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Abstract. We present an explicit cosmological model where inflation and dark

energy both could arise from the dynamics of the same scalar field. We present our

discussion in the framework where the inflaton field φ attains a nearly constant velocity

m−1

P
|dφ/dN | ≡ α+ β exp(βN) (where N ≡ ln a is the e-folding time) during inflation.

We show that the model with |α| < 0.25 and β < 0 can easily satisfy inflationary

constraints, including the spectral index of scalar fluctuations (ns = 0.96 ± 0.013),

tensor-to-scalar ratio (r < 0.28) and also the bound imposed on Ω
φ

during the

nucleosynthesis epoch (Ωφ(1MeV) < 0.1). In our construction, the scalar field potential

always scales proportionally to the square of the Hubble expansion rate. One may

thereby account for the two vastly different energy scales associated with the Hubble

parameters at early and late epochs. The inflaton energy could also produce an

observationally significant effective dark energy at a late epoch without violating local

gravity tests.
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1. Introduction

The WMAP measurements of fine details of the power spectrum of cosmic microwave

background (CMB) anisotropies [1] have lent a strong support to the idea that the

universe underwent an inflationary expansion in the distant past [2]. The WMAP data,

along with the independent observations of the dimming of type Ia supernovae in distant

galaxies [3] also favour a result of growing evidence that a large fraction of the energy

density of the present universe is ‘dark’ and has a negative pressure, thereby leading to

the ongoing accelerated expansion of the universe. It is then natural to ask whether it is

possible to unify the inflation and quintessential fields. In a viable theory the primordial

inflation may lead to have a dark energy effect in the conditions of concurrent universe.

This picture merits broader discussion.

The main observation that has led many to believe that the dark energy is Einstein’s

cosmological constant Λ, for which wΛ ≡ pΛ/ρΛ = −1 identically and at all times, is the

concordance of different cosmological data sets, which appear to indicate that the dark

energy equation of state wDE ≡ pDE/ρDE is not much different from −1 at the present

epoch. This solution to dark energy, however, raises two immediate questions: (i) why

is ρΛ ≡ Λ/8πG ∼ 3ρM today? and (ii) why is ρΛ (∼ 10−12 (eV)4) so tiny? Apparently,

ρ
1/4
Λ is fifteen orders of magnitude smaller than the electroweak scale (mEW ∼ 1012 eV ),

the energy domain of major elementary particles in standard model physics, and it is

not known at present how to derive it from other small constants in particle physics.

The cosmological constant as the source of dark energy is only a possibility. The

other possibility is that the cosmological constant (or gravitational vacuum energy) is

fundamentally variable. Explicit examples are provided by models that use a dynamical

scalar field φ with a suitably defined scalar potential V (φ). Quintessence models

are among the most popular alternatives to Einstein’s cosmological constant as they

generally predict at late times a small (but still an appreciable) deviation from the

central prediction of Einstein’s cosmological constant, i.e. wΛ = −1. Observations only

require that wDE < −0.82 at present epoch [1, 3], so one finds worth studying models

that support a time-varying dark energy.

There are arguments in the literature [4, 5] that an appropriate modification of

Einstein’s theory provides an alternative resolution to dark energy problem and a natural

framework to address the inflationary paradigm. In this context, higher-dimensional

braneworlds models, scalar-tensor theories and R + f(R) gravity models, which derive

motivations from the original idea of Kaluza and Klein to its modern manifestation in

string theory, have been of particular interest.

A simple modification of Einstein’s theory of general relativity, which involves a

fundamental scalar field φ with a self-interacting potential V (φ), is given by

LE =
√−g

(
R

κ2
− 1

2
(∂φ)2 − V (φ)

)
+ Lm, (1)

where κ is the inverse Planck mass m−1
P l = (8πGN)

1/2 and Lm is the matter Lagrangian.

This theory has been studied over the last three decades by crafting different types of
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scalar potentials. The list of the potentials can be frustratingly long, which includes

the quadratic potential V (φ) = 1
2
m2

φ φ
2 widely considered in inflationary contexts and

the inverse power-law potential V (φ) ∝ φ−α (α ≥ 2). These examples are perhaps

sufficiently simple to understand the basic ideas of inflation and/or the dynamics dark

energy in the concurrent universe, for a review, see [6], but they hardly explain the

cosmic expansion of our universe exhibiting all relevant cosmological properties. It is

thus natural to ask whether it is possible to unify the inflation and quintessential fields

by finding (or constructing) a more general potential.

The model of quintessential inflation [7] proposed by Peebles and Vilenkin uses

the idea that inflaton potential could end up as an effective present-day cosmological

constant [8] or quintessence [9]. Although quite appealing, the potential considered

in [7], which consists of two parts: V (φ) = λ(φ4 + M4) (φ < 0) for inflation and

V (φ) = λM8/(φ4 + M4) (φ ≥ 0) for quintessence, finds no natural field theoretic

motivations. Recently, attempts have been made in constructing a working model of

quintessential inflation within the context of higher dimensional braneworld models, see,

e.g. [10, 11] and references therein for the earlier proposals. Also, there are suggestions

that a unification of the inflationary era (triggered by R2 type corrections) and the

late-time acceleration can be made through a simple construction of the modified F(R)

models [5], as well as within the framework of reconstruction of scalar-tensor gravity [4].

In this paper, we reconstruct an explicit observationally viable model for evolution

from inflation to the present epoch by maintaining the structure of the theory defined

by (1). Our reconstruction approach yields a smooth, exponential potential that

describes both the inflation and quintessential parts. The model can be shown to be

compatible with current cosmological observations, and, presumably, it can be embedded

in higher dimensional theories of gravity, such as string theory.

The rest of the paper is organized as follows. In section 2, we motivate our

construction with an appropriate ansatz for an inflaton field. We then invert the

system of autonomous equations to determine the inflaton potential, along with other

cosmological variables. There we also find conditions that have to be satisfied by

the reconstructed potential to be consistent with the WMAP inflationary data. In

section 3, we briefly discuss about an efficient method of reheating, so called ‘instant

preheating’, applicable to our model. In section 4, we include the effect of ordinary

fields and then find an explicit quintessence potential in a background dominated by

radiation (or matter). In section 5, we show how the reconstructed potential produces

an observationally significant effective dark energy and its associated late-time cosmic

acceleration. In section 6, we discuss on a possible way of evading local gravity

constraints imposed on the model. Further generalization of our construction with

higher-order corrections is briefly discussed in section 7. Finally, section 8 is devoted to

conclusion.
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2. How might inflaton roll?

In this section, we neglect the effect of ordinary fields (matter and radiation). The set

of autonomous equations of motion following from (1), with Lm = 0, is given by

V (φ) = m2
P
H2

[
3− 2m2

P

(
1

H

dH

dφ

)2
]
, (2)

φ̇

H
= 2m2

P

(
1

H

dH

dφ

)
, (3)

where H ≡ H(φ) = ȧ/a is the Hubble expansion parameter and a(t) is the scale factor

of a spatially flat Friedmann-Robertson-Walker universe.

One of the most crucial parts of a consistent inflationary model is to understand

the time-evolution of the inflaton field φ. Any choice of φ should give rise to a flat

potential as required for inflation and also be consistent with cosmological observations,

including WMAP results. To this aim, a simple (and possibly a natural) choice for the

evolution of inflaton field φ is

φ ≡ φ0 − αmP ln[a/ai]− γ mP

(
a/ai

)2ζ
, (4)

where |α| < O(1) and ai is the initial value of the scale factor before inflation. We shall

take γ = 1 for a reason to be explained below, while the parameters α and ζ (< 0) will

be fixed using bounds on inflationary variables inferred by the WMAP observations [1].

The evolution of the inflaton field in (4), or equivalently φ(t) = φ0 + c0 ln t + c1/t
p

(with p > 0), is a generic solution for a modulus and/or dilaton field in many four-

dimensional string models, see, e.g. [12]. The assumption (4) holds, almost universally,

in many well motivated inflationary models that satisfy slow roll conditions, after a

few e-folds of expansion. For instance, for the chaotic model of inflation with the

potential V (φ) ∝ m2φ2, one has a ∝ eφ
2/2 (cf equation (2.4), ref. [13]) and thus

|φ| =
√
2 ln a + const. As discussed in [14], even for two scalar fields model, if the

slow-roll conditions 3Hφ̇i ≃ V, φi are satisfied at Hubble exit, then N ≡ ln a depends

linearly only on the field values, leading to a generic situation that φ(t) ∝ ln a+ (small

correction).

The reconstructed scalar field potential is given by

V (φ) = m2
P
H2(φ)

(
3− ǫH(φ)

)
, (5)

where

H(φ) = M exp

[
−α

2

2
N(φ)− αX − ζ

2
X2

]

ǫH(φ) ≡ 2m2
P

(
dH/dφ

H

)2

=
1

2
(α + 2ζX)2 , (6)

where X ≡ γ e2ζN(φ), N(φ) ≡ ln a(φ(t)) + C. Note that the parameter γ appears

only in a combination with e2ζN ; so using a shift symmetry in φ and/or choosing

the constant C appropriately, we can always set γ to unity, thus γ = 1 henceforth.
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The energy scale M (which appears as an integration constant) can be fixed by

the amplitude of density perturbations observed at the COBE experiments, namely

(dV/dφ)−1V 3/2/(
√
75πm3

Pl) ≃ 1.92 × 10−5. With α ≡ 0.2 and Ne ≡ ln(af/ai) ≃ 55,

assuming that ζ < 0, we find M ≃ 7.4× 10−5mP = 3.1× 1014 GeV.

