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ABSTRACT

We present a simple model to describe the dark matter density, the gas density, and the
gas temperature profiles of galaxy clusters. Analytical expressions for these quantities
are given in terms of only five free parameters with a clear physical meaning: the mass
M of the dark matter halo (or the characteristic temperature T0), the characteristic
scale radius a, the cooling radius in units of a (0 < α < 1), the central temperature in
units of T0 (0 < t < 1), and the asymptotic baryon fraction in units of the cosmic value
(f ∼ 1). It is shown that our model is able to reproduce the three-dimensional density
and temperature profiles inferred from X-ray observations of real clusters within a 20
per cent accuracy over most of the radial range. Some possible applications are briefly
discussed.

Key words: galaxies: clusters: general – methods: data analysis – X-rays: galaxies:
clusters

1 INTRODUCTION

Observations of galaxy clusters provide invaluable informa-
tion about the universe and its evolution. The abundance
of galaxy clusters as a function of temperature and redshift,
their baryon fraction, the X-ray luminosity, the Sunyaev-
Zeldovich and lensing effects have often been used as cos-
mological probes (see e.g. Voit 2005, for a recent review).
In particular, they constrain the matter density, the slope
and normalization of the power spectrum of primordial fluc-
tuations, and the equation of state of dark energy. Thanks
to the advent of high-resolution X-ray observatories, we can
now study the structure of the intracluster medium (ICM)
with unprecedented accuracy. For the brightest objects, the
gas density and temperature profiles can be directly inferred
from the observed data, assuming approximate spherical
symmetry. However, it is not uncommon that these obser-
vations have a limited field of view, and the profiles have
to be fitted by some analytical model in order to extrapo-
late them outwards. In fainter systems, the use of analytical
models makes possible a more accurate determination of the
cluster parameters. In the most extreme case, the models ac-
tually play a crucial role in the very detection of the faintest
cluster candidates. It is therefore important to have a sim-
ple analytical description of the ICM that captures the most
relevant features of the density and temperature profiles of
the X-ray emitting gas.

Historically, one of the most popular options is the
so-called β-model (Cavaliere & Fusco-Femiano 1976), where

⋆ E-mail: yago@aip.de

the gas density is given in terms of three free parameters (the
normalization ρ0, a core radius rc, and the exponent β),

ρgas(r) =
ρ0

[1 + (r/rc)2]
3β/2

(1)

The β-model has been widely used over the years to de-
scribe the radial structure of the ICM. However, it is well
known that equation (1) fails to provide a consistent fit over
the whole radial range. Moreover, the gas is assumed to be
isothermal, which is certainly not consistent with the ob-
served temperature profiles. Finally, for a gas in hydrostatic
equilibrium, the dark matter distribution underlying a β-
model would be

ρdm(r) ∝
1 + (r/rc)

2/3

[1 + (r/rc)2]
2

(2)

which tends to a constant value at the centre. Such a ‘cored’
density profile is in strong disagreement with the results of
numerical simulations, as well as with most recent observa-
tional estimates of the mass distribution in galaxy clusters.

Polytropic models, where the density and temperature
of the gas are related by the effective equation of state

ρgas(r)

ρ0
=

[

T (r)

T0

]n

(3)

have been shown to provide a much better description of the
ICM for n ∼ 5. Nevertheless, the temperature profile pre-
dicted by these models tends to increase steadily towards the
cluster centre, whereas both numerical experiments and ob-
servations of real systems show that radiative cooling makes
the temperature drop in the central regions of the ICM. On
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the other hand, the central gas density is often observed to
become a power-law rather than a constant density core.

