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ABSTRACT

We employ the first fully three-dimensional simulation to study the role of magnetic
fields and ion-neutral friction in regulating gravitationally-driven fragmentation of
molecular clouds. The cores in an initially subcritical cloud develop gradually over an
ambipolar diffusion time while the cores in an initially supercritical cloud develop in
a dynamical time. The infall speeds on to cores are subsonic in the case of an initially
subcritical cloud, while an extended (& 0.1 pc) region of supersonic infall exists in
the case of an initially supercritical cloud. These results are consistent with previous
two-dimensional simulations. We also found that a snapshot of the relation between
density (ρ) and the strength of the magnetic field (B) at different spatial points of the
cloud coincides with the evolutionary track of an individual core. When the density
becomes large, both relations tend to B ∝ ρ0.5.

Key words: instabilities – ISM: clouds – ISM: magnetic fields – ISM: molecules –
MHD – stars: formation

1 INTRODUCTION

Magnetic fields in molecular clouds play an important role
in the early stages of star formation. They may regulate
the cloud fragmentation process, moderate the infall mo-
tions on to density peaks, control angular momentum evo-
lution through magnetic braking, launch jets from the near-
protostellar environment, and possibly determine a finite
mass reservoir for star formation by limiting accretion from a
magnetically-dominated envelope. The prevailing macrotur-
bulence in molecular cloud envelopes also likely represents
magnetohydrodynamic motions. This paper concerns itself
with the first two issues above: we employ the first fully
three-dimensional simulation to study the role of magnetic
fields and ion-neutral friction in regulating gravitationally-
driven fragmentation and infall.

The relative strengths of gravity and the mag-
netic field can be quantified through the mass-
to-flux ratio M/Φ. There exists a critical mass-
to-flux ratio (M/Φ)crit (Mestel & Spitzer 1956;
Strittmatter 1966; Mouschovias & Spitzer 1976;
Tomisaka, Ikeuchi, & Nakamura 1988) such that if

⋆ E-mail: kudoh@th.nao.ac.jp (TK)

M/Φ > (M/Φ)crit, a pressure-bounded cloud is super-
critical and is prone to indefinite collapse if the external
pressure exceeds some value. This behaviour is analogous to
that of the nonmagnetic Bonnor-Ebert sphere. Conversely,
if M/Φ < (M/Φ)crit, a cloud is subcritical and cannot
collapse even in the limit of infinite external pressure, as
long as magnetic flux-freezing applies. A similar condition
M/Φ < (M/Φ)crit = (2πG1/2)−1 is required for uncondi-
tional stability of an infinite uniform (in x, y) layer that is
flattened along the z-direction of a background magnetic
field (Nakano & Nakamura 1978). The various numerical
values of (M/Φ)crit differ by small factors of order unity,
and we adopt the result of Nakano & Nakamura (1978)
since their model closely resembles the initial state in our
calculation.

Magnetic field strength measurements through the
Zeeman effect reveal that the mass-to-flux ratios are
clustered about the critical value for collapse (Crutcher
1999, 2004; Shu et al. 1999) and that there is also an
approximate equipartition between the absolute values
of gravitational energy and nonthermal (hereafter, “tur-
bulent”) energy (Myers & Goodman 1988; Basu 2000).
Measurements of polarized emission from dust grains,
which reveal the field morphology, generally indicate
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that the field in cloud cores is well ordered and not
dominated by turbulent motions, with application of
the Chandrasekhar-Fermi method yielding mass-to-flux
ratios near the critical value (Lai et al. 2001, 2002;
Crutcher, Nutter, & Ward-Thompson 2004; Curran et al.
2004; Kirk, Ward-Thompson, & Crutcher 2006).

Mestel & Spitzer (1956) pointed out that even if clouds
are magnetically supported, ambipolar diffusion (resulting
from ion-neutral slip) will cause the support to be lost and
stars to form. More specifically, a medium with a subcrit-
ical mass-to-flux ratio will still undergo a gravitationally-
driven instability, occurring on the ambipolar diffusion time
scale rather than the dynamical time scale (Langer 1978;
Zweibel 1998; Ciolek & Basu 2006). The length scale of
the instability is essentially the Jeans scale in the limit
of highly subcritical clouds (the same length scale as for
highly supercritical fragmentation) but can be much larger
when the mass-to-flux ratio is close to the critical value
(Ciolek & Basu 2006). Most nonlinear calculations of am-
bipolar diffusion driven evolution have focused on a sin-
gle axisymmetric core, but newer models focus on a frag-
mentation process that results in the formation of multiple
cores and somewhat irregular density and velocity structure.
Indebetouw & Zweibel (2000) carried out a two-dimensional
simulation of an infinitesimally-thin sheet threaded by an
initially perpendicular magnetic field. Starting with slightly
subcritical initial conditions, they followed the initial growth
of mildly elongated fragments which occurred on a time scale
intermediate between the dynamical time associated with
supercritical collapse and the ambipolar diffusion time-scale
associated with highly subcritical clouds. Basu & Ciolek
(2004) carried out two-dimensional simulations of a mag-
netized sheet in the thin-disc approximation, which incor-
porates a finite disc half-thickness Z consistent with hydro-
static equilibrium and thereby includes the effect of mag-
netic pressure. They studied a model which had an initially
critical mass-to-flux ratio and another which was supercrit-
ical by a factor of two. One of their main results was that
the critical model had subsonic (maximum speed ≈ 0.5cs,
where cs is the isothermal sound speed) infall, while the
decidedly supercritical cloud had infall speeds & 1cs on
scales ∼ 0.1 pc from the core centres. This is a signifi-
cant observationally-testable difference between dynamical
(supercritical) fragmentation and ambipolar-diffusion reg-
ulated (critical or subcritical) fragmentation. Yet another
mode of fragmentation is the so-called turbulent fragmen-
tation, which in fact corresponds to collapse driven by a
strong external compression. Li & Nakamura (2004) and
Nakamura & Li (2005) have studied this process for a mag-
netized sheet using the thin-disc approximation, and includ-
ing the effect of ion-neutral friction. They find that a mildly
subcritical cloud can undergo locally rapid ambipolar diffu-
sion and form multiple fragments because of an initial large-
scale highly supersonic compression wave. The core forma-
tion occurs on a crossing time of the simulation box, which
is related to the dynamical time. Li & Nakamura (2004) es-
timate that such a process can simultaneously maintain a
relatively low efficiency of star formation, as is required by
observations (Lada & Lada 2003).