With a slowly varying ǫH(φ), the scalar curvature perturbation can be shown to

be [15]

P 1/2
R (k) = 2ν−3/2 Γ(ν)

Γ(3/2)
(1− ǫH)

ν−1/2

(
H2

2π|φ̇|

)

aH=k

, (7)

where ν = 3/2 + 1/(p− 1) and a ∝ tp. The scalar spectral index ns of the cosmological

perturbation is defined by

ns(k) ≡ 1 +
d lnPR
d ln k

. (8)

The fluctuation power spectrum is in general a function of wave number k and

evaluated when a given comoving mode crosses outside the horizon during inflation:

k = aH = aeH(φ)e−∆N is, by definition, a scale matching condition. Instead of

specifying the fluctuation amplitude directly as a function of k, it is convenient to

specify it as a function of the number of e-folds.

In the case α = 0, we get H(φ) ∝ exp
[
ζκ2

2
φ(2φ0 − φ)

]
and ǫH(φ) = 2ζ2κ2(φ−φ0)

2.

The scalar potential takes a familiar form: V (φ) ∝ m2
φ

[
3− 2ζ2κ2(φ− φ0)

2
]
, where

m2
φ

∝ H2. The number of e-folds is Ne = κ√
2

∫ φ1

φ2
(ǫH)

−1/2dφ = 1
2ζ
ln

φ0−φ1
φ0−φ2

, where

φ2 < φ1 < φ0. Since ηH ≡ 2
κ2 (d

2H/dφ2)/H = ǫH − 2ζ is small only for a limited

range of inflaton values, φ ∼ φ0, the number of e-folds is large only when ζ is very

small. In this case, however, almost no gravitational waves would be produced, leading

to an exponentially suppressed (close to zero) tensor-to-scalar ratio. The spectrum of

scalar (density) perturbations is also almost Harrison-Zeldovich type, ns = 1. This last

result is, however, not consistent with WMAP observations [1]. Thus, without loss of

generality, we demand that |α| > 0; more precisely,

ζ < 0, − 2ζe2ζN < α <
√
6

so that V (φ) > 0. The spectral index ns is now given by

ns − 1 = 2ηH − 4ǫH = −α
3 + 6α2λ+ 12αλ2 + 8ζλ+ 8λ3

α + 2λ
, (9)

(up to leading order in slow roll parameters) where λ ≡ ζe2ζNe and Ne is the number

of e-folds of inflation between the epoch when the horizon scale modes left the horizon

and the end of inflation.

The scalar spectrum on scales accessible to CMB observations is perhaps that

measured at the instance when observable scales exit the horizon during inflation. In

most models this corresponds to a phase of inflation between e-folds 50 and 60. We

summarize the results in a Table (for Ne = 50 and ζ = −0.1):
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0.955 0.965 0.97 0.975 0.98
ns

0.175

0.225

0.25

0.275

0.3

0.325

r

Figure 1. The tensor-to-scalar ratio r ≃ 16ǫ
H

vs the scalar spectral index n
s
, with

α = 0.21, 0.20 and 0.19 (top to bottom) and ζ = (−0.2, 0). The solid (dotted) lines are

for Ne = 60 (Ne = 40).

0.05 0.1 0.15 0.2 0.25 0.3
Α

0.94

0.95

0.96

0.97

0.98

0.99

ns

Figure 2. The scalar spectral index ns vs α, with Ne = 70 (solid line), Ne = 40

(dotted line) and ζ = {−2, 0}. Except for α < |ζ| . 0.05, the value of ns does not

much depend on ζ.

ns r = 16ǫH α ηH
r < 0.28 ns & 0.965 −− < 0.18 < 0.017

ns = 0.96 −− 0.32 0.200 0.020

r = 0.1 0.987 −− 0.112 0.006

In figure 1 we show the plot of tensor-to-scalar ratio r with respect to ns, and in

figure 2 the plot of ns with respect to α. Within our model, both ns and r do not much

depend on the number of e-folds except when ζ is positive, which we reject on physical

grounds.

With the WMAP3 bound on the tensor-to-scalar ratio, r < 0.28, we find ns & 0.965

for ζ . −0.1. The bound r < 0.28 implies that εH < 0.0175 and imposes a

relation (for a given N) between λ and α. Using equation (9), we get ns & 0.965

for ζ ≤ −0.1. The scalar spectrum is red-tilted except in the case that α . 0 and
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-0.06
-0.04

-0.02
0

Ζ

0.2

0.4

0.6

Α

-0.0002

-0.0001

0

Αs

-0.04
-0.02

0

0.2

0.4

0.6

Α

Figure 3. The running of scalar spectral index, α
s
, with respect to α and ζ with

Ne = 60. Except for α < |ζ| . 0.05, α
s
does not much depend on the number of

e-folds.

both ζ and r are sufficiently close to zero, e.g., for ζ = −0.005 and r = 0.001, we get

(α, ns, N) = (−0.0051, 1.0107, 50), (−0.0057, 1.0097, 60).

The running of spectral index, αs, is given by

αs ≡
dns

d ln k
=
dns

dN

dN

dφ

dφ

d ln k
, (10)

where

dφ

d ln k
= −mP

√
2ǫH(φ)

(1− ǫH(φ))
, mP

dN

dφ
= − 1√

2ǫH(φ)
. (11)

These relations hold independent of our ansatz (4). In our model, the value of αs is

found to be small, when satisfying 0.01 < α <
√
2 and ζ < 0 (cf figure 3).

We conclude this section with a couple of remarks. Studies in [16] show that,

in slow-roll inflation, one may relate the variation of the inflaton in terms of e-folds

N = ln(af/ai) to the tensor-to-scalar ratio r

1

mP

dφ

dN
=

φ′

mP

=

√
r

8
(12)

The WMAP bound on the tensor-to-scalar ratio is r < 0.28 (95% confidence level). This

then implies that α < 0.187 in the present construction. This is completely consistent

with our discussion above.

The reconstructed potential may be expressed as

V (ϕ) =
H2(ϕ)

2κ2
[
6− (α− 2ζϕ− 2αζ N(ϕ))2

]
, (13)

where

H(ϕ) ∝ exp

[
α2

2
N(ϕ) + αϕ− ζ

2
(ϕ+ αN(ϕ))2

]
, (14)
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10 20 30 40
N

1
2
3
4
5
6

Κ2VHΦL�M2

Figure 4. The scalar potential for some representative values of α = 0.3, 0.4, 0.5

(top to bottom), ζ = − 0.1 and C = −10.

where N(ϕ) = ln[a(ϕ(t))] and ϕ ≡ (φ − φ0)/mP . The shape of the potential (as

depicted in figure 4) as well as its functional form is qualitatively similar to a class of

scalar potentials one would obtain via warped flux compactifications of string theory,

see, e.g. [17]. The predicted characteristics of inflationary phase (of the potential) can

easily be made to comply with the WMAP results [1]. So our method of reconstruction

may be considered as a point in favour of providing a believable physical basis for the

inflation. Moreover, a large part of our construction does not depend on the details

of string theory or the dynamics of scalar fields abundant in any higher dimensional

theories but has a general validity, and thus would remain useful even if string theory

is invalidated.

3. Reheating after inflation

A satisfactory model of inflation should perhaps be followed by a successful reheating. To

this end, the ‘instant preheating’ mechanism presented in [18] and applied to exponential

potentials in [19] might perhaps be the most efficient method for reheating the universe.

Here we briefly outline a viable mechanism of reheating in our model, leaving the details

for future publication.

According to (4), after a few e-folds of inflation, since ζN < 0, one has φ̇ ≃
−αmPH . Clearly, with α <

√
2, the kinetic term never dominates the potential term.

As a result there remains the possibility that the expansion enters inflation from which

it never recovers. So our model has a chance to work only if the matter and/or radiation

energy density terms sometime after inflation is large enough to dominate the inflaton

energy density.

Without loss of generality, we can make the inflation end at the origin by translating

the field

V (ϕ) =M2m2
P
(3− α2/2) eα(ϕ/mP ) + small correction, (15)
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so after inflation ϕ ≡ (φ − φend) . 0. Following [18, 19] we assume that the inflaton

field ϕ interacts with another scalar field χ. The interaction Lagrangian is

Lint = −1

2
g2ϕ2χ2 − hψ̄ψχ, (16)

where g and h are coupling constants, and ψ is a Fermi field. The production of χ

particles commences when the adiabatic condition

|ṁχ| < m2
χ (17)

is violated, i.e. when |ϕ̇| & gϕ2, where mχ ≡ g|ϕ(t)|. So, the particle production may

occur when

|ϕ| .
√
ϕ̇end

g
∼ α1/2V

1/4
end (ϕ)

31/4g1/2
≡ ϕprod. (18)

The process of particle production occurs nearly instantaneously, within the time

∆tprod ∼ |ϕ|
|ϕ̇end|

∼ V
−1/4
end (ϕ)

α1/2g1/2
(19)

during which the field ϕ remains in the vicinity of ϕ = 0. As the field rolls to ϕ < 0

direction, the mass of the χ particles begins to grow, sincemχ ≡ g|ϕ(t)|. The occupation
number of χ particles is nk ∼ e−π(k∆tprod)

2

, with k being the canonical momemtum. The

energy density of particles of the χ field created in this process is

ρχ = mχnχ

(aend
a

)3

, (20)

where the number density nχ = (2π3)−1
∫∞
0
k2nkdk ≃ (2π)−3(αg)3/2V

3/4
end (ϕ). If the χ

particles can rapidly decay into fermions or the quanta of the χ field were to convert (or

thermalize) into radiation, then the radiation energy density would increase sharply to

ρr ≃ ρχ ∼ g5/2α3/2V
3/4
end

8π3
ϕprod ∼ 0.0027g2 α2Vend(ϕ). (21)

At the end of instant preheating

ρϕ
ρr

∼ 370

α2g2
. (22)

Although ρχ/ρϕ is small quantity to begin with (for any generic value of the coupling

g . 0.3 and α <
√
6), ρχ (or the decay product of the χ field) will decrease as a−3(1+w)