This has motivated the introduction of more elabo-
rate analytical models, including additional free parameters
in order to describe a wider range of possible behaviours
(see e.g. Vikhlinin et al. 2006, hereafter V06, and references
therein). In particular, these authors propose a model, char-
acterized by 17 independent free parameters, that accurately
reproduces currently available X-ray data. According to the
V06 model, the three-dimensional gas density profile would
be described by

ρ2gas(r) =
ρ21 (r/rc1)

−α

[1 + (r/rc1)2]
3β1−α/2 [1 + (r/rs)3]

ǫ/3

+
ρ22

[1 + (r/rc2)2]
3β2

(4)

while the gas temperature is modelled as

T (r) =
Tmin + T0(r/rc)

ac

1 + (r/rc)ac

(r/rt)
−a

[1 + (r/rt)b]
c/b

(5)

Equations (4) and (5) have great freedom and can pro-
vide a good fit to the observed density and temperature
profiles, both for the inner and outer regions of the ICM.
The main disadvantage, though, is that their 17 parameters
are strongly correlated, and thus there are many degenera-
cies in their best-fitting values. This would be a relatively
minor problem (e.g. computational cost) if our only goal
was to reproduce the observational data, but it becomes of
critical importance when one attempts to extrapolate out-
side the observed region or when the number of photons
from the object under investigation is too low to obtain
reliable profiles. In these cases, robustness becomes more
important than flexibility, and a model with fewer parame-
ters is preferable in order not to over-fit the available data.
A simple, robust model can be extremely helpful, for in-
stance, in cosmological studies, where the observed number
counts of galaxy clusters as a function of temperature or
luminosity need to be connected with the underlying mass
function. Such a model would also be of great interest for
multi-wavelength analysis, where data with very different er-
rors are combined in order to recover the three-dimensional
structure of the object.

Here we present an analytical model that is able to re-
produce the complex behaviour of the gas density and tem-
perature profiles observed in real galaxy clusters by using
only five free parameters, all of which have a clear physi-
cal meaning. The model and its parameters are described in
detail in Section 2. We compare it with observational data
in Section 3, where it is shown that our simple model fits
all the observable X-ray properties of the ICM, while be-
ing consistent with our current knowledge of the structure
of dark matter haloes. In Section 4, we consider three pos-
sible applications, namely the set up of initial conditions
in numerical experiments, the construction of optimal fil-
ters for X-ray detection, and the combined analysis of X-ray
and Sunyaev-Zel’dovich data. Conclusions are briefly sum-
marized in Section 5.

2 MODEL DESCRIPTION

2.1 Dark matter

Perhaps one of the best known results of cosmological N-
body simulations is that the radial density profiles of dark
matter haloes can be well fitted by a relatively simple ana-
lytical function with very few parameters (e.g. Navarro et al.
1997). The precise shape of such function, particularly near
the centre, is still a matter of heated debate (see e.g.
Merritt et al. 2006, for a recent discussion), but there is gen-
eral agreement in that it should be shallower than isothermal
(ρ ∝ r−2) as r → 0 while significantly steeper as r → ∞.

In order to model the cluster’s dark matter halo, we use
a Hernquist (1990) density profile,

ρ(r) =
M

2πa3

1

r/a(1 + r/a)3
(6)

where M denotes the total mass and a is a characteristic
scale length. The cumulative mass inside radius r is given
by

M(r) = M

(

r/a

1 + r/a

)2

, (7)

and the gravitational potential is simply

φ(r) =
GM

a+ r
, (8)

where G is Newton’s constant. Analytical expressions for
other quantities, such as the velocity dispersion, distribu-
tion function or projected surface density, can be found in
Hernquist (1990).

For the sake of simplicity, we will assume that equa-
tions (6) and (7) correspond to the total density and mass,
respectively, i.e. the sum of the dark and baryonic compo-
nents. The dark matter profiles can be trivially obtained by
subtracting the contribution of the gas.

2.2 Polytropic equation of state

Non-radiative gasdynamical simulations show that, in the
absence of additional physics, the ICM of relaxed clusters
can be approximately described as a polytropic gas in hy-
drostatic equilibrium with the gravitational potential cre-
ated by the dark matter (e.g. Ascasibar et al. 2003). Under
these conditions, one can derive analytical expressions for
both the gas temperature

T (r) =
T0

1 + r/a
(9)

and density

ρg(r) =
ρ0

(1 + r/a)n
(10)

profiles, where T0 and ρ0 correspond to the central values,
and n is the effective polytropic index. Hydrostatic equilib-
rium also imposes the mass-temperature relation

(n+ 1)
kT0

µmp
=

GM

a
(11)

where k is the Boltzmann constant, mp denotes the proton
mass, and µ ≃ 0.6 is the molecular weight of the gas. In
order to obtain a constant baryon fraction at large radii, we
set n = 4.
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A phenomenological model of galaxy clusters 3

Figure 1. Three-dimensional density (top) and temperature (bottom) profiles for the 13 objects in V06 (solid lines), compared to the
best fit obtained with our model (dashed lines). Vertical dotted lines indicate the radial range used for the fit (the same as in V06),
and values of the best-fitting parameters are given in Table 1. Last panels show the fractional deviation between our model and V06
(horizontal dotted lines indicate ±0.05 in logarithmic scale, and a vertical dotted line is drawn at the Chandra detection radius Rdet).

