If we write the total momentum density of all
matter and radiation as P (tot) =

∑

n
(ρ(n) + p(n))u(n), the

linear constraint equation relates the spatial components to
the shear:

8πP
(tot)
i = e−α(σjkC

j
ki − σijC

k
kj) (60)

to first order in the orthonormal frame. Here, the Ci
jk are

the structure constants in canonical form. In the restricted
solution σ12, σ13 ∝ e−3α, so, assuming the total momentum
density is dominated by a barotropic fluid with equation of
state p = wρ for constant w, we have ρ ∝ e−3(1+w)α and

|u| = (uiu
i)1/2 ∝ e(3w−1)α

∝
{

constant w = 1/3
e−α w = 0.

(61)

This behaviour of |u| is consistent with momentum con-
servation. To see this, consider the Euler equation for a non-
interacting ideal fluid in the time-invariant frame. The fluid
pressure is constant on surfaces of homogeneity but gra-
dients proportional to ṗuA appear in the fluid rest frame.
These accelerate the fluid so that

ṗuA + (ρ+ p)u̇A = 0. (62)

Solving gives uA ∝ e3wα and, recalling the zero-order metric
gAB = e−2α, we recover equation (61).

The above introduces a complication in multi-fluid
models, which appears to have been overlooked in recent
work. For two components, say, the tilt velocities u(1),u(2)

need not be the same (except in the case of strong cou-
pling). Only the total momentum density, (ρ1 + p1)u(1) +
(ρ2 + p2)u(2) is constrained by the shear so there is addi-
tional freedom in the solution.3 Although the dark matter
density will be dominant around the time of recombination,
z ∼ zLSS, the tilt velocity of relevance for the CMB is mani-
festly that of the baryons. Given that the baryons are tightly
coupled to the photons until the last scattering surface, they
experience a significant pressure and their tilt decay will be
halted; this will not be the case for the dark matter. Thus,

3 We note that, with this effect in mind, the application of the
term ‘universal vorticity’ to describe VIIh cosmologies is an over-
simplification, since the vorticity of the dark matter need bear no
resemblance to that of the baryons.
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one needs to consider with care how to estimate the electron
velocity in the Thomson scattering terms (56).

For most of cosmic history before recombination, the
baryon–photon plasma has an equation of state parameter
close to w = 1/3. A simple approximation is thus obtained
by assuming the baryon tilt velocity remains constant be-
fore recombination, after which it decays as the inverse scale
factor. If dark matter decouples at zDM, the ratio of baryon
to dark-matter peculiar velocities at last scattering will be

|u(b)|
|u(c)|

∣

∣

∣

∣

LSS

≈ 1 + zDM

1 + zLSS
. (63)

We take dark-matter decoupling to be at redshift (see e.g.
Loeb & Zaldarriaga 2005)

zDM ∼ 10MeV

TCMBkB

(

Mσ

100GeV

)(

M

100GeV

)1/4

≃ 1011, (64)

where kB is Boltzmann’s constant,Mσ is the coupling mass,
M is the particle mass, and the chosen values assume a
super-symmetric origin of the CDM particle.

Unfortunately, the linearisation will break down at high
redshift as the expansion-normalized scales as e−α, so the
value by which the dark matter tilt is suppressed rela-
tive to the baryon tilt is unclear. However, equation (63)
strongly suggests that the baryon–photon plasma dominates
the momentum density at last scattering and that its tilt
should be properly determined at zLSS by equation (60) with
P = (ρb + 4ργ/3)u(b) on the left-hand side. After this u(b)

decays as 1 + z as determined by (62). The usual procedure
of assuming that all components have the same tilt under-
estimates |u(b)| at last scattering by the ratio of the baryon–
photon enthalpy to the total enthalpy. For the majority of
our results, we follow the usual procedure for consistency
with previous work. We consider the effect of the improved
velocity analysis in Section 5.7, where we show that it will
have a significant impact on statistical studies, but does not
change our qualitative results.

5.3 Parameters of the model

For ΛCDM, the background model may be specified fully
by the physical densities in CDM (ωc,0 ≡ Ωc,0h

2
100 with

H0 = 100h100 km s−1 Mpc−1) and baryons (ωb,0) with ΩΛ,0

and ΩK,0. The Hubble constant and ΩM,0 are then derived
quantities. Models with fixed ωc,0 and ωb,0 have the same
early-universe history and reproduce the same acoustic peak
structure in the CMB spectra if the angular-diameter dis-
tance to last-scattering and the primordial power spectra
are additionally held fixed (Efstathiou & Bond 1999). The
Bianchi representation with structure constants in canonical
form further requires us to specify eα0 , although this is of no
physical consequence in the background. In the perturbed
model, the current scale factor eα0 determines the physi-
cal size over which the shear eigenvectors rotate in space
on a parallel-propagated triad. For the simplified perturbed
model, we must additionally specify initial values for σ12 and
σ13. Due to the rotational symmetry of the VIIh structure
constants about e1, only m = ±1 anisotropies and polar-
ization are generated in this model, and are proportional to
[(σ12∓iσ13)/H ]0 respectively. Varying the phase of σ12+iσ13

amounts to rotating the sky about e1 (reflecting the residual

freedom in the choice of e2 and e3), while the rotationally-
invariant content depends on σ2

12 + σ2
13. We can, therefore,

always choose σ12 = σ13 which we do for compatibility with
previous studies.

The morphology of the CMB anisotropy and polariza-
tion patterns in the Bianchi model is determined largely by
the parameters ΩM,0, ΩΛ,0 and the conformal Hubble pa-
rameter eα0H0. The expansion-normalized shear (σ12/H)0
and (σ13/H)0 determine the amplitude.4 Collins & Hawking
(1973a) denote the conformal Hubble parameter by x, i.e.

x = α̇0e
α0 =

√

h

ΩK,0
, (65)

where the latter relation arises directly from the FRW def-
inition of ΩK,0, with K = −h in our case (Section 2.1).
With x, ΩM,0 and ΩΛ,0 fixed, variations in eα0 change phys-
ical scales in the model (e.g. the age) but do not affect the
conformal properties. There is an approximate degeneracy
amongst ΩM,0, ΩΛ,0 and x that preserves the morphology of
the Bianchi patterns (Jaffe et al. 2006; Bridges et al. 2007).
In our results, we follow Jaffe et al. (2006) by fixing ωc,0

and ωb,0 and use an ionization history consistent with these
choices. Further specifying ΩM,0 and ΩΛ,0 determines H0;
the current scale factor is then fixed by x.

5.4 Summary of the calculation

We assemble a hierarchy of multipole equations for Θlm, Elm

and Blm using the results of Section 4. The Thomson scat-
tering rate τ̇ requires a model for the recombination (and po-
tentially reionization) history, for which we use RECFAST

(Seager, Sasselov & Scott 1999).
Starting at z ≃ 1500, the initial power is taken to be

zero for the polarization, with a pure dipole for the tempera-
ture arising from the tilt of the baryon–photon fluid. Whilst
the universe remains optically thick, a small quadrupole
term in the temperature and polarization distributions arises
from the equilibrium between scattering and anisotropic red-
shifting due to shear; this is quickly attained during the nu-
merical integration and there is no requirement to include it
in the initial conditions. However, we verified that starting
significantly earlier (z ≃ 1800) made no difference to the
final results.

Since the power in the temperature modes declines very
rapidly for l > 15, we truncate the hierarchy at l = 60 with-
out any special boundary conditions. Performing the calcu-
lation with a higher truncation (l = 120) made no difference
to the results for l < 30. During the numerical integration
we ensure at each timestep δη ≪ 1, σδη ≪ 1 and τ̇ δη ≪ 1.

We investigate the polarization properties of the
CMB in two models on the degeneracy proposed by
Jaffe et al. (2006), namely (x,ΩΛ,0,ΩM,0) = (0.62, 0, 0.5)
and (1.0, 0.7, 0.2) respectively, both with “right-handed”
parity. The latter model is as close to a concordance value as

4 The more refined treatment of tilt velocities requires one to
specify also the fraction of baryons to dark matter and the physi-
cal Hubble parameter. However, the Doppler terms are generally
only a small correction to the anisotropy accumulated through
the shear. The details of recombination introduce further depen-
dencies on the physical densities of baryons and dark matter.
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Figure 1. Temperature (top), E-mode (middle) and B-mode
polarization (bottom) maps for the Bianchi VIIh model with
(x,ΩΛ,0,ΩM,0)=(0.62, 0, 0.5) and a consistent recombination his-
tory and no reionization. The maps have been transformed to the
observational basis (−p, êθ, êφ), which involves a parity change
of the form (42), and rotated to match the orientation of the tem-
plate given in Jaffe et al. (2006). The masks used in the WMAP

polarization analysis (Page et al. 2007) are overlaid on the polar-
ization maps.

the Bianchi fitting allows (see Fig. 7 in Bridges et al. 2007).
In both cases, we take ωb,0 = 0.022 and ωc,0 = 0.110 and the
consistent recombination history with no reionization. These
models produce almost identical polarization patterns, for
reasons outlined below. We briefly discuss the effects of al-
tering the ionization history in various ways (including reion-
ization) in Section 5.6.

In each case, we normalize such that the maximum
temperature anisotropy corresponds to ∆T = ±35µK.
Note that the amplitude of the polarization anisotropy sim-
ply scales linearly with the magnitude of the temperature
anisotropy.

Figure 2. Auto- and cross-correlation power spectra for the
Bianchi models (x,ΩΛ,0,ΩM,0) = (0.62, 0, 0.5) (solid lines) and
(x,ΩΛ,0,ΩM,0) = (1.0, 0.7, 0.2) (dotted lines), normalized such
that the maximum ∆T = ±35 µK. (The units of the vertical axis
are µK.) The main difference between the models is a shift of
power to larger scales (lower l) in the model with Λ; this is well
understood in terms of the reduced focusing given lower ΩK,0 (see
text), and causes no difference to our conclusions. Note that the
TB correlation is negative for l < 6 and l < 5 in the respective
models.

5.5 Results

The resulting temperature and polarization E- and B-mode
maps for the ΩΛ,0 = 0 case are illustrated in Fig. 1. The level
of the polarization is very high, approximately 1µK. Heuris-
tically, this is because the shear modes considered here de-
cay as (1 + z)3, so that a substantial portion of the final
temperature anisotropy can be built up between individual
scattering events at high redshift. Because of the efficient
conversion of E-modes to B, (equation 52), the B-mode con-
tribution is of similar magnitude to the E-mode.

Although computing the power spectra,

CXY
l =

1

2l + 1

∑

m

aX∗
lm aYlm, (66)

does throw away useful information in these models, it pro-
vides a fast and efficient way to compare our results with
known, and robust, polarization constraints. Since the mul-
tipole hierarchy does not transfer power between different
m values, and the implemented cosmology only generates
anisotropies with m = ±1, in forming the power spectrum
we are throwing away only phase information.

Given the position of the Bianchi-like features on the
sky given in Jaffe et al. (2006), we may be confident that
the P06, and even the P02, mask of the WMAP polarization
analysis (Page et al. 2007) could not hide the polarization
signal to a great extent (Fig. 1). Although the relation be-
tween the Stokes parameters and E and B is non-local, we
note that maps of the Stokes parameters have their power
localized in a similar way to E and B (and T ). We therefore
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10 Andrew Pontzen, Anthony Challinor

Figure 3. Growth of observable r.m.s. signal in the T and E-
and B-mode polarization plotted against a = eα−α0 = (1+ z)−1

for the models (x,ΩΛ,0,ΩM,0)=(0.62, 0, 0.5) (solid lines) and
(x,ΩΛ,0,ΩM,0)=(1.0, 0.7, 0.2) (dotted lines). Note that the power
grows rapidly at high redshift while the shear is still significant,
then remains constant (although it is transferred to higher l,
which cannot be seen in this diagram). It is for this reason that
the polarization is remarkably strong and relatively insensitive
to the cosmology along the line for which the VIIh temperature
patterns are degenerate.

calculate the full-sky power spectra without any considera-
tion of the effect of masking nor the weighting with the in-
verse of the (non-diagonal) pixel-pixel noise covariance ma-
trix that were employed by theWMAP team. Given that the
r.m.s. Bianchi signal inside the masks is lower than outside,
we expect the effects of masking would increase the esti-
mated Bianchi power spectra over the full-sky values plotted
in Fig. 2.

The major difference between the two parameter sets
considered is that, for the ΩΛ,0 = 0.7 case, the distinctive
spiral pattern is less ‘focused’. This is a well understood ef-
fect of reducing the spatial curvature ΩK,0 to 0.1 from its
original value, 0.5 (e.g. Barrow et al. 1985), and manifests
itself as a shift of power to lower l (see Fig. 2). The existing
statistical studies show that distinguishing these cases ob-
servationally is currently not possible (Bridges et al. 2007).

There is no significant difference in the overall polariza-
tion power. This follows because the majority of the power
is built up rapidly at high redshifts as the universe becomes
optically thin and the shear term has not decayed: at this
point, the model is insensitive to the values of ΩΛ,0 and
ΩK,0 (Fig. 3). Allowing ωb,0 to vary introduces much more
substantial variations in the relative level of polarization;
however, this introduces a further degree of freedom and is
beyond the scope of our current analysis.

In Fig. 4, we compare the power spectra in the Bianchi
ΩΛ,0 = 0 model with the power expected in a ‘concordance’
model with standard, statistically-isotropic and homoge-
neous perturbations. The latter spectra are computed using
CAMB (Lewis, Challinor & Lasenby 2000) for two models,

Figure 4. Bianchi VIIh induced power in the CMB (solid
lines) for (x,ΩΛ,0,ΩM,0)=(0.62, 0, 0.5) and no reionization,
compared with Gaussian power from inhomogeneities for
(ωc,0, ωb,0, σ8, r) = (0.110, 0.022, 0.7, 0.3) with reionization op-
tical depth τ = 0 (dash-dotted lines) and τ = 0.10 (dashed
lines). The polarization data are from the WMAP three-year
release (Page et al. 2007). From the TE and EE power spec-

tra alone, the Bianchi-induced polarization can mimic the ef-
fect of early reionization in the standard scenario (the conven-
tional interpretation of the large-scale polarization power seen by
WMAP). However, the best-fit Bianchi model to the tempera-
ture map clearly over-produces B-mode power compared to the
WMAP upper limit (plotted) ruling out the simple model imme-
diately.

one with no reionization (dot-dashed lines) and a favoured
reionization model (dashed lines; τ = 0.10). Forming com-
bined power spectra by adding the power from the Bianchi
model that best fits the temperature maps to that from the
concordance model is inconsistent, since the models have
different parameters (Bridges et al. 2007). However, ignor-
ing this problem and comparing the models as ‘templates’
shows that, so far as the TE and EE power spectra are
concerned, the Bianchi model can mimic the observed large-
angle power that is conventionally attributed to reioniza-
tion. Of course, the ‘corrected’ power in such a model would
probably lead to an unfeasibly low estimate for τ in light
of other data such as the Gunn-Peterson constraints (e.g.
Fan, Carilli & Keating 2006). So, at least with the fiducial
simplified dynamics outlined in Section 5.1, this already pro-
vides strong evidence against the VIIh model.

More challenging for the Bianchi model is the B-mode
polarization, which is at a similar level to the E-mode. In
Page et al. (2007), the B-modes for l < 10 are found to be
consistent with zero with errors better than σ ∼ 0.1µK2

at each multipole. At this level, the signal-to-noise on the
B-mode spectrum in the Bianchi model should be at least
unity for each 2 < l < 8, and would have produced a highly
significant detection of large-angle B-modes overall.

Finally, the Bianchi models are not parity-invariant
and one therefore obtains a TB and EB cross-correlation
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(Fig. 2). To get a rough estimate of the current statis-
tical power of these spectra in constraining the Bianchi
model, we compute the χ2 between the model prediction
and the WMAP estimates of CTE

l and CTB
l available on

the LAMBDA website5. We use the spectra from l = 2–16
and, since only the diagonal errors are publically available,
we ignore correlations between the estimates and compli-
cations due to the shape of the low-l likelihood. As noted
earlier, we also ignore the effects of foreground masking and
noise-weighting.6 We find reduced χ2 values of 0.5 for TB
and 4.3 for EB for 15 degrees of freedom. The corresponding
figures for null CTB

l and CEB
l are 0.4 and 0.6. Note that,

although the Bianchi power is typically two orders of magni-
tude smaller in EB than TB, the EB estimates have smaller
errors as CT

l exceeds the variance of the polarization noise
on these scales. The interpretation of these χ2 values is that
the data are too noisy to distinguish the Bianchi model from
the null case for TB (both are perfectly consistent) but the
EB spectra disfavour the Bianchi model over the null case.

5.6 Effect of ionization history

Since the shear decays rapidly, σ ∝ (1 + z)3, our inclusion
of a more detailed recombination calculation will affect the
temperature maps somewhat. We take the ΩΛ,0 = 0 model
and run the Boltzmann hierarchy twice; first with instan-
taneous recombination at z = 1100 and then with the full
RECFAST history (with no reionization). There is no qual-
itative difference in the temperature maps produced, but
there is an approximately 15 percent decrease in the temper-
ature amplitude in the latter case. Of course, this is simply
reflected in a slightly different estimate of (σ/H)0 and has no
significant impact on previous probes of Bianchi signatures.

However, the detailed recombination history does have
a significant impact on the amplitude of polarization. With
the detailed model, the amplitude is approximately five
times larger than that derived from the instantaneous model.
Note that this puts the amplitude of polarization in the in-
stantaneous model in agreement with the estimation in Rees
(1968). It is unsurprising that the polarization is so sensi-
tive to the recombination model, given that it arises through
the detailed interplay of the rapidly decreasing shear and
sharply peaked visibility function τ̇ e−τ .

The effect of adding reionization is not as dramatic as
for standard FRW perturbations; this is because of the high
level of the primordial polarization relative to the tempera-
ture signal (∼ 1/25) on large scales. Adding reionization as
early as z = 15 produces only a ∼ 50 percent increase in the
EE power.

5.7 Effect of improved constraint model

The numerical results presented so far have derived the
baryon tilt assuming the same tilt for all particle species,

5 http://lambda.gsfc.nasa.gov/
6 We checked that the additional variance in the power spec-
trum estimates (when averaging over statistically-isotropic CMB
fluctuations and noise) due to products between the two-point
functions of the Bianchi signal and fluctuations is only a small
correction to the errors computed by the WMAP team.

Figure 5. (Top) Normalized temperature map for Bianchi
VIIh model (x,ΩΛ,0,ΩM,0)=(0.62, 0, 0.5) with improved tilt con-
straint; (bottom) residuals in this map compared to the standard
constraint map (Fig. 1). The centre of the maps are here oriented
down the e1 axis.

Figure 6. Comparison of power spectra with standard constraint

(solid lines) and improved constraint (dashed lines) after renor-
malizing the maximum temperature anisotropy to ±35µK.
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consistent with previous work. In this section, we analyze the
effect of dropping this assumption and adopting the more
sophisticated model of Section 5.2.

One may see heuristically that the shear generally
contributes more to the temperature anisotropy than the
dipole, because its integrated effect (for models with mat-
ter domination over most of the line of sight) scales as

∼ Ω
−1/2
M,0 (σ/H)0(1 + zLSS)

3/2 × O(1) whereas the dipole is
imprinted instantaneously at scattering and scales in the
improved model as

|u| ∼
√
1 + 9h(1 + zLSS)

xΩb,0

(

σ

H

)

0
. (67)

Using this new approach with the two sets of parameters
considered above, the ratio of the shear to Doppler contri-
butions is ∼ 6. If instead we assume the same tilt for all
species, as in the previous section, we should replace Ωb,0

by ΩM,0 in equation (67) and this ratio becomes ∼ 30.
The effects of the improved treatment of tilt are thus

twofold: (a) an increase in the relative level of the ‘distorted
dipole’ to the ‘distorted quadrupole’ component in the tem-
perature maps; and (b) a decrease in the overall level of po-
larization, given that the models are normalized to a fixed
maximum ∆T/T , and only the quadrupole at high redshift
is responsible for producing polarization.

The revised temperature map and residual map for the
(x,ΩΛ,0,ΩM,0) = (0.62, 0, 0.5) model are shown in Fig. 5.
The power spectra are plotted in Fig. 6. As expected, the
polarization strength is somewhat lower after renormaliza-
tion. The effects are in accordance with our expectations:
the difference in the temperature maps amounts to a 15%
effect, whilst the polarization level is reduced by approxi-
mately 10%.

It is clear that the details of how the tilt is treated will
impact on a detailed statistical comparison of the models
with the WMAP data, but a full study is beyond the scope
of the present work. However these effects are not sufficiently
large to make the Bianchi B-mode polarization unobservable
at the three-year WMAP sensitivity (cf. Fig. 4), or change
our overall conclusions.

6 CONCLUSIONS

We have derived the radiative-transfer equation for the
CMB, including polarization, in all nearly-FRW Bianchi uni-
verses in the form of a hierarchy of multipole equations
which can be easily integrated numerically. These can be
coupled with the dynamical (i.e. Einstein) equations to com-
pute maps of the CMB temperature anisotropies and polar-
ization in any such model. B-mode polarization is generic,
being produced in all Bianchi types except I. We applied
these equations to the Bianchi VIIh case, with parameters
tuned to address the anomalous features observed in the
CMB temperature on large scales (Jaffe et al. 2005, 2006).
Our treatment includes a more physical treatment of the
tilt velocity in CDM models with sub-dominant baryons.
Whilst this does not make a qualitative difference to our re-
sults, more detailed statistical studies could well be affected
by its ∼ 20% corrections.

Our temperature maps are similar to those derived from
earlier studies (Collins & Hawking 1973a; Barrow et al.

1985), although the amplitude is modified somewhat due
to the better treatment of the ionization history. Polariza-
tion maps, with the generality presented here, do not appear
to have been computed before. Note also that for these, a
detailed treatment of recombination is required for accu-
rate results. The power spectra of our type-VIIh polariza-
tion maps apparently put these models in contradiction of
the large-scale polarization results from WMAP (Page et al.
2007).

During the drafting of this paper, an analysis of uni-
verses equivalent to Bianchi I models, tuned to account
for the low CMB quadrupole (Campanelli, Cea & Tedesco
2006), was shown to give a similar level of polarization to
that computed here (Cea 2007). This is not surprising given
that the anisotropies are tuned to address some of the same
problems, and that the added complications induced by the
VIIh geometry do not substantially alter the amplitude of
the effect (in the simplified dynamical model). In the type-I
model, the temperature anisotropy and E-mode polariza-
tion are simply quadrupoles, and no B-modes are produced
(see equation 52). Although the type-I model does not suffer
the same observational constraints as type-VIIh in polariza-
tion, the latter has the virtues in temperature of resolving
essentially all of the large-angle anomalies.

Our cursory glance over the available data appears to
rule out the VIIh models employed in recent papers on the
basis that they over-produce B-mode power. This is espe-
cially significant given that the results hold for all models
on the Bianchi degeneracy line given in Jaffe et al. (2006).
Our polarization results, combined with the failure of the
Bianchi degeneracy region to include well-established val-
ues for the cosmological parameters, suggest that the simple
VIIh model, as it stands, is unsuitable to describe the avail-
able data. However, to reject completely the hypothesis that
our universe contains anisotropic perturbations that are ho-
mogeneous under groups of motions with Bianchi type VIIh
requires a fuller treatment of the dynamics of the linearized
model (Section 5.1). We intend to address this problem, and
to search for statistical correlations between the morphol-
ogy of the generalized model’s polarization and the WMAP

data, in future work.
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Hansen F. K., 2005, ApJ, 629, L1

Jaffe T. R., Hervik S., Banday A. J., Górski K. M., 2006,
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