(w ≤ 1/3) and come to dominate ρϕ since the field ϕ is rolling down an exponential

potential and its energy density could decrease much faster ρϕ ∝ 1/a6 after inflation. To

illustrate this one considers a cosmic evolution by suppressing dV/dϕ, so ϕ̈+ 3Hϕ̇ = 0,

whose solution is ϕ = ϕ0 + ϕ1

∫
a−3dt. According to (4), ϕ̇ ≃ −αmPH and hence

a(t) = aend
(
t0 + (3/α)t

)1/3
. We then find

ϕ̇2 ≃ α2

3
V (ϕ) ∼ 10−9m4

P

(aend
a

)6

. (23)

For α <
√
3, there would be no kinetic regime. Nevertheless, since ρχ (or the decay

products of the χ field) may decrease much slower 1/[a(t)]n (n ≤ 4) than ρφ, it will
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eventually dominate the scalar energy density before the production of light elements or

the BBN epoch. Instant preheating may be followed by reheating which occurs through

the decay of χ particles to fermions as is evident from the interaction term in (16).

4. Growing matter

Given that the inflaton field φ decays to some radiation and heavy particles, it would

be natural to expect, at later stages of inflation, small but nonzero values for both

the matter and radiation energy densities. The growth in matter energy density can

naturally affect (or modify) the form (or shape) of the scalar potential, leading to an

additional term in the potential with a relatively large slope. This last feature is perhaps

required to make our model compatible with the big-bang nucleosynthesis (BBN) bound

imposed on the scalar field energy density.

Here we take the matter Lagrangian in its simplest form, which is Einsteinian

Lm ≡ L(gµν , ψm) =
√−g

(
ρM + ρR

)
, (24)

where ρ(i) ∝ a− 3(1+w(i)), i = M (matter) or R (radiation). Of course, one could allow

in principle an explicit coupling between the φ-field and matter. It is believed that

inflation was followed by an instant preheating (or reheating) and then by a radiation

dominated phase, so the strength of coupling between the field φ and matter could be

neglected during both the inflationary and the radiation-dominated epochs. Any such

couplings, however, can be relevant at later stages of evolution, especially, at galactic

distance scales (see section 6).

The set of autonomous equations of motion that follows from equations (1) and

(24) may be given by [20]

κ2V (φ) =

[
(3 + ǫ)(1− Ωw) +

1

2
Ω ′

w

]
H2(φ), (25)

κ2φ′2 = Ω ′
w − 2ǫ(1− Ωw), (26)

Ω ′
w = − 2ǫΩw − 3(1 + w)Ωw, (27)

where Ωw ≡ ΩM +ΩR, the prime denotes a derivative with respect to N ≡ ln[a(t)], and

φ′ =
φ̇

H
, w ≡ pR + pM

ρR + ρM
, ǫ =

H ′

H
, Ωi ≡

κ2ρi
3H2

. (28)

During radiation dominance Ωφ would remain small but nonzero. This last assumption

is consistent with the fact that the fixed point solution Ωw = 1 is always unstable.

Notice that the behaviour V (φ) ∝ H2(φ) holds also in the presence of ordinary fields

(matter and radiation).

From equations (25)-(27), along with equation (4), we find

κ2V (φ) =
H2(φ)

κ2
[3(1− Ωw)− B(φ)] , (29)

ǫ(φ) = − 3

2
(1 + w)Ωw −B(φ), (30)
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Ωw =
C(φ)

C0 + 3(1 + w)
∫
(−C(φ)) dN(φ)

, (31)

where C0 is an integration constant and

B(φ) ≡ 1

2

(
α + 2ζe2ζN(φ)

)2
, (32)

C(φ) = e(α
2−3(1+w))N(φ) exp

[
2α e2ζN(φ) + ζe4ζN(φ)

]
. (33)

As compared to the inflationary potential given by equations (13) and (14), we now

have the effect of matter fields (matter and radiation together). Of course, in the limit

that Ωw → 0, equation (29) reduces to (13).

During radiation domination, since ΩR ≫ ΩM and Ωw ≈ ΩR, we have w ≃ 1/3.

One also notes that the last term in equation (4) does not contribute (significantly) after

inflation. Therefore, from equations (29)-(31), we get

Ωw =
1 + w − α2/3

1 + w

H2
0

H2(φ)
e3(1+w)κ(φ−φ2)/α, (34)

where H2(φ) = H2
0 [e

ακ(φ−φ1) + e3(w+1)κ(φ−φ2)/α], and

V (φ) =
H2

0

κ2
[
α1e

3(1+w)κ(φ−φ2)/α + α2e
ακ(φ−φ1)

]
, (35)

where α1 ≡ α2

2
1−w
1+w

, α2 ≡ 6−α2

2
, and H0, φ1, φ2 are integration constants; we take

φ < φ2 ≪ φ1. Exponential potentials of a such form, which also arise ubiquitously in

particle physics and string theory models [21], by themselves are a promising ingredient

for building a natural model of quintessential inflation. In order for the scalar field

potential not to dominate the energy density of the universe during BBN, it is required

that 3(1 + w) >
√
6α, which easily satisfies the bound imposed on Ωφ during the

nucleosynthesis epoch, Ωφ(1MeV) . 0.05 [22]. By taking α . 0.8 and w ≃ 1/3, we

correctly reproduce a double exponential potential anticipated in [23].