2.3 Cool core

The polytropic model roughly agrees with observational re-
sults (e.g. Markevitch et al. 1998), but the observed tem-
perature profiles often feature a central drop that is not well
reproduced by equation (9). Therefore, we introduce a mod-
ified temperature

T (r) =
T0

1 + r/a

t+ r/ac

1 + r/ac
, (12)

where 0 < t < 1 is a free parameter that measures the
amount of central cooling with respect to the polytropic so-
lution, and ac reflects the cooling radius below which the
effect is important. Physically, one expects ac < a, so we
consider the parametrization α = ac/a with 0 < α < 1.

Dropping the polytropic assumption, we can substitute
this expression into the hydrostatic equilibrium equation
and compute the corresponding gas density,

ρgas(r)

ρ0
=

(

1 + r/a

tα+ r/a

)1+α−tα

1−tα
(n+1)

α+ r/a

(1 + r/a)n+1
(13)

where the normalization ρ0 can be expressed in terms of the
cosmic baryon fraction,

ρ0 = f
Ωb

Ωdm

M

2πa3
(14)

with f ∼ 1.

3 COMPARISON WITH REAL CLUSTERS

In order to test whether our simple prescription provides an
adequate model of galaxy clusters, we consider the sample
of 13 low-redshift, relaxed objects studied by V06. Rather
than fitting the raw observational data, we simply attempt
to reproduce the three-dimensional density and temperature
profiles, described by equations (4) and (5) with values of
the 17 free parameters according to tables 2 and 3 of V06.
We account for the errors in the deprojected quantities by
assuming a log-normal distribution with σρ = σT = 0.05.

For each object, we fit the three-dimensional profiles
within the radii 0.2Rmin and Rdet, defined in V06. We vary
T0, t, a, α, and f in 30 logarithmic steps and compute the
reduced chi-square as

χ2 =
χ2
ρ + χ2

T

2N − 5
(15)

with

χ2
ρ =

1

σ2
ρ

N
∑

i=1

[

log

(

ρgas(ri)

ρV06(ri)

)]2

(16)

and

χ2
T =

1

σ2
T

N
∑

i=1

[

log

(

T (ri)

TV06(ri)

)]2

(17)

The gas density and temperature are evaluated at N = 30
points where the radius ri is also increased logarithmically.

c© 0000 RAS, MNRAS 000, 000–000



4 Y. Ascasibar and J. M. Diego

T0 (keV) t a (kpc) α f χ2

7.2487 0.0949 840.9622 0.0949 0.7249 1.1217
4.0013 0.1372 400.1251 0.0547 0.6248 2.4631
9.7565 0.1649 538.5525 0.1372 0.6248 1.3281

15.2349 0.1982 840.9622 0.1372 0.8410 0.8646
11.3190 0.2864 724.8703 0.1372 0.8410 1.5131
13.1318 0.2382 724.8703 0.0790 1.1319 0.9807
11.3190 0.1649 975.6467 0.1372 0.7249 0.8148
4.6421 0.1649 400.1251 0.0790 0.8410 3.9217

15.2349 0.1372 724.8703 0.0790 1.1319 1.6926
17.6749 0.1982 1313.1818 0.1372 1.1319 1.2798
4.0013 0.0378 344.8893 0.0657 0.3449 4.8305
3.4489 0.1372 256.2403 0.0455 0.4642 6.5543
1.4144 0.0547 190.3773 0.0790 0.3449 3.3169

Table 1. Best-fitting values and reduced χ2 for each cluster.

