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1. Introduction

Although conventionally inflation is assumed to take place at a very high energy

scale and be driven by the slow roll motion of an unknown singlet field, the inflaton,

recently it has been pointed out [1, 2] that inflation can in fact be realized already

within the Minimally Supersymmetric Standard Model (MSSM). In this case the in-

flaton is a gauge invariant combination of squark or slepton fields. The flatness of the

inflaton potential is provided by supersymmetry and the gauge symmetries, which

together give rise to about 300 flat directions in the space of scalar fields [3] (for a re-

view of the physics of the MSSM flat directions, see [4]). Along these flat directions,

in the limit of exact supersymmetry (susy), the scalar potential vanishes identically.

However, the flat directions are lifted by non-renormalizable superpotential terms, as

well as by soft susy breaking [5]; of particular importance for MSSM inflation are the

non-renormalizable A-terms ∝Wn, where Wn is the non-renormalizable superpoten-

tial of dimension n. The dimensionality of the non-renormalizable terms depends on

the particular direction, as does the existence of the A-terms, which are absent for

some directions.

As discussed in [1], phenomenologically acceptable slow roll MSSM inflation can

arise along the dimension six flat directions udd and LLe, which we denote by the

field Φ. The flat direction field is complex, and in the complex plane there exists a

set of discrete directions along which the contribution of the A-term is most negative.

Along these directions the MSSM inflaton potential reads

V =
1

2
m2φ2 − Aλ

6
φ6 + λ2φ10 , (1.1)
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where φ is the absolute value of the field, m and A are the soft susy breaking terms, λ

is an effective coupling constant and we have set MP ≡ 1. Generically, the potential

Eq. (1.1) does not as such give rise to inflation. However, one may notice that it has

a secondary minimum at

φ0 =
( A

20λ

)1/4

≪ 1 , (1.2)

which becomes a saddle point if the condition

A2 = 40m2 (1.3)

holds. In that case the potential is extremely flat with V ′(φ0) = V ′′(φ0) = 0. In the

vicinity of the saddle point the potential is given by

V (φ) ≈ V (φ0) +
1

6
V ′′′(φ0)(φ− φ0)

3 = V (φ0) +
16

3

m2

φ0
(φ− φ0)

3 . (1.4)

If in the initial state φ ≃ φ0, there follows a period of slow roll inflation with a

very low scale of Hinf ∼ 1 − 10 GeV, assuming λ ∼ O(1), and a spectral index of

n ≃ 0.92 [1]. Slight deviations from the saddle point condition Eq. (1.3) modify the

spectral index somewhat (see [2]). Because of the low inflationary scale, there are no

observable tensor perturbations.

The great virtue of the MSSM inflation is that the inflaton couplings to Stan-

dard Model particles are known and, at least in principle, measurable in laboratory

experiments such as LHC or a future Linear Collider. The inflaton mass is directly

related to the slepton or squark masses and the model can thus be tested in the

laboratory.

However, the obvious disadvantage is the fine tuning implicit in the saddle point

condition Eq. (1.3). Slow roll inflation1 requires that the ratio A/m should be tuned

to the saddle point with an accuracy of about 10−16; otherwise the slow roll properties

of the potential Eq. (1.1) would be spoiled [2]. Since in the MSSM the soft susy

breaking parameters are put in by hand, there can be no explanation for the saddle

point condition other than simple finetuning. Thus the relation Eq. (1.3) must reflect

physics that is beyond the MSSM and in particular the mechanism of supersymmetry

breaking. Hence the values of the soft susy breaking parameters reflect the properties

of the hidden sector. The question then is: is it possible to realize the saddle point

condition naturally in some supergravity model as defined by the Kähler potential?

This means that the condition Eq. (1.3) should not be just an accidental coincidence

that emerges when the hidden sector fields settle in their vevs, but rather a generic

condition that holds irrespective of the hidden sector field values. In the present

paper we demonstrate that this is indeed the case. Moreover, the form of the Kähler

potential turns out to be rather suggestive, with features that can be found in certain

string theoretical compactification schemes.
1For a discussion of the inflationary properties of a potential that has the generic form of

Eq. (1.1), see [6]; for a discussion on dark matter and MSSM inflation, see [7].
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2. The scalar potential

Our aim is to identify a class of Kähler potentials that generate such soft susy break-

ing terms for the flat direction Φ that the saddle point condition (1.3) is identically

satisfied. It is obvious that the simplest, flat Kähler potential will not do the job;

instead, one has to consider more complicated possibilities. We focus on soft terms

generated through F-term susy breaking (recall that the flat directions are D-flat

also in supergravity). In this case the scalar potential is determined solely by the

function

G(ΦM ,Φ
∗
M) = K(ΦM ,Φ

∗
M) + log |W (ΦM)|2 , (2.1)

where K and W are respectively the Kähler potential and the superpotential. Here

ΦM , which includes both the hidden sector fields hm and the flat direction inflaton

field Φ, denotes the scalar part of the corresponding chiral superfield. Assuming

vanishing D-terms also in the hidden sector, the tree-level scalar potential reads

V = eG
(

GMN̄GMGN̄ − 3
)

, (2.2)

where the lower indices M and M̄ refer to derivatives with respect to ΦM and Φ∗
M ,

and the matrix GMN̄ = KMN̄ is the inverse of the Kähler metric GMN̄ = KMN̄ .

For the dimension 6 flat directions that we are considering as the inflaton, the

superpotential is of the form

W = Ŵ +
λ̂6
6
Φ6 ≡ Ŵ + I , (2.3)

where I is the lowest order non-renormalizable term that lifts the flat direction. The

superpotential may also contain all possible higher order terms allowed by symme-

tries but these will not affect our analysis and have therefore been suppressed. In

Eq. (2.3) and elsewhere in the text, we use the hat to denote quantities that are

independent of Φ, but are functions of the hidden sector fields. This is in general the

case for the Φ-independent term Ŵ of the superpotential, as well as for the coupling

constant λ̂6 of the non-renormalizable term. However, since our focus is on finding a

Kähler potential that satisfies the relation Eq. (1.3), we will neglect the hidden sec-

tor dependence of the superpotential, and hence treat these quantities as constants

throughout this paper. In this context, it is worth noting that, in order to ensure

the validity of the MSSM inflation scenario, we are assuming the flat direction to be

the only dynamical variable during inflation. Thus we are implicitly requiring that

the hidden sector fields are stabilized before the beginning of inflation either by the

neglected superpotential terms or through some other mechanism.2

2The inclusion of the hidden sector fields, even when stabilized before the onset of inflation, may

in general lead to additional fine-tuning conditions on the inflationary potential. A detailed analysis

of these effects however requires precise knowledge of the nature and dynamics of the hidden sector

fields and is beyond the scope of this paper. A qualitative discussion of this issue can be found in

Ref. [8], even if the results therein as such are not applicable here.

– 3 –



Given the superpotential Eq. (2.3), the scalar potential Eq. (2.2) can be written

as

V = |Ŵ |2f + Ŵ I∗g + Ŵ ∗Ig∗ + |Iφ|2k , (2.4)

where

f = eK
(

KMN̄KMKN̄ − 3
)

, (2.5)

g = eK
( 6

Φ∗
KMφ̄KM +KMN̄KMKN̄ − 3

)

, (2.6)

k = eK
(

Kφφ̄ +
Φ

6
KMφ̄KM +

Φ∗

6
KφM̄KM̄ +

ΦΦ∗

36
(KMN̄KMKN̄ − 3)

)

. (2.7)

To find the explicit expression for the potential Eq. (2.4), one needs to determine

the Kähler potential. Here we consider Kähler potentials of the generic perturbative

form

K = K̂ + Ẑ2φ
2 + Ẑ4φ

4 + Ẑ6φ
6 + . . . , (2.8)

where φ denotes the absolute value, Φ = φ exp(iθ). Using the Kähler potential

Eq. (2.8) to expand the coefficients f, g and k in Eq. (2.4) in powers of φ and keeping

only the lowest order terms, the scalar potential Eq. (2.4) becomes

V = V0 + V2φ
2 + V6φ

6 + V10φ
10 , (2.9)

where

V0 = eK̂ |Ŵ |2
(

K̂mK̂m − 3
)

, (2.10)

V2 = eK̂ |Ŵ |2Ẑ2

(

K̂mK̂m + K̂mK̂ n̄(Ẑ−2
2 Ẑ2mẐ2n̄ − Ẑ−1

2 Ẑ2mn̄)− 2
)

, (2.11)

V6 = eK̂ |Ŵ ||λ̂6|cos(ξ − 6θ)
∣

∣

∣

1

3
K̂mK̂m − 2Ẑ−1

2 K̂m̄Ẑ2m̄ + 1
∣

∣

∣
, (2.12)

V10 = eK̂ |λ̂6|2Ẑ−1
2 , (2.13)

the phase ξ in V6 reads

ξ ≡ arg
(1

6
K̂mK̂m − Ẑ−1

2 K̂m̄Ẑ2m̄ +
1

2

)

+ arg(Ŵ )− arg(λ̂6) (2.14)

and indices are raised and lowered with K̂MN̄ and K̂MN̄ respectively. Here V0, V6
and V10 result from the leading order expansion of f, g and k respectively, whereas V2
is obtained by expanding f to next to leading order. The expansion is performed in

this manner since the constant V0, which would give rise to a cosmological constant,

will be neglected henceforth3. Thus V2 becomes the leading non-trivial term in the

3We assume the cosmological constant to be adjusted to the observationally required value either

by terms arising from the hidden sector dependent superpotential, or by some other (yet unknown)

mechanism.
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expansion of f and Eq. (2.9) with V0 removed then constitutes the leading order

potential. In the following, the term leading order will be understood precisely in

this sense, i.e. as leading non-trivial order.

By expanding f, g and k in Eq. (2.4) to next to leading order, one finds a first

order correction ∆1V to the potential Eq. (2.9), at next to next to leading order one

finds a second order correction ∆2V , and so on. In carrying out this sort of expansion,

we implicitly restrict our analysis to the values of φ for which all the terms in Eq. (2.4)

are comparable, which will certainly be the case in the vicinity of the eventual saddle

point. Using Eqs. (2.4) – (2.8), an order of magnitude approximation of the n-th

order correction to the leading order potential is then given by

∆nV ∼ eK̂ |Ŵ |2Ẑn+1
2 φ2n+2 . (2.15)

3. The saddle point condition

In this Section we consider the restrictions placed by the saddle point condition

Eq. (1.3) on the leading order potential. The role of higher order corrections will be

discussed in the next Section.

By choosing the phase θ of Φ such that cos(ξ − 6θ) = −1 in Eq. (2.12), the θ

dependent part of the leading order potential Eq. (2.9) is minimized and we recover

Eq. (1.1), where

m2 = 2eK̂ |Ŵ |2Ẑ2

(

K̂mK̂m + K̂mK̂ n̄(Ẑ−2
2 Ẑ2mẐ2n̄ − Ẑ−1

2 Ẑ2mn̄)− 2
)

, (3.1)

A = eK̂/2|Ŵ |Ẑ1/2
2

∣

∣

∣
2K̂mK̂m − 12Ẑ−1

2 K̂m̄Ẑ2m̄ + 6
∣

∣

∣
, (3.2)

λ2 = eK̂ |λ̂6|2Ẑ−1
2 . (3.3)

The saddle point condition Eq. (1.3) then becomes

|K̂mK̂m − 6Ẑ−1
2 K̂m̄Ẑ2m̄ + 3|2 = 20(K̂mK̂m + K̂mK̂ n̄(Ẑ−2

2 Ẑ2mẐ2n̄ −
Ẑ−1

2 Ẑ2mn̄)− 2) , (3.4)

which is a partial differential equation for two unknown functions, K̂ and Ẑ2.

As a simple example we first consider a scenario in which there is only one hidden

sector field h. Treating the functions K̂ and Ẑ2 as independent variables, Eq. (3.4)

implies

∂hK̂∂h̄K̂ = −β∂h∂h̄K̂ , (3.5)

where β is a constant. An analogous equation appears in no-scale supergravity

models [9] and is solved for

K̂ = βlog(h+ h∗) . (3.6)
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Using this result and assuming Ẑ2 = Ẑ2(h+h
∗) , the saddle point condition Eq. (3.4)

in the one-dimensional case becomes

(3− β + 6(h+ h∗)∂hlogZ2)
2 = 20(−β − 2− (h+ h∗)2∂2hlogẐ2) , (3.7)

whose general solution is

Ẑ2 = (h+ h∗)−2/9+β/6
[

c1(h+ h∗)ω(β) + c2(h+ h∗)−ω(β)
]5/9

, (3.8)

where c1, c2 are constants, and ω(β) = 1/2
√
−17− 6β . The solution takes a partic-

ularly simple form if one of the constants c1, c2 is zero.

To find a solution of Eq. (3.4) in the general case with several hidden sector

fields, we make an Ansatz motivated by the one-dimensional case and write

K =
∑

m

βmlog(hm + h∗m) + κ
∏

m

(hm + h∗m)
αmφ2 +O(φ4) , (3.9)

where αm, βm and κ are constants. Kähler potentials of this type are found e.g.

in Abelian orbifold compactifications of heterotic string theory [10] as well as in

intersecting D-brane models [11]. In both cases the moduli fields play the role of the

hidden sector fields hm. Here we will, however, treat the parameters in Eq. (3.9) from

a phenomenological point of view, without any particular string scenario in mind.

The Ansatz Eq. (3.9) solves Eq. (3.4) provided the parameters are related by

α(36α+ 16− 12β) + (β + 7)2 = 0 , (3.10)

where

α =
∑

m

αm , (3.11)

β =
∑

m

βm . (3.12)

In Table 1 we list solutions to Eq. (3.10) for which the soft susy breaking terms

are nonzero and the αm are rational numbers. In the string context −β generically

measures the number of hidden sector fields and therefore we restrict ourselves to

the lowest values of β.

To summarize, for the leading order potential the saddle point condition Eq. (1.3)

is satisfied identically with the class of Kähler potentials determined by Eq. (3.9) and

the conditions on the parameters βm, αm as given in Table 1. While there definitely

exist other solutions of Eq. (3.4) as well, Eq. (3.9) represents the only class of solutions

for which Ẑ2 is separable and the hidden sector dependence is of similar functional

form for all the fields, provided that K = K(hm + h∗m) and the hidden sector metric

K̂mn̄ is diagonal. Since we are not making any specific assumptions about the physical

nature of the hidden sector fields, these seem to be quite natural conditions to impose

on Ẑ2.
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Table 1: Values of β and α in the Kähler potential Eq. (3.9) for which the saddle point

condition is satisfied identically.

β =
∑

m βm α =
∑

m αm
−3 −4

9

−7 0

−7 −25
9

−11 −1
9

−11 −4

4. Higher order corrections

In the vicinity of the saddle point as given by Eq. (1.2), the slope of the leading

order potential Eq. (1.1) is extremely small. Therefore, one may ask whether the

corrections arising from the expansion of the potential Eq. (2.4) to higher orders will

destroy this flatness. In this Section, we show that the required flatness [1, 2] is

maintained if, in addition to the leading order potential, also the first and second

order corrections satisfy certain conditions. Analogously to the leading order results,

we find a form of the Kähler potential for which all these conditions are satisfied

identically, i.e. irrespective of the vevs of hidden sector fields.

Within the slow roll approximation, the dynamics are determined by the first

derivative of the potential. Therefore the condition for the n-th order correction,

∆nV , not to alter the leading order results can be expressed as

∆nV
′(φ) ≪ V ′(φ) ∼ 10−3 m

2Ẑ2
2

N(φ)2
φ5
0 , (4.1)

where the derivative of the leading order potential, V ′(φ), has been written in terms

of the e-foldings N(φ) remaining until the end of inflation [1, 2]. Using Eq. (2.15),

this condition becomes

Ẑn−2
2 φ2n−4

0 ≪ 10−3N(φ)−2 , (4.2)

which is satisfied automatically for n > 2 since4 Ẑ
1/2
2 φ0 ≪ 1. This means that the

third and higher order corrections are negligible and require no further attention.

The corrections ∆1V and ∆2V , on the other hand, can not be made small simply by

adjusting parameters, but one needs to set their derivatives to zero identically. To

be more precise, Eq. (4.2) is satisfied if ∆V ′
1(φ0) = ∆V ′′

1 (φ0) = 0 and ∆2V
′(φ0) = 0.

The first order corrections to the leading order potential can be written as

∆1V = V4φ
4 + V8φ

8 + V12φ
12 , (4.3)

4Note that it is actually the canonically normalized field φcan ∼ Ẑ
1/2
2

φ that is the MSSM inflaton.

Therefore Ẑ
1/2
2

φ ≪ 1. However, V (φcan) has a saddle point under the same conditions as V (φ) and

the choice of the field variable plays no role in our analysis.
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where the coefficients are obtained from Eqs. (2.4) – (2.7) by retaining only the next

to leading order terms. With the leading order Kähler potential given by Eq. (3.9),

the conditions ∆V ′
1(φ0) = ∆V ′′

1 (φ0) = 0 yield a pair of partial differential equations

for the coefficient Ẑ4 in the Kähler potential Eq. (2.8) whose only solution is

Ẑ4 = µ(α, β, γ(α, β))Ẑ2
2 , (4.4)

where γ =
∑

m α
2
m/βm and we have assumed Ẑ4 = Ẑ4(hm + h∗m). The parameters

µ and γ are not freely selectable but completely determined by α and β such that

∆V ′
1(φ0) = ∆V ′′

1 (φ0) = 0. In Table 2 below we give their values for the choices of α

and β considered in this work.

In a similar manner, the second order correction reads

∆2V = V6φ
6 + V10φ

10 + V14φ
14 , (4.5)

with V6, V10 and V14 here denoting the next to next to leading order part of Eqs.

(2.4) – (2.7). In this case, the conditions to be placed on the Kähler potential are less

stringent since one only needs to set ∆V ′
2(φ0) = 0. Assuming K̂, Ẑ2, Ẑ4 in Eq. (2.8)

to be given by Eqs. (3.9), (4.4), the condition ∆V ′
2(φ0) = 0 is satisfied for

Ẑ6 = ν(α, β, δ)Ẑ3
2 , (4.6)

where δ =
∑

m α
3
m/β

2
m, and only the relation between δ and ν is determined by α

and β, see Table 2 below. Moreover, in addition to Ẑ6 given by Eq. (4.6), the O(φ6)

part of the Kähler potential may also contain solutions of the homogeneous part of

the partial differential equation arising from ∆2V
′(φ0) = 0.

Thus we have shown that there exists a class of Kähler potentials for which the

extreme flatness of the MSSM inflaton potential [1, 2] is generated and maintained

also in the presence of higher order corrections irrespective of the hidden sector vevs.

This class of Kähler potentials can be written in the form

K =
∑

m

βmlog(hm + h∗m) + κ
∏

m

(hm + h∗m)
αmφ2 + µ

(

κ
∏

m

(hm + h∗m)
αm

)2

φ4 +

ν
(

κ
∏

m

(hm + h∗m)
αm

)3

φ6 +O(φ8) , (4.7)

where the parameters are subject to the conditions given in Table 2 below.
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Table 2: The coefficients of the higher order terms in the Kähler potential that guarantee

the flatness of the MSSM inflaton potential.

β =
∑

m βm α =
∑

m αm γ =
∑

m α
2
m/βm µ δ =

∑

m α
3
m/β

2
m ν

− 3 −4
9

1
9

− 7
36

91
324

ν

− 7 0 0 1
12

δ ν

− 7 −25
9

−10
9

2
9

−1654
1863

+ 162
23
ν ν

− 11 −1
9

1
21

13
126

− 8465
75411

+ 162
19
ν ν

− 11 −4 −29
21

17
84

−2491
2940

+ 36
5
ν ν

5. Conclusions

In this work we have considered the supergravity origin of the recently proposed

MSSM inflationary model [1, 2]. In particular, we have shown that for the simple

class of Kähler potentials given by Eq. (4.7), the extremely flat inflaton potential

is produced identically in F-term supersymmetry breaking. The desired form of the

potential is thus obtained for all hidden sector vevs and not just for some carefully

chosen vacua.

The class of Kähler potentials Eq. (4.7) has a number of appealing features.

Firstly, although it is necessary to fix the potential up to O(φ6), no new functions

need to be introduced in addition to K̂ and Ẑ2 appearing already in the leading order

expression, Eq. (3.9). Moreover, it is interesting to note that the form of Kähler

potentials for which the MSSM inflationary scenario happens to be realized, is very

common in string theory compactifications. As mentioned in Section 3, Kähler po-

tentials of the form given in Eq. (3.9) arise e.g. in Abelian orbifold compactifications

of the heterotic string theory [10] and in intersecting D-brane models [11]. In the

heterotic case, the parameters αm are modular weights, whereas in the intersecting

brane models they depend on internal fluxes of the branes. To our knowledge, there is

no specific compactification known so far, which would generate exactly the required

values given in Table 1. This certainly would be a matter worth further investigation,

especially keeping in mind that none of the string theory compactifications known

to date produce exactly the actual MSSM. It would be very interesting to find a

compactification that generates the saddle point along a d=6 flat direction of the

MSSM.

The argumentation may also be turned the other way around. A supergravity

model with F-term supersymmetry breaking, an MSSM like visible sector and a

Kähler potential of the form given in Eq. (4.7) may naturally lead to an inflationary

period driven by the MSSM degrees of freedom and with properties consistent with

the observed cosmological data [12], provided the initial condition is such that the
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flat direction field finds itself in the vicinity of the saddle point. At this point,

however, we wish to emphasize that since we are assuming the flat direction to be the

only dynamical degree of freedom during inflation, we are also implicitly assuming

the moduli fields to be stabilized before the beginning of inflation. Although the

exceptionally low scale of inflation gives some justification for this assumption, the

validity of it is highly model dependent and non-trivial, and should be discussed

separately in the context of any realistic supergravity model. In any case, while

inflation may still be possible even if the moduli fields are not stabilized, the resulting

inflationary model will in general be different from the MSSM inflation discussed in

this paper.

Finally, the supergravity model leading to the MSSM inflation can, at least in

principle, be tested not only by cosmological observations but also in particle accel-

erators. For instance, given the Kähler potential Eq. (4.7), for a non-flat direction

ψ with a renormalizable superpotential W (ψ) = 1
3
λ̂3ψ

3 one finds that the trilinear

A-term is given by A3 = mψ

√
2(α−β/3)cos ξ/

√
α− β − 2 , where cos ξ contains the

phase information. Once scaled down to LHC energies by the renormalization group

equations, such relations have obvious ramifications for both sparticle phenomenol-

ogy and inflation.
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