The reason why the quintessential part of the potential, equation (35), has a

different form with respect to its inflationary part is easy to understand in our model.

During inflation the matter contribution (and its possible coupling with the inflaton

field) can be safely neglected. This is, however, essentially not the case for quintessence

part. Another source of this difference is that the last term in equation (4) does not

contribute (significantly) at later stages of evolution, like during the radiation-dominated

epoch.

5. Late time acceleration: Dominance of dark energy

At late times, without loss of generality, one takes ρR ≪ ρM and w ≃ 0. One

also assumes that φ is rolling only slowly, such that |φ̇|/H < mP . In this case the

inflaton potential takes a simpler form, for the evolution of the universe could naturally

lead the potential part to dominate the kinetic part: 2V (φ) ∝ φ̇2, with m being the

proportionality constant. Explicitly, we get

V (φ) = m2
P
H(φ)2

3m

m+ 1
(1− Ωw), (36)
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Figure 5. Evolution of the universe passing from matter dominance (weff ≃ 0) to

scalar field dominance (weff < −1/3), with m = 3, 5, 10 and 50 (from top to bottom).

ǫ(φ) = − 3
m+1

− 3
2
w̃Ωw and Ωw = 1/[1 + δ(z + 1)− 3 ew], where z is the redshift factor and

w̃ ≡ w + m−1
m+1

. The Hubble parameter H(φ(z)) (and hence V (φ(z))) can be expressed

in a closed form using the relation ǫ = Ḣ/H2. The numerical constant δ can also be

fixed using observational input: an ideal situation would be that the universe re-enters

into an accelerating phase (ǫ > −1) for z . 1. The universe passes from a decelerating

phase to an accelerating phase when Ωw <
m−2
2m−1

. The dark energy equation of state is

wφ = pφ/ρφ = 1−2m
1+2m

; therefore, with m ≡ 50, we get weff ≡ −1 − 2ǫ/3 ∼ −0.76 and

wφ ∼ −0.98 (see also figure 5).

The behaviour of dark energy similar to that depicted in figure 5 may be seen

directly from equations (34)-(35). Using the relation eN = eln a ≡ (1 + z)−1 and making

the assumption that ordinary matter (including cold dark matter) is approximated by

a non-relativistic perfect fluid and ρR ≪ ρM , so that w ≈ pM/ρM ≈ 0, we find

Ωw ≃ ΩM =

(
1− α2

3

)
1

1 + c0 (1 + z)α2−3
(37)

and

ǫ(z) = −1− q(z) = −3

2
ΩM − α2

2
, (38)

where q is the deceleration parameter. Hence

H(z) = H0

[
Ωm0(1 + z)3 + c0(1− Ωm0)(1 + z)α

2
]1/2

. (39)

The numerical coefficient c0 may be fixed such that ΩM = 0.27 at z = 0. With α <
√
2,

the second term on right-hand side decreases with z at a slower rate as compared to

ρM (which varies as (1 + z)3) as well as to that of the curvature, ρk (which varies

as (1 + z)2), so Ωφ naturally exhibits ‘dark energy’ as late times. As depicted in

figure 6, for α ≃ 0, the universe starts to accelerate when z . 0.8. For a larger α,

acceleration starts at a lower redshift; with a moderate value of α ≃ 0.26, we get

wDE = wφ ≃ (α2 − 3Ωφ)/3Ωφ ≃ −0.97.
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Figure 6. The deceleration parameter q(z) with respect to redshift z, and α =

0.8, 0.6, 0.3, 0.01 (top to bottom). The free parameter c
0
in equation (37) is chosen

such that Ω
M0

≃ 0.27.

The present model addresses the cosmic coincidence problem, only partially. In

fact, the cosmic coincidence problem (i.e. why ρφ ≃ 3ρM now?) often involves some

kind of fine tuning, and it is not an exception here. An interesting observation is that

this last phenomenon requires either a specific ratio between the kinetic and potentials

terms, or a specific value for the field velocity φ′ ≡ κφ̇/H , which is characterized by the

parameter α, so as to realize a quintessence dominance for z . 0.85.

6. Evading gravity constraints

In the above discussions we ignored the coupling of the φ-field with matter. This is

perhaps justified.

The dark energy or the cosmic acceleration problem is essentially a problem

associated with largest cosmological scales: in order for the field φ to play a role of

dark energy its effective mass should be at least in the range of the present value of

the Hubble parameter, H0 ∼ 10−33 eV. In turn, one takes the runaway quintessence

potential satisfying
√
V (φ) ≃ H0 ∼ 10−33 eV; the range of the interactions mediated by

the scalar field φ can be of the order of the Hubble horizon size. However, Newtonian

tests of Einstein’s general relativity and fifth force experiments such as the Cassini

satellite experiment put stringent bounds on the gravitational coupling of light scalar

particles. That means, a putative dark energy field should be sufficiently massive at

much smaller scales. Thus a mechanism similar to that in Chameleon field theory [24],

which combines both a quintessence-like behaviour leading to dark energy at late time

and a gravitational coupling to matter which is appreciable in high density regions,

could be operative in our model.

To this reason, one allows a nontrivial coupling between the φ-field and matter,
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and, accordingly, takes the matter Lagrangian in a general form

Lm = L(ψm, A
2(φ)gµν) ≡

√−g A4(φ)
∑

ρ̃(i), (40)

where ρ̃(i) ∝ â−3(1+wi), â ≡ aA(φ). φ couples to the trace of the matter stress tensor,

gµµ(i)T
(i)
µν , so the radiation term ρ̃R does not contribute to the equation of motion for φ

ρ̇φ + 3Hρφ

(
1 + wφ

)
= −φ̇ηαφA(φ)ρM , (41)

where η ≡ (1 − 3wi), ρφ ≡ 1
2
φ̇2 + V (φ), wφ ≡ pφ/ρφ, wi ≡ pi/ρi and αφ ≡ d lnA(φ)

d(κφ)
.

Equation (41), along with the equation of motion for ordinary fluids

ρ̇i + 3Hρi(1 + wi) = +φ̇ηαφA(φ)ρi, (i =M,R), (42)

guarantees the conservation of total energy, namely ρ̇ + 3H(ρ + p) = 0, where

ρ ≡ ρM + ρR + ρφ.

In the discussion below we take wM = 0. The effective scalar potential is then given

by

Veff ≡ V (φ) + ρM

∫
αφA(φ) dφ, (43)

where ρM ∝ 1/a3. For |αφ| > 0, the model needs to be confronted with the present-day

equivalence principle bound, α2
φ
≤ 5×10−5. On largest scales probed by WMAP, where

ρM ≃ ρcrit ≃ 10−12 (eV)4 (where ρcrit ≡ 3H2
0
/8πGN is the critical energy density), the

last term above is only sub-leading, which is suppressed by a factor of αφ. In turn, φ

can be sufficiently light, mφ ≡ V
1/2
φφ ∼ 10−33 eV ∼ (1028cm)−1, and its energy density

may evolve slowly over cosmological time-scales. But within solar system distances,

where ρM is roughly 1023 times larger than its value on large (Hubble) scales, the term

proportional to ρM can be more relevant. On Earth, ρM ∼ 1030 × ρcrit, the Compton

wavelength of the field φ can be sufficiently small, λc ∼ m−1
ϕ ∼ 0.1 mm as to satisfy local

tests of gravity. That is, in high density (and high curvature) regions the quintessence

field φ may end up almost in a squeezed state.

7. Further generalization

Although the model above is canonical in describing the basic ideas of quintessence,

there exist theoretical and phenomenological motivations for studying modifications of

the Einstein-Hilbert action which allow non-trivial couplings of φ to some quadratic

Reimann invariants (of the Gauss-Bonnet form R2 ≡ RµνλσR
µνλσ − 4RµνR

µν +R2) and

antisymmetric tensor fields [25, 26]

L =
√−g

(
R

2κ2
+ L(φ)− F(φ)R2 − G(φ)H2

)
+ Lm, (44)

where L(φ) = −1
2
(∂φ)2−V (φ),H2 = HµνλHµνλ andHµνλ = ∂[µBνλ] is the antisymmetric

3-form field strength. Allowing G(φ) 6= 0 in (44), one introduces a pseudoscalar degree

of freedom σ, via the ansatz Hµνλ ≡ √
g ǫµνλτ∂

τσ. Like φ, the axion field σ is a function
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only of time. In particular, the coupling F(φ) allows new cosmological solutions for

which the dark energy equation of state can be less than −1. To be precise, we note

that
κ2(ρDE + pDE)

H2
= κ2φ′2 + (1− ǫ)ΩF + Ω′

F , (45)

where ΩF = 8ḞH = 8F ′H2. The antisymmetric 3-form field does not modify this

equation because it contributes to ρDE and pDE with the same magnitude but with

opposite signs, namely, κ2ρDE/H
2 = x2/2 + y2 + 3ΩF + 3ΩG and κ2pDE/H

2 =

x2/2−y2−(2+ǫ)ΩF−Ω′
F−3ΩG , where ΩG ≡ 2G(φ) σ′ 2, x ≡ κφ̇/H and y ≡ κ

√
V /H . We

can get wφ ≡ ρφ/pφ < −1, without requiring a superluminal expansion ǫ = Ḣ/H2 > 0,

or having to introduce a non-canonical (phantom) field. Most features of the model

(1) would arise in the limit where F(φ)R2 and G(φ)H2 are sub-leadings to V (φ) (see

below).