In this paper, we study the three-dimensional extension
of models such as those of Indebetouw & Zweibel (2000) and
Basu & Ciolek (2004). The self-consistent calculation of the

vertical structure of the cloud allows us to test the predic-
tions of two-dimensional models as well as to make some
new predictions. We model clouds that are either decidedly
supercritical or subcritical and study the evolution after the
introduction of small-amplitude perturbations. The case of
compression-induced collapse will be studied in a separate
paper. We note that our three-dimensional model is not a
cubic region but rather a flattened three-dimensional layer
that is consistent with the expected settling of gas along
the direction of the magnetic field. In reality, we believe
that our modeled region would represent the dense midplane
of a larger more turbulent cloud. As demonstrated by the
one-dimensional models of Kudoh & Basu (2003, 2006), the
turbulent motions in a stratified magnetized cloud develop
the largest amplitude motions in the outer low-density enve-
lope, while maintaining transonic or subsonic motions near
the midplane. We believe that the fragmentation process as
modeled in this paper may proceed while long-lived turbu-
lent motions continue on larger scales.

2 NUMERICAL MODEL

2.1 Basic Equations

We solve the three-dimensional magnetohydrodynamic
(MHD) equations including self-gravity and ambipolar diffu-
sion, assuming that neutrals are much more numerous than
ions:

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ 1

cρ
j ×B −∇ψ, (2)

∂B

∂t
= ∇× (v ×B) +∇×

[

τni

cρ
(j ×B)×B

]

, (3)

j =
c

4π
∇×B, (4)

∇2ψ = 4πGρ, (5)

p = c2sρ, (6)

where ρ is the density of neutral gas, p is the pressure, v is
the velocity, B is the magnetic field, j is the electric cur-
rent density, ψ is the self-gravitating potential, and cs is the
sound speed. Instead of solving a detailed energy equation,
we assume isothermality for each Lagrangian fluid particle
(Kudoh & Basu 2003, 2006):

dcs
dt

=
∂cs
∂t

+ v · ∇cs = 0. (7)

For the neutral-ion collision time in equation (3) and asso-
ciated quantities, we follow Basu & Mouschovias (1994), so
that

τni = 1.4
mi +mn

ρi〈σw〉in
, (8)

where ρi is the density of ions and 〈σw〉in is the average
collisional rate between ions of massmi and neutrals of mass
mn. Here, we use typical values of HCO+-H2 collisions, for
which 〈σw〉in = 1.69 × 10−9 cm−3s−1 and mi/mn = 14.4.
We also assume that the ion density ρi is determined by the
approximate relation (Elmegreen 1979; Nakano 1979)
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Molecular Cloud Fragmentation 3

ρi = miK

(

ρ/mn

105cm−3

)k

, (9)

where we assumeK = 3×10−3cm−3 and k = 0.5 throughout
this paper.

2.2 Initial Conditions

As an initial condition, we assume hydrostatic equilibrium
of a self-gravitating one-dimensional cloud along z-direction
(Kudoh & Basu 2003, 2006). The hydrostatic equilibrium is
calculated from equations

dp

dz
= ρgz, (10)

dgz
dz

= −4πGρ, (11)

p = c2sρ, (12)

subject to the boundary conditions

gz(z = 0) = 0, ρ(z = 0) = ρ0, p(z = 0) = ρ0c
2
s0 (13)

where ρ0 and cs0 are the initial density and sound speed
at z = 0. If the initial sound speed (temperature) is uni-
form throughout the region, we have the following analytic
solution ρS found by Spitzer (1942):

ρS(z) = ρ0 sech
2(z/H0), (14)

where

H0 =
cs0√
2πGρ0

(15)

is the scale height. However, an isothermal molecular cloud
is usually surrounded by warm material, such as neutral
hydrogen gas. Hence, we assume the initial sound speed dis-
tribution to be

c2s(z) = c2s0 +
1

2
(c2sc − c2s0)

[

1 + tanh

(

|z| − zc
zd

)]

(16)

where we take c2sc = 10 c2s0, zc = 2H0, and zd = 0.1H0

throughout the paper. By using this sound speed distribu-
tion, we can solve equations (10)-(12) numerically. The ini-
tial density distribution of the numerical solution shows that
it is almost the same as Spitzer’s solution for 0 6 z 6 zc.

We also assume that the initial magnetic field is uniform
along the z-direction:

Bz = B0, Bx = By = 0, (17)

where B0 is constant.
In this equilibrium sheet-like gas, we input a random ve-

locity perturbation (Miyama, Narita, & Hayashi 1987b) at
each grid point:

vx = 0.1cs0Rm, vy = 0.1cs0Rm, vz = 0.0 (18)

where Rm is a random number chosen uniformