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We present a study of spinning black hole binaries focusing on the spin dynamics of the individual
black holes as well as on the gravitational recoil acquired by the black hole produced by the merger.
We consider two series of initial spin orientations away from the binary orbital plane. In one of
the series, the spins are anti-aligned; for the second series, one of the spins points away from the
binary along the line separating the black holes. We find a remarkable agreement between the spin
dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each
configuration, we compute the kick of the final black hole. We use the kick estimates from the series
with anti-aligned spins to fit the parameters in the Kidder kick formula, and verify that the recoil
along the direction of the orbital angular momentum is ∝ sin θ and on the orbital plane ∝ cos θ,
with θ the angle between the spin directions and the orbital angular momentum. We also find that
the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of
constant coordinate radius.
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I. INTRODUCTION

Immediately after the discovery of the Moving Puncture Recipe (MPR) [1, 2], a recipe providing the ingredients to
successfully evolve binary black holes (BBHs), the numerical relativity efforts focused on studying the gravitational
recoil or kick acquired by the black hole (BH) produced in the merger [3, 4, 5]. The main driving force behind these
studies has been the astrophysical implications of these kicks on the supermassive black holes (SMBHs) at the centers
of galaxies [6, 7]. Specifically, a detailed understanding of these kicks is vital to explain the demographics, growth
and merger rates of SMBHs [8, 9], as well as their absence in dwarf galaxies and stellar clusters [10, 11].
When viewed in terms of modes of the gravitational radiation emitted by the binary, kicks arise from the overlap

of those modes [12, 13]. A non-vanishing overlap will be produced if the BHs in the binary have un-equal masses
and/or are spinning with non-trivial relative orientations. For kicks from non-spinning BBHs, the most comprehensive
numerical relativity study [5] showed that one can parameterize the magnitude of the kick velocity as

V = A
q2 (1− q)

(1 + q)5

[
1 +B

q

(1 + q)2

]
, (1)

with A = 1.2 × 104 km s−1 , B = −0.93 and q = M1/M2. This parameterization was motivated by the scalings
originally introduced by Fitchett [14, 15]. From Eq. (1), the maximum kick has a magnitude of 175 km s−1 and
occurs at q = 0.36 or symmetrized reduced mass η = M1M2/M

2 = 0.195, with M = M1 +M2 the total mass of the
binary. Other mass parameters that will be used are δM ≡ M1 −M2 and µ ≡ M1M2/M . When compared to the
escape velocities of galactic structures, the kicks from non-spinning and un-equal mass binaries are modest. They are
not high enough to eject the BH from its host galaxy [11].
The next frontier was to investigate kicks in which the emission of linear momentum was due to the spin of the

BHs. The first study of this kind [13] produced kick velocities of V = 475 km s−1 a/M for BHs with opposite and
equal magnitude spins parallel to the orbital angular momentum. Similar studies followed soon after [16, 17] that
produced complementary results. The kick velocities of ∼ 500 km s−1 obtained from these configurations could in
principle explain the absence of massive BHs in dwarf ellipticals [11]. Motivated by post-Newtonian (PN) results [18],
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it was immediately realized that the orientation of the BHs’ spins has a profound effect on the kick that the final BH
receives. Gonzalez et al. [19] carried out the first simulations in which the spins of the BHs are initially anti-aligned
in the orbital plane and found that kick velocities of at least 2500 km s−1 are possible. Similar studies [20] suggest
that the kick could be scaled to reach a maximum of ∼ 4000 km s−1 .
As more studies of gravitational recoil continued to emerge, generalizations of the phenomenological kick formula

Eq. (1) to include spins have been introduced [20, 21, 22], all motivated by the structure of the formula for the rate
of linear momentum radiated, a formula first derived by Kidder [18]. The terms involving spin-orbit effects in this
formula read

dP

dt
= −

8

15

M3

r5
q2

(1 + q)4
{
4ṙ (v ×Σ)− 2v2 (n×Σ)− (n× v) [3ṙ(nΣ) + 2(vΣ)]

}
, (2)

where (ab) denotes the vector dot product, i.e. (ab) = a · b. We are following as closely as possible the notation in
Ref. [23] and introduce the spin variables

S ≡ S1 + S2

Σ ≡ M
(
S2

M2
−

S1

M1

)
,

where the vector x denotes the relative position vector of M2 with respect to M1, with r = |x|, v = dx/dt, n = x/r
and LN ≡ µx × v, the Newtonian angular momentum. We also introduce a flat-space orthonormal rotating triad
{n,k, l} such that k = l× n with l = LN/|LN| and hence l is perpendicular to the orbital plane.
With these definitions, Eq. (2) has the following structure:

dP

dt
= [. . . ](k×Σ) + [. . . ](n×Σ) +

{
[. . . ](kΣ) + [. . . ](nΣ)

}
l , (3)

or equivalently

dP

dt
=

{
[. . . ]k+ [. . . ]n

}
(lΣ) +

{
[. . . ](kΣ) + [. . . ](nΣ)

}
l , (4)

where we only show the explicit dependence on Σ relative to the orthonormal tetrad. Given the form of Eq. (4), we
propose the following parameterization of the contribution of the spins to the gravitational recoil:

V =
Σ

M2

q2

(1 + q)4

{
[Hkk+Hnn](lσ) + [Kk(kσ) +Kn(nσ)]l

}
, (5)

where σ = Σ/|Σ|. We will refer to Eq. (5) as the Kidder kick formula.1 The parameters Hk, Hn, Kk and Kn in
Eq. (5) are to be determined from numerical simulations. A fundamental aspect of the validity of this formula is the
dependence of the kick velocity on the cosine angles (lσ), (kσ) and (nσ). Spin precession will force these angles to
evolve in time. Thus, one is faced with the task of measuring the entrance angles. These are the angle values when
the binary reaches the “last” orbit or plunge, namely the time that signals the beginning of the phase when the bulk
of the kick gets accumulated. An identification of the entrance angles would allow one to determine the Hk, Hn, Kk

and Kn parameters in Eq. (5) from numerical simulations.
The work in this paper is aimed at exploring the parameter space of spinning BBHs with focus on the dynamics of

the individual spins and the kick that the final BH receives. We consider two series of equal mass BHs (i.e. δM = 0).
In one series, called the B-series, the BHs initially have equal spin magnitudes and anti-aligned directions. That is,
S = 0 and Σ = 4S2 = −4S1. The elements of this series are obtained by changing the orientation of Σ relative to
the unit vector l. In the second series, called the S-series, we also keep the spin magnitudes constant. What changes
in this series is the relative alignment of the spins. For each run in both series, we monitor the precession dynamics of
the individual spins and compare them with PN predictions. We find a remarkable agreement with 2PN results: the
2PN dynamics closely match those from numerical relativity up to the point when a common apparent horizon (AH)
is formed. For all models, we compute the gravitational recoil on the final BH. We use the kick estimates from the
B-series to find parameters in the Kidder kick formula and also verify the angular dependence in V that this formula

1 There are several versions of parameterized kick formulas. Since all are motivated by Kidder’s seminal work [18], we will generically call
them Kidder kick formulae.
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implies. As numerical relativity efforts explore different regions of the parameter space, the values of the parameters
in Eq. (5) will be improved or validated. A phenomenological formula of this kind is of great value for astrophysical
studies such as those explaining the population of SMBHs.
The paper is organized as follows: In Sec. II, we use a multipole analysis to demonstrate the dependence of the

kicks on the spin orientations as given by the Kidder kick formula. In Sec. III, we summarize our computational
infrastructure. A detailed description of the two series of initial data configurations is given in Sec. IV. The analysis
of the BH spin dynamics is presented in Sec. V. Kick results, including the fit to the Kidder kick formula, are given
in Sec. VI. We end with conclusions in Sec. VII.

II. KICKS AND ENTRANCE ANGLES

To gain further understanding of the Kidder kick formula, we present an analysis based on the multipole formulas
of Refs. [12, 18], in which the rate of radiated linear momentum is estimated, to lowest order, as an interference of
the mass and spin quadrupoles. Excluding non-spin terms, this formula reads

dP i

dt
=

16

45
ǫijkI

(3)
jl H

(3)
kl +

4

63
H

(4)
ijkH

(3)
jk +

1

126
ǫijkI

(4)
jlmH

(4)
klm . (6)

Here Iij and Iijk are respectively the mass quadrupole and octupole. Similarly, Hij and Hijk are the spin quadrupole

and octupole, respectively. In Eq. (6), a super-index (n) denotes an nth-time derivative.
In previous work [13], we used the first term (interference between the mass and the spin quadrupoles) to estimate

the kick from quasi-circular inspiral to merger by integrating Eq. (6). This term is periodic, with period equal to
the orbital period, so the kick is dominated by the “last” half orbit in the inspiral. The estimate is computed by
integrating over a close-in half orbit (as in Section I, the result depends on the magnitude and direction of the spins
with respect to the orbital angular momentum L = Ll), and absorbing the resulting error as a normalization constant,
where the constant is fixed by comparing estimate to numerics for one configuration. We take the same approach
here.
Note that the second term in Eq. (6) will be quadratic in the spin, but the spin multipoles have one extra factor

(S1,2/M1,2)/d (where d is the “last orbit separation”, and of order several M) that suppresses the radiation from this
term by the same factor compared to the first term. While this term’s contribution may become important in the
future, for the moderate spin values we (and others) are currently considering, we do not expect significant nonlinear
dependence. The third term vanishes (the mass octupole vanishes) for equal mass circular orbits as appropriate to
our computational quasi-circular inspiral, so the equation in our current context is just the first term.
For the purpose of investigating the entrance angles, we consider a binary system consisting of equal mass BHs in

circular orbit initially confined to the xy plane. The orbit is initially oriented so that the BHs are located on the
x-axis, the BH1 on the positive x-axis and BH2 on the negative x-axis. We discuss first the case in which only the
BH1 is spinning. We parameterize the orientation of the spin using the usual (fixed frame) polar and axial angles θ
and ϕ. Thus we have S1x = S1 sin θ cosϕ, S1y = S1 sin θ sinϕ and S1z = S1 cos θ.
The calculation of the mass quadrupole is straightforward, see e.g. [13]; the spin quadrupole can be most easily

calculated by imagining a spin dipole (charges ±M1/2, separation S1/M1) and conceptually taking the limit at the
end. The spin enters only linearly in the spin quadrupole Hkl. The structure is different for spin components in
different directions, and we can compute them independently for the different components. The nonzero components
are:
For S1x:

(x)H(3)
xx =

1

3
dS1x ω

3 sin (ωt)

(x)H(3)
yx = −

1

4
dS1x ω

3 cos (ωt)

(x)H(3)
yy = −

1

6
dS1x ω

3 sin (ωt)

(x)H(3)
zz = −

1

6
dS1x ω

3 sin (ωt) ; (7)
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For S1y:

(y)H(3)
xx =

1

6
dS1y ω

3 cos (ωt)

(y)H(3)
yx =

1

4
dS1y ω

3 sin (ωt)

(y)H(3)
yy = −

1

3
dS1y ω

3 sin (ωt)

(y)H(3)
zz =

1

6
dS1y ω

3 cos (ωt) ; (8)

For S1z:

(z)H(3)
xz =

1

2
dS1z ω

3 sin (ωt)

(z)H(3)
yz = −

1

2
dS1z ω

3 cos (ωt) . (9)

The spin quadrupole for arbitrary spin direction is the sum of the S1x, S1y, S1z terms. In deriving these expressions,
we assume that spins, which are parallel transported in the evolution, remain constant in Cartesian coordinates.
This approximation is adequate for the level of accuracy of these estimates. The radiated linear momentum equation
Eq. (6) is then explicitly:

dP x

dt
=

8

45
M2d3 ω6 S1z sin (ωt)

dP y

dt
= −

8

45
M2d3 ω6 S1z cos (ωt)

dP z

dt
= −

16

45
M2d3 ω6[S1x cos (ωt)− S1y sin (ωt)] . (10)

The in-plane component of the force rotates with the orbit; the out of plane component oscillates at the frequency of
the orbit.
If there is a spin on the second hole, the forms are the same as Eqs. (10), but the angle ωt is replaced by ωt + π.

This replacement has the effect of introducing a global minus sign into the spin quadrupole for the spin on the hole
initially located on the negative x-axis. This means that the kick estimate is doubled if the second spin is equal and
opposite, but we estimate zero kick if the spins are equal and parallel. For generic second spin, as in our S-series, one
simply subtracts the components in Eqs. (10) for this second spin S2 from those for the first.
We concentrate our attention on the B-series. As we shall see later, this is the series for which we are going to

be able to verify, from our simulations, the dependence of the Kidder kick formula on the entrance angles. In the
B-series, the spins are fixed magnitude. Hence, the Eqs. (10), including the contributions from both spins, read:

dP x

dt
=

16

45
M2d3 ω6 S1 cos θ sin (ωt)

dP y

dt
= −

16

45
M2d3 ω6 S1 cos θ cos (ωt)

dP z

dt
= −

32

45
M2d3 ω6 S1 sin θ cos (ωt+ ϕ) . (11)

Eqs. (11) predict a z-kick V z ∝ sin θ and kicks ∝ cos θ in the orbital plane. Notice also the dependence of the z-kick
on the entry angle (ωt+ϕ), demonstrating the fact that the net z-kick can vanish for carefully chosen entry angle. For
the circular orbits treated here, dP z/dt in Eqs. (11) identifies the quantities Kk and Kn in the Kidder kick formula,
Eq. (5), as equal. We will compare the predictions of Eqs. (11) on the scaling of the kicks with the angle θ in Sec. VI.

III. COMPUTATIONAL METHODOLOGY

We follow the MPR to evolve the BBH configurations. Briefly, the MPR builds upon the BSSN system of evolution
equations [24, 25, 26], models BHs with “punctures” [27] and uses dynamic gauge conditions [1, 2] designed to allow
these punctures to move. The explicit form of the evolution equations for the lapse and shift gauge quantities are the
“covariant” form of the “1+log” slicing [28] (∂t − βi∂i)α = −2αK and a modified gamma-freezing condition [29, 30]
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for the shift: ∂tβ
i = Bi, Bi = ∂tΓ̃

i−ξ∂tβ
i−βj∂jΓ̃

i, where K is the trace of the extrinsic curvature, Γ̃i the trace of the
conformal connection and ξ = 2 a free, dissipative parameter. The importance of these gauge conditions is twofold:
First, they avoid the need of excising the BH singularity from the computational domain since they effectively halt
the evolution (i.e. lapse function α vanishes) near the BH singularity [31]. Second, they allow for movement of the BH
or puncture through the computational domain while freezing the evolution inside of the BH horizon. See Ref. [32]
for a detailed description and analysis of the MPR.
Our source code was produced by the Kranc code generation package [33] and uses the Cactus infrastructure [34]

for parallelization and Carpet [35] for mesh refinement. The code uses fourth order accurate finite differencing
(centered for all non-advection and a lop-sided stencil for the advection terms) and a fourth order Runge-Kutta
temporal updating scheme with Courant factor of 0.5. The initial data code was developed by Ansorg et al. [36]. The
initial free parameters (e.g. specifying angular momentum, spins, masses, separations) are chosen according to the
effective potential method [37, 38] or using PN parameters [19, 39]. These methods both yield BBH initial data sets
representing BBHs in quasi-circular orbit [32].
The computational grids consist of a nested set of 10 refinement levels, with the finest mesh having resolution

h = M/35.2. This resolution translates into a resolution of about h = m/14, with respect to the bare mass, m, of the
punctures according to Tables I and II. The minimal resolution found to be adequate for spinning cases according
to Campanelli et al. [39] is h < M/30. The grid sizes in our h = M/35.2 simulations are: the 4 finest refinement
levels have 443 grid-points plus 6 coarser refinement levels of 883. All grids are initially cubical. During the evolution,
the shape and number of grid-points per refinement level vary due to adaptivity. The coarsest mesh is kept fixed and
extends to 640M from the origin in each direction. Because the simulations in this work are very similar (regarding
mesh setups, grid sizes and refinement scales) to those in our previous work [13], the convergence and errors estimates
in the present study are comparable.
In order to study the spin dynamics of the BHs, we need infrastructure to compute the individual spins of the BHs.

The isolated horizon formalism [40, 41, 42] provides a definition associated with a Killing vector of the spacetime of
the spin of a single BH:

Sϕ =
1

8π

∮

AH

ϕinjKijdS (12)

where ϕi is a Killing vector on the AH surface, Kij is the extrinsic curvature of the 3D-slice and ni is the outward
pointing unit normal vector to the AH. The direction of the spin is given by the Killing vector ϕi. To facilitate finding
the spin direction, Campanelli et al. [43] introduced the usage of the flat space coordinate rotational Killing vectors

ϕi
x = (0,−ẑ, ŷ)

ϕi
y = (ẑ, 0,−x̂)

ϕi
z = (−ŷ, x̂, 0) ,

where the coordinates (x̂, ŷ, ẑ) are relative to the position of the BH. The spin is then given by S = (Sx, Sy, Sz),
where each component is obtained, in the fixed {x, y, z} coordinate system, by evaluating Eq. (12) with each of the
coordinate rotational Killing vectors. There is an excellent agreement between the approximate spin this method
yields and the one using the Killing vector ϕi (when one exists) [43]. There are efficient AH finders [44] available;
however, they impose a non-negligible overhead in the simulations. To gain efficiency, we relax the condition that the
integral in Eq. (12) has to be evaluated at the AH and choose a coordinate sphere around the puncture. The radius
of the sphere is chosen sufficiently small, that the sphere is contained within the BH’s horizon.
Fig. 1 shows a comparison of the Sx component between the values using the AH surface and three different

coordinate spheres of radius r for the S-90 model (see Table II) BBH evolution. There is good agreement into the
merger regime. The vertical line in Fig. 1 and subsequent figures shows the first time a common AH is found.
After that time, no individual apparent horizons exist and the spheres centered on the punctures track different and
meaningless values of Sx.

IV. INITIAL DATA AND RADIATED QUANTITIES

We consider two series of equal mass BHs (i.e. δM = 0). In both series, initially the BHs have the same spin
magnitude S1/M

2
1 = S2/M

2
2 = 0.6. The initial orientation of the BH’s spin is in the xz-plane. We use the polar angle

θ1: the angle between the z-axis and the direction of S1 in the xz-plane. The BH2 is treated similarly. We take the
convention that positive (negative) θ angles are measured (counter-) clockwise in the xz-plane. In the series referred
to as B-series, the BH’s are anti-aligned, i.e. θ ≡ θ2 = θ1 − 180o, so S1 = −S2. That is, S = 0 and Σ = 4S2 = −4S1.
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FIG. 1: Comparison of Sx computed on the horizon and from spheres with radius r for a BBH evolution (S-90 model, see
Table II). The vertical line (here and in subsequent Figures) shows the first time a common AH is found.

model x[M ] py[M ] V [km s−1 ] Jrad[%Lz
o] Erad[%M ] Tmax[M ]

B-20 2.986 0.138 427 24 3.3 109.1

B-30 2.990 0.138 544 24 3.3 109.1

B-50 3.000 0.137 761 25 3.4 108.6

B-70 3.009 0.137 908 25 3.4 108.6

B-80 3.012 0.137 945 25 3.4 108.4

B-90 3.013 0.137 963 25 3.4 108.4

TABLE I: B-series: Initial data parameters for the B-series. The models in this series are labeled as B-θ, where the angle
θ ≡ θ2 = θ1 − 180o (θ = 0o corresponds to spins parallel and anti-parallel to the orbital angular momentum). The punctures
have bare masses m1,2 = 0.395, are located on the x-axis at ∓x and have initial momentum ∓py in the y-direction. Results
listed are the magnitude of the recoil velocity V , the radiated angular momentum Jz

rad in % of the initial orbital angular
momentum Lz

o, the energy radiated Erad, and the time Tmax which is an estimate of the merger time derived from the time it
takes in each simulation to reach the maximum amplitude in Ψ4.

The elements in this series are obtained by changing θ. In the S-series, we initially orient S1 to θ1 = 270o = −90o

and vary θ ≡ θ2.
We chose orbital parameters (i.e. bare masses, separation and momentum) in the B-series by minimizing the

effective binding energy [38, 45], while for the S-series we used PN parameters [19, 39]. Initially, BH1 is located
at position (−x/M, 0, 0) and has linear momentum (0,−py/M, 0). Similarly, BH2 is at position (x/M, 0, 0) with
linear momentum (0, py/M, 0) . It turns out that the bare puncture masses for both series are roughly constant,
m1 = m2 ≈ 0.395M to the 3rd digit of precision. The slight changes are needed to keep the irreducible masses M1 =
M2 = 0.5M . As mentioned above, the spins in both BHs are initially in the xz-plane; that is, (Sx

1,2/M
2, 0, Sz

1,2/M
2),

where Sx
1,2 = S1,2 sin θ1,2 and Sz

1,2 = S1,2 cos θ1,2 with S1,2 = 0.15M2.
Table I lists the relevant initial data parameters for the B-series, while Table II gives the parameters for the S-series.

In addition to the initial data parameters, the tables also report the radiated angular momentum Jz
rad in % of the

initial orbital angular momentum, Lz
o, as well as a time estimate of the common AH formation. We use the maximum

in Ψ4 shifted by the extraction radius and an additional 10M as an indicator for the merger time Tmax. We have
found that this measure is accurate to a few M . For the B-series, the spin of the final BH is J/M2 = 0.62 for all
models. Constant in both series is the total ADM mass, EADM ≈ 0.985M . While the runs B-90 and S-90 have the
same spin configurations, i.e. spins pointing along the x-axis only, the radiated energy and angular momentum are
different because they differ in initial separation and angular momentum. The radiated quantities were extracted
at r = 40M . For a number of models, we have carried out simulations at lower resolution (M/32) and measured
at detector radii r/M = {30, 40, 50, 60, 80}. Based on the variations observed in the measured quantities (energy,
angular momentum and kicks), we estimate the reported numbers to be accurate to about 15%.



7

model m1,2[M ] py[M ] V [km s−1 ] Jrad[%Lz
o] Erad[%M ] Jz

final[M
2] Tmax[M ]

S-0 0.396 0.132 854 34 4.6 0.68 192.3

S-15 0.396 0.132 1401 33 4.4 0.68 189.5

S-30 0.396 0.132 2000 33 4.4 0.67 184.1

S-45 0.396 0.133 2030 32 4.3 0.66 177.3

S-60 0.395 0.134 1218 30 4.0 0.65 168.6

S-75 0.395 0.135 230 28 3.7 0.64 159.1

S-90 0.395 0.137 1462 26 3.4 0.62 148.6

S-105 0.395 0.138 1979 25 3.3 0.60 138.6

S-120 0.395 0.139 1787 24 3.2 0.58 130.5

S-135 0.395 0.140 1234 23 3.0 0.56 124.1

S-150 0.395 0.141 689 21 2.9 0.55 119.5

S-165 0.395 0.141 335 21 2.8 0.55 117.7

S-180 0.395 0.141 188 20 2.8 0.55 117.7

S-195 0.395 0.141 157 20 2.8 0.55 120.5

S-210 0.395 0.141 173 22 3.0 0.56 125.5

S-225 0.395 0.140 223 22 3.2 0.57 132.7

S-240 0.395 0.139 268 23 3.4 0.59 141.4

S-285 0.395 0.135 253 26 3.9 0.65 174.1

S-300 0.396 0.134 406 29 4.2 0.66 181.8

S-315 0.396 0.133 399 31 4.5 0.67 187.7

S-330 0.396 0.132 354 32 4.6 0.68 191.8

S-345 0.396 0.132 459 33 4.6 0.68 193.2

TABLE II: The S-series. For all cases, initially the BH1 is located along the x-axis at x = −3.1M , has momentum pointing
along the y-direction with value −py, and has spin S1 = (−0.15 /M2, 0, 0), thus θ1 = −90o and ϕ1 = −180o. BH2 is located
also along the x-axis but at x = 3.1M with momentum py. In these runs, labeled S-θ, the angle θ gives the angle in the
xz-plane that the spin of BH2 makes with respect to the z-axis. Results listed are the magnitude of the recoil velocity V , the
radiated angular momentum Jz

rad in % of the initial orbital angular momentum Lz
o, the energy radiated Erad, the spin of the

final BH Jz
final along the z-axis, and the time Tmax which is an estimate of the merger time derived from the time it takes in

each simulation to reach the maximum amplitude in Ψ4.

V. SPIN DYNAMICS

In the present work, we are interested investigating the degree to which the spin dynamics described by PN equations
agrees with that from numerical relativity. Following Ref. [46], the precession equation of BH1 in the binary with
mass M1, spin S1, position x1 and velocity v1 is given by

dS1

dt
= Ω1 × S1 ; (13)

which implies that BH1 precesses around the vector Ω1 with rate |Ω1|. The precession angular frequency vector Ω1

is given to 2PN by

Ω1 =
M2

r2

[
3

2
n12 × v1 − 2n12 × v2

]

+
M2

r2

[
n12 × v1

(
−

9

4
(n12v2)

2 +
1

8
v21 − (v1v2) + v22 +

7

2

M1

r
−

1

2

M2

r

)

+ n12 × v2

(
3(n12v2)

2 + 2(v1v2)− 2v22 +
M1

r
+

9

2

M2

r

)

+ v1 × v2

(
3(n12v1)−

7

2
(n12v2)

)]
, (14)

with x = x1−x2, r = |x| and n12 = x/r. The expressions for the companion BH2 are obtained by switching 1 ↔ 2 in
Eqs. (13-14). In Eq. (14), the first term in square brackets represents the 1PN contribution. For comparison, we also
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FIG. 2: Comparison of dS1/dt computed from the numerical evolution directly and by using PN formulas for the S-90 run.
Kidder describes the dynamics using precession angular frequency given by Eq. (15). Blanchet 1PN denotes the dynamics with
Ω1 given by the first term in Eq. (14); Blanchet 2PN denotes the case in which the entire expression in Eq. (14) is used. The
vertical line around t = 149M indicates the formation of a common apparent horizon.

show the precession angular frequency from Kidder [18], in which the terms ∝ LN (corresponding to the first line in
Eq. (14)) are accurate to 1PN but the expression also contains spin-spin terms:

Ω1 =
1

r3

[
LN

(
2 +

3

2

M2

M1

)
− S2 + 3(n12S2)n12

]
, (15)

where LN = µx× v12 denotes the Newtonian angular momentum. Here again one obtains the expression for BH2 by
switching 1 ↔ 2.
Fig. 2 shows the time evolution of dS1/dt computed in four different ways for the S-90 run (the spins are equal

magnitude and anti-aligned in the xy-plane). The time evolution of dS2/dt is equal and opposite in this case. Solid
lines, labeled numeric, represent the numerical relativity solutions. The values of dS1/dt are obtained by constructing
each BH spin as described in Sec. III, followed by finite differences to approximate the time derivative. A long dashed
line, labeled Kidder, denotes dS1/dt computed using the precession angular frequency Eq. (15). The dotted line,
labeled Blanchet 1PN, represents the result from using only the 1PN contribution in the precession angular frequency
Eq. (14); that is, it corresponds to Kidder’s precession without the inclusion of spin-spin interactions. Finally, the
dashed-dotted line, labeled Blanchet 2PN, depicts the evolution of dS1/dt using the entire expression in Eq. (14). In
the construction of the PN precession angular frequencies, we use the positions and velocities of the punctures from
the numerical simulations. The vertical lines in Fig. 2 denote the time at which a common AH is formed.
It is remarkable how accurately the 2PN approximations of dS1/dt track the numerical result deep into the merger

regime, close to the formation of a common AH. Comparisons beyond the time when a common AH forms are not
very meaningful since the individual trapped surfaces loose their horizon interpretation and our spin measure breaks
down (see Sec. III). Also interesting is that the spin-spin terms in Kidder’s expression make only a small contribution
to dSx/dt and dSy/dt, as can be seen from the similarities of the Kidder and Blanchet 1PN lines. On the other
hand, the spin-spin are responsible for the differences between the Kidder and Blanchet 1PN values of dSz/dt near
the mergers, as one can observe in the bottom panel of Fig. 2. This discrepancy can be traced to the z-component in
the third term in Eq. (15). The first term when using the frequency Eq. (15) in Eq. (13) contains the z-component
of LN × S1, which is numerically very close to zero for the S-90 model. The second term contains the z-component
of S2 × S1, which is also close to zero. In the third term, we have (n12S2) and the z-component of n12 × S1. Both of
these terms grow rapidly near the merger. In particular, the z-component of n12×S1 develops significant noise which
terminates the line early. Finally, it is very clear that including terms up to 2PN makes an important difference in
improving the matching to the numerical solution.
We have carried out comparisons similar to that in Fig. 2 for all the runs in the B- and S-series. The results in

every case are similar; namely, that the dynamics of dS1,2/dt are very well approximated by 2PN, and this description
only starts breaking down close to the merger.
The most significant variation observed in the dS1,2/dt dynamics from one S-series run to another was the time

at which the merger takes place or, equivalently, the time at which the gravitational radiation emitted reaches its
maximum (see Table II). The differences in merger time are due to spin hangup [43] of the merger. Figs. 3-7 show
the comparison for a few selected models from the S-series. The plots show dS/dt for both BHs. The left panel shows
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FIG. 3: Comparison of S-15 run numerical to Blanchet 2PN. Left panel shows the results of the comparison for BH1 and the
right panel for BH2. The top plots on each panel show with a solid line dSi/dt from our numerical simulations and with a dashed
line the values from Blanchet 2PN. The labels denote each component. The bottom plots on each panel show the difference
between the numerical solution and the Blanchet 2PN, with solid, dashed and dotted lines for the x, y and z components,
respectively.

BH1, which has the initial spin direction along the negative x-axis. In this case, there is good agreement between the
2PN and computational results for all models. In the right panel, we show BH2 with a different initial spin direction
specified according to the angle θ. For spins of BH2 more parallel to the orbital angular momentum, the precession
becomes smaller (note range of the y-axis to the right of the figure). It seems very likely that with the small precession
shown in the S-15 model, the visible disagreement to the PN result is just a numerical artifact that could be cured
by higher resolution.
To further understand the spin dynamics, we focus our attention to the evolution of the direction of the spins S1,2

and the vector Σ. Fig. 8 shows the evolution of the spin directional angles θ1,2 and ϕ1,2 for the B-series. The angles
θ and ϕ are the usual polar and axial angles with respect to the fixed {x, y, z} coordinate frame. In all simulations,
we found very small changes in the magnitude of the individual spins up to the merger, hence these sky-map plots
provide a very good representation of the spin dynamics. The left plot in Fig. 8 shows the individual spins, and
the right plot shows the evolution of Σ. All the cases start with ϕ1 = −180o and ϕ2 = 0o. There are a couple of
interesting aspects to notice in Fig. 8. First, there is no significant change in the θ1,2 direction, and hence no change
in the θ direction of Σ. Second, in all cases in the B-series, the precession is ∆ϕ ≈ 120o. Since all the models start
with the same ϕ1,2, the spin orientation of the BHs arrive at the plunge (the point beyond which most of the kick is
accumulated) with the same ϕ entrance angle. As we shall see in Sec. VI, these two facts, particular to the B-series,
have an important implication when fitting the gravitational recoils to the Kidder kick formula.
Fig. 9 shows representative evolution tracks of the S1,2 and Σ direction in the θ-ϕ plane for the S-series. The left

and central plots in Fig. 9 show the tracks of S1,2 for some of the cases. The left plot includes the 0o ≤ θ = θ2 ≤ 180o

models, with the central plot showing the 180o ≤ θ = θ2 ≤ 360o cases. The right plot in Fig. 9 depicts the evolution
of Σ for the cases in the left and central plots. All the cases starts out ϕ1 = −180o, ϕ2 = 0o and θ1 = −90o. It is
clear from Fig. 9 that the spin dynamics are significantly more complicated than in the B-series case. A substantial
evolution in the θ direction is evident in all cases, and there is also appreciable variation on the rate of ϕ precession
from case to case. There is however a hint of a pattern. The closer the spin of BH2 aligns or anti-aligns with the
z-axis, the larger is the evolution in the θ direction.
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FIG. 4: Same comparison as in Fig. 3 but for the model S-45.
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FIG. 5: Same comparison as in Fig. 3 but for the model S-90.

VI. RECOIL ESTIMATES

The gravitational recoil from spinning BHs has been studied for a number of different initial spin configurations [13,
16, 17, 20, 47, 48] including very generic configurations [17] and for a systematic study of variations of the entrance

angle in the orbital plane (i.e. xy-plane) between the spin vector and the x-axis of anti-aligned BHs in Ref. [20]. Our
study explores the recoil of spin orientations out of the xy-plane. Among other things, our aim is to test the assumption
implied by the Kidder kick formula Eq. (5) that the recoil velocity can be split into components perpendicular and
parallel to the orbital plane that depend on spin entrance angles at the plunge.
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FIG. 6: Same comparison as in Fig. 3 but for the model S-135.
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FIG. 7: Same comparison as in Fig. 3 but for the model S-225.

We now specialize the Kidder kick formula to the B-Series. We denote by θ̂ the angle between σ and the orbital
angular momentum direction l. In addition, the angle ϕ̂ is the axial angle in the n-k plane relative to the n direction.
In terms of these angles, the cosine directions in the Kidder kick formula Eq. (5) read:

(lσ) = cos θ̂

(nσ) = sin θ̂ cos ϕ̂

(kσ) = sin θ̂ sin ϕ̂ .



12

Spins

θ

−160 −80 0 80 160

0

30

60

90

120

150

180

ϕ

Σ

−160 −80 0 80 160
ϕ

FIG. 8: The evolution tracks of the S1,2 and Σ directions in the θ-ϕ plane for all the cases in the B-series. The left plot shows
the individual spins and the right plot shows the evolution of Σ. All the cases start with ϕ1 = −180o and ϕ2 = 0o. Notice that
there is almost no change in the θ1,2 direction for the individual spins or for Σ.
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FIG. 9: Representative evolution tracks of the S1,2 and Σ direction in the θ-ϕ plane for the S-series. The left plot shows the
tracks of S1,2 for some of the cases in which 0o ≤ θ = θ2 ≤ 180o, the central plot for 180o ≤ θ = θ2 ≤ 360o and the right plot
the evolution of Σ for the cases in the left and central plots. All the cases start with ϕ1 = −180o, ϕ2 = 0o and θ1 = −90o.

For generic cases, the angles θ̂ and ϕ̂ are different from the polar angle θ and axial angle ϕ introduced in Sec. II,
which were defined with respect to the fixed {x, y, z} coordinate system. This is because the {l,n,k} system, by
design, is attached to the orbital motion of the binary; hence, it will follow also its precession. However, for all the

cases we have considered, to a good approximation, the vector l stays aligned with the z-axis. Thus, θ̂ ≈ θ.
One of the goals of our work is to single out and explore the θ projection dependence. That was the main motivation

for constructing the B-series. In Sec. V, we saw that for each model in the B-series the angles θ1,2 remained fairly
constant and the precession was such that the angles ϕ1,2 changed by the same amount in all models. As a consequence,
it is possible to use ϕ in the Kidder kick formula and write the kick velocity in terms of the x, y and z-components
as:

V x = Co Hx cos θ

V y = Co Hy cos θ

V z = Co Kz sin θ (16)

where Co = Σq2/(M2(1 + q)4) and Kz ≡ Kk sinϕ+Kn cosϕ. Hx and Hy are related to Hn and Hk by a rotation in
the xy-plane. Since in our study q = 1 and Σ/M2 = 0.6, then Co = 0.0375. Notice that V x

max = V x(θ = 0o) = Co Hk,
V y
max = V y(θ = 0o) = Co Hn, and V z

max = V z(θ = 90o) = CoK.
Fig. 10 shows the x, y and z-components of the recoil velocity as a function of the initial value of θ for all the cases

in the B-series. We have also added the θ = 0o case studied in Ref. [13]. The gravitational recoil was computed from
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FIG. 10: Recoil velocity components for the B-series as a function of the initial angle θ, the angle between Σ and the orbital

angular momentum. Circles denote numerical values from the simulations, and the lines are obtained from V (x,y) = V
(x,y)
max cos θ

and V z
max sin(θ), where V

(x,y)
max are simply the recoil velocity components obtained for the B-0 and, similarly, V z

max for the B-90
model.

the Newman-Penrose quantity Ψ4 at r/M = {30, 40, 50, 60}. The plot shows r = 30M . The results for the other
detectors are of similar quality except for r = 60M where the resolution drops. In addition to the recoil data, we also

shows the curves V (x,y) = V
(x,y)
max cos θ and V z

max sin θ where V
(x,y)
max are simply the recoil velocity components obtained

for the B-0 and, similarly, V z
max for the B-90 model. We emphasize that no fitting to a sin θ or cos θ function was

done in constructing Fig. 10. Clearly the recoil velocity follows the sin θ and cos θ curves which is expected from the
recoil formulas Eqs. (16) and (11). This was possible because for the B-series there is a clear way of measuring the
entrance angles. We found that V x

max = 80 ± 12, V y
max = 275 ± 41 and V z

max = 960 ± 144 km s−1 , which yields the
constants Hx = (2.1± 0.3) · 104, Hy = (7.3± 1) · 104 and Kz = (2.6± 0.4) · 105.
Because of the complicated dynamics in the S-series, we were not able to find a simple method for determining the

entrance angles. As a consequence, it was not possible to do fittings to the Kidder kick formula. We are currently
investigating [49] an approach that explicitly accounts for the precession dynamics that could potentially handling
arbitrary configurations.

VII. CONCLUSIONS

The dynamics of BHs in interaction and merger, the gravitational radiation produced and the resulting kick in
the final merge BH have direct implementations for understanding a wide range of astrophysical phenomena. These
include the development of large scale structure, the structural evolution of galaxies, the detectability (for instance
in the detector LISA) of gravitational radiation from the merger, and the statistics of double-nucleus galaxies.
Our work concentrated on investigating the dynamics of spins in BBH systems and the gravitational recoil that

the final BH experiences as a result of the merger. Regarding the spin dynamics, we have shown that spin precession
follows fairly well the 2PN predictions up to the merger. Although we have only investigated two families of initial
orientations (B-series and S-series), we believe that they represent fairly generic orientations, thus we speculate that
the spin dynamics agreement with 2PN will be true for all orientation cases. It remains to be seen whether the
agreement deteriorates when relaxing the condition of equal spin-magnitudes and/or masses. Spin-spin PN effects
were not found to be significant for the cases we considered.
An interesting aspect of the B-series, with BH spins initially anti-aligned with respect to each other, was that for

each case the spins precessed about the orbital angular momentum axis, while keeping their polar (θ) angle very
closely constant. Also very interesting is that for all the models in the B-series, the vector Σ precessed almost the
same amount about the orbital angular momentum axis. We were therefore able to read off the entrance angles and
to demonstrate that the sin θ and cos θ dependences in the rate of linear momentum radiated as derived in Eq. (11)
get directly translated into the Kidder kick formula Eq. (5).
For the S -series a more complicated spin dynamics is found and the lack of symmetry between the BHs allows more

complicated radiation and kick results in this case. We will continue addressing comparisons to 2PN and the validity
of the Kidder kick formula for generic configurations in a separate paper [49].
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