In the above model, the axion field σ does not play much role. With a generic choice

of G(Φ) ≡ G0e
2Φ (where Φ ≡ φ/mP ), the B-field equation of motion, ∇µ

(
e2ΦHµνλ

)
= 0,

is solved for Hµνλ = e−2Φǫµνλτ∂τσ. The integrability condition, ∂[µHνλτ ] = 0, yields

σ̈ + 3Hσ̇ + 2Φ̇σ̇ = 0. With the ansatz (4), we get

mP σ̇

H2
∝ exp

[
(2α− 3)N + 2ζe2ζN

]
. (46)

After a few e-folds of inflation, the last term above would become small, since ζN < 0.

The scalar potential reads

V (φ) =
H2

2

[
6− α2 − 12G0e

2(3/α−1)Φ
]
, (47)

where H = H0 exp[αΦ/2]. This result in conjunction with equations (4) and (46) implies

that for α < 2, G(φ)H2 decreases faster than the scalar potential V (φ).

Next we briefly discuss some qualitative features of the reconstructed scalar

potential with a nonzero F(φ). With the ansatz (4), and with G(φ) = 0, the

reconstructed potential is given by equation (5); the parameter εH(φ) reads

εH(φ) =
1

2
(α + 2ζX)2 + 3ΩF

=
1

2
(α + 2ζX)2 − 24H2(α + 2ζX)

dF(φ)

dφ
. (48)

Clearly, in the case ΩF < 0, the coupling F(φ) could increase the period of inflation by

making ǫH smaller. This effect can be opposite in the case ΩF > 0: it could be that

inflation ended due to a slowly increasing derivative of the coupling, dF/dφ, such that

ΩF ∼ 1/3.

With F(φ) 6= 0, the corresponding potential may be reconstructed by providing

an extra condition or by demanding a specific relation between the functions V (φ) and

F(φ) (see, e.g. [27], where a general method of reconstruction was developed, including

the effect of scalar-Gauss-Bonnet coupling). In the particular case that a(t) ≃ a0e
H0t,

we find

ΩF = −e
N(φ)

3H2
0

− α2 − 4αζ

1− 2ζ
e2ζN(φ) − 4ζ2

1− 4ζ
e4ζN(φ), (49)
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where N(φ) ≡ ln a(φ(t))+ const. Again, after a few e-folds of inflation, since

exp[2ζN(φ)] ≪ 1, we get

ΩF = −α2 − eN(φ)

3H2
0

,
V (φ)

3H2
= 1 +

5

2
α2 +

eN(φ)

3H2
0

. (50)

This result reveals a generic situation that the coupled Gauss-Bonnet term is only

subleading to the potential V (φ). This behavior of our model may be present also when

the Hubble parameter changes appreciably with e-folding time, as happens at later

stages of inflation.

The presence of ordinary fields (matter and radiation) in our model does not

introduce much complication, apart from slightly modified expressions for V (φ) and

F(φ), for the added degrees of freedom come with additional equations of motion.

8. Conclusion

We have presented an explicit cosmological model for evolution from inflation to the

present epoch that we believe satisfies the main observational constraints, including fine

details of the power spectrum of cosmic microwave background anisotropies, e.g., a red-

tilted scalar spectrum with small tensor-to-scalar ratio, r < 0.28, the bound imposed on

Ωφ during the nucleosynthesis epoch and present epoch local gravity tests. It is therefore

potentially of great utility.

In our analysis, just one assumption, equation (4), that is regarding the evolution

of inflaton field, has been made, which is indeed a common feature of many motivated

slow-roll type inflationary models. Moreover, for a slowly rolling inflaton field, mPφ
′ =

mP
dφ
dN

< 0.25, the gravity waves or the amplitude of tensor perturbations can be

suppressed in our model. This might actually be needed in our model, in order to

satisfy the BBN bound.

The present proposal also simplifies the role of the inflaton by almost decoupling

it from the (background) matter on large cosmological scales. On the scale of the

solar system, due to the large surrounding matter density, the dark energy field can be

sufficiently massive, e.g., mφ ∼
√
Λeff , φφ & 10−3 eV, thereby quenching the deviations

from Einstein’s gravity on distances larger than a fraction of millimeter. Moreover, the

model possesses an attractor behaviour for the inflaton and matter densities analogous

to the tracking solution of, e.g., the inverse power-law potential, V (φ) ∝ φ−α with α ≥ 2.

The model proposed here may provide a reasonable explanation to the question:

why is the cosmological vacuum energy small? The interpretation of gravitational

vacuum energy (or dark energy) in our framework is likely to yield V (φ) ≤ 3(1 −
Ωm0)H

2
0
m2

P
and exhibit scaling behaviour for ρφ, being proportional to the square of

the Hubble rate. As a result, within our model, ρφ ≃ 2H2
0
m2

P
= 2 × 10−66 eV2m2

P
≃

3.5 × 10−47(GeV)4 would be the most probable value of dark energy density at the

present epoch.
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