We assume a cosmic baryon fraction Ωb/Ωdm = 0.133 and
we relate the electron and proton number densities to the
gas density as ne = np ≈ ρgas/mp.

Values of the best-fitting parameters are given in Ta-
ble 1, and the resulting gas density and temperature profiles
are plotted for each object in Figure 1, where the last pan-
els show the fractional deviations with respect to the V06
model. For all systems, the discrepancy is of the order of
10− 20 per cent within the fitted range, consistent with our
adopted estimate of the error bars, σρ = σT = 0.05 (see also
the reduced χ2 values in Table 1). Outside this range, the
model tends to yield densities and temperatures at small
radii that are systematically lower than those measured by
V06. Although this might actually be correct for some sys-
tems (see the observational data points in V06), it will not
be so in others. It is likely that structure on small scales (e.g.
cold and shock fronts, the very presence of a central galaxy)
breaks down the assumptions of perfect spherical symme-
try and hydrostatic equilibrium, making any simple model
inadequate to describe the ICM (and maybe even the dark
matter potential) in the innermost part of the cluster, and
indeed the objects that are worst described by our model
display one or more inflection points in their profiles. At
large radii, the density profile given by equation (13) seems
to be steeper than the results of V06. In order to test the
ability of our model to infer the cluster properties from data
of poorer quality, restricted to a smaller field of view, we
repeated our analysis considering only N = 3 radii between
Rmin and 0.5Rdet. The accuracy of the recovered profiles
was similar within the fitted region, but the extrapolation
towards large radii was not entirely reliable, with errors of
the order of a factor of two or above in the worst cases.

The shape of the likelihood function, or, more precisely,
χ2(To, t, a, α, f), is studied in Figure 2. For each cluster, a
diamond marks the best-fitting parameters and a contour
is drawn at χ2 = 3. The underlying grayscale maps show
the projected χ2, marginalized over all clusters and all pos-
sible values of the other parameters (i.e. the minimum χ2

attained at each point by any object). Our results suggest
that the likelihood function is well behaved, in the sense that
it displays well-defined, unique maxima for each cluster, but
it seems to be significantly skewed (i.e. the best fit does not
always coincide with the geometrical centre of the contour)
given our particular choice of variables.

Figure 2. Maps of minimum χ2 for all clusters. Dots mark the
best fit for each object, and contours are drawn at χ2 = 3.

For each object, there is only a relatively mild degen-
eracy between the best-fitting values of the five free param-
eters of our model, although a certain mutual dependence
is obvious in several pairs (for instance, those involving α, t
and f). Considering the whole sample, we find strong corre-
lations (i.e. scaling relations) between most parameters and
the mass of the cluster, or equivalently T0. Although more
observational data and/or numerical simulations would be
required in order to make a quantitative statistical assess-
ment, it is interesting to note that these correlations could
be exploited to reduce the number of free parameters in
the model even further. If all parameters could indeed be
expressed as a function of T0, our model would effectively
have one single free parameter, specifying the overall scale
of the cluster.

4 APPLICATIONS

Having a simple analytical model to describe the three-
dimensional distribution of gas, temperature and matter in
galaxy clusters can be useful in many respects. On the one
hand, it may serve as a base to make theoretical predictions
(e.g. to study the effect of a given perturbation on the ICM
of a relaxed cluster). On the other hand, it also helps to in-
terpret observational data (e.g. to estimate the mass of the
cluster, or the temperature profile, with a small number of
photons). In this section we briefly discuss three examples
of possible applications of a model like the one presented in
this paper.

4.1 Numerical simulations

Our model can be used, for instance, to set up the ini-
tial conditions in idealized numerical experiments (and,
in fact, it has already been used for this purpose in
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Ascasibar & Markevitch 2006). In a few words, the proce-
dure to generate a synthetic cluster is as follows: 1

First, the radius of each particle is obtained by gen-
erating a uniform random number µ between 0 and 1 and
inverting the appropriate (gas or dark matter) mass profile,
i.e. solving for M(r) = µMx, where Mx denotes the corre-
sponding total mass. Angular coordinates φ and cos θ are
uniform random numbers in the range [0, 2π] and [−1, 1],
respectively.

Gas temperature and density are given by equa-
tions (12) and (13) as a function of radius. When mod-
elling a composite system containing several objects, the
density of each particle is computed as ρ =

∑

ρ(ri), where
ri is the distance to object i, and temperatures are set
according to T =

∑

ρ(ri)T (ri)/ρ. Velocities are given by
v =

∑

ρ(ri)vi/ρ, with vi being the centre of mass velocity
of the i-th object.

For collisionless dark matter particles, each object is
completely independent from the others. Velocities with re-
spect to the relevant centre of mass are assigned from the
probability distribution

p(v) dv =
4π

ρ(r)
f(v2/2 + Φ(r)) v2dv (18)

where Φ(r) denotes the gravitational potential, and the dis-
tribution function f(E) is computed by using Eddington’s
formula (Binney & Tremaine 1987),

f(E) = 2−3/2π−2 d

dE

[
∫ 0

E

(Φ− E)−1/2 dρ

dΦ
dΦ

]

(19)

The probability distribution (18) is sampled by means of
the von Neumann rejection algorithm (see e.g. Press et al.
1992). We generate a tentative velocity v, uniformly dis-

tributed between 0 and vmax =
√

−2Φ(r), and an auxiliary
random number p between 0 and v2maxf(vmax). The velocity
is accepted only if p < v2f(v). Otherwise, two new random
numbers are generated for v and p until a value is finally ac-
cepted for the velocity of the particle. As for positions, the
angular coordinates of the velocity are obtained from two
uniform random variables, 0 < φ < 2π and −1 < cos θ < 1.

4.2 Optimal filtering

Amajor issue in the construction of galaxy cluster samples is
the optimization of the detection algorithm. One of the most
successful approaches is based on the use of wavelets (see
e.g. Rosati et al. 1995; Lazzati et al. 1999). Simple bases,
like the Mexican Hat wavelet, are optimal when the un-
derlying signal is Gaussian and the background has a k−2

power spectrum, but neither condition is met by cluster X-
ray data. The underlying signal would be better described
by our model, and the background can be modelled as a
random Poisson variable whose normalization varies from
pointing to pointing. In the case of the Sunyaev-Zel’dovich
effect, some authors have improved the detection algorithms
by adopting optimal filters instead of wavelets and assum-
ing that the gas is described by a β-model (Herranz et al.
2002). As mentioned in the introduction, the β-model does
not capture the complex behaviour of the gas density and

1 Computer code is available upon request.

Figure 3. Optimal filtering of X-ray data. The left panel shows
a real XMM image (17 arcmin on a side) with a superposed sim-
ulated cluster at the center of the image. The right image shows
the optimally filtered image after point source subtraction. The
cluster at the center is now evident. Note also a cluster candidate
to the southwest of the central object.

temperature profiles; moreover, it fails to provide a good
description of the ICM in the outer regions, to which the
Sunyaev-Zel’dovich effect is also sensitive. Therefore, an op-
timal filter based on our simple model could help to improve
the detection rate in both the X-ray and millimeter bands.

For this purpose, simplicity is a major concern, since the
shape and scale of the filter depend on the values of the free
parameters. Our model provides an accuracy comparable to
that of V06, at the expense of only one extra parameter with
respect to the β-model. As discussed above, the correlations
observed in Figure 2 suggest that it might be possible to
define an optimal filter in terms of only one single scale
parameter. Although exploring in detail the performance of
such a filter is well beyond the scope of the present work,
we show in Figure 3 an example of its application to cluster
detection in X-ray data. A simulated cluster (based on one
of the 13 models) has been added to real XMM data (see left
panel of figure 3). After subtracting the brightest sources,
we build an optimal filter based on the model of the cluster
and the XMM background. The result is shown on the right
panel of figure 3, where the simulated object can be seen in
the center of the image, as well as another cluster candidate
to its left.

4.3 Multi-wavelength 3D deprojection

There is already a number of galaxy clusters that have
been observed in different wavebands, and this number is
expected to increase dramatically during the forthcoming
years. Since different observations probe the gas or matter
distribution in different ways, a combined analysis provides
extremely tight constraints on the three-dimensional proper-
ties of the cluster. For instance, the X-ray emissivity of the
plasma, the magnitude of the thermal Sunyaev-Zel’dovich
effect at millimeter bands and the convergence or shear of
gravitational lensing (measured from optical data) are pro-
portional to the integral along the line of sight of the gas
density squared, the gas pressure, and the mass density, re-
spectively. Taking into account all these observables, it is
possible to reconstruct the three-dimensional structure of
clusters with an extraordinary accuracy. Here we illustrate
the problem with a simple example, involving two observa-
tions of the same object (an X-ray image and a Sunyaev-
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6 Y. Ascasibar and J. M. Diego

Figure 4. Likelihoods in the α − a space when the model is
compared to two simulated noisy data sets: an X-ray (black) and
a Sunyaev-Zel’dovich (white) image. The asterisk marks the po-
sition of the fiducial model used to make the simulated data. The
other 3 parameters where not varied.

Zel’dovich image). Both datasets were simulated by adding
uniform random noise to one realization of our model, and
likelihoods on the α − a plane were derived in each case.
For the sake of simplicity, the remaining three parameters
have been fixed to the values used to generate the data. As
can be seen in Figure 4, each data set is slightly biased with
respect to the fiducial model (asterisk). When both results
are combined together, the best-fitting α and a are much
closer to their true values.

An interesting possibility, further along this direction,
would be to recover the triaxial structure of the dark mat-
ter halo. Although the model we described here is spherically
symmetric, it can be trivially modified to account for a triax-
ial gas distribution. The shape of the gravitational potential
and the density of the dark matter halo can then be obtained
from the hydrostatic equilibrium condition. Since the proce-
dure involves second derivatives, it is extremely sensitive to
the details of the gas distribution. It is important that the
model captures these details accurately, while at the same
time it must be simple enough to filter the high-frequency
noise, which otherwise would dominate the final result.

5 CONCLUSIONS

We have presented an analytical model of galaxy clusters
based on spherical symmetry and hydrostatic equilibrium.
Our model is fully specified by equations (6), (11), (12),
(13), and (14), and its five parameters have a well-defined
physical interpretation: M is the mass of the system, a is a
characteristic scale length, 0 < α < 1 is the cooling radius
in units of a, 0 < t < 1 is the central temperature in units
of T0, and f ∼ 1 is the asymptotic baryon fraction in units
of the cosmic value.

Its main advantage with respect to previous work is the
reduced number of free parameters. Besides a more straight-

forward interpretation of the results, describing the obser-
vations in terms of a few parameters is also very convenient
from a computational point of view, since (depending on
the details of the algorithm) the complexity of the fitting
procedure scales roughly exponentially with the dimension-
ality of the parameter space. An additional advantage are
the smaller degeneracies, which make both the inferred pro-
files and the best-fitting values of the parameters more ro-
bust. This, in turn, makes possible to investigate correlations
(scaling relations) that reduce the effective number of free
parameters. Our results suggest that, in fact, it might be
possible that the whole structure of a galaxy cluster could
be completely determined by just one single characteristic
scale. This very interesting possibility needs to be investi-
gated further with more data. If confirmed, it would provide
a crucial improvement to our current ability to model – and
understand – the internal structure of galaxy clusters.

Comparing our model to the three-dimensional density
and temperature profiles obtained from high-resolution X-
ray observations, we find that it provides an accurate de-
scription of the intracluster medium. In particular, the frac-
tional deviations with respect to the more elaborate model
proposed by V06 are comparable to the measurement er-
rors (of the order of 10 − 20 per cent). The systems that
feature high values of the reduced χ2 usually display a com-
plex behaviour that may be associated to departures from
perfect hydrostatic equilibrium, but a much more detailed
study would be required in order to test this hypothesis.

We have discussed a few possible applications of the
model presented here. First, it provides a simple description
of galaxy clusters to set up the initial conditions in idealized
numerical experiments. Second, it can be helpful in the de-
tection and characterization of observed systems, specially
when the signal-to-noise ratio is not extremely large. Finally,
a simple model of the matter and gas distribution makes
possible to reconstruct the three-dimensional structure of
the cluster from multiwavelength data. The construction of
an optimal filter for cluster detection based on our model,
as well as the combination of X-ray and Sunyaev-Zel’dovich
information, will be the subject of future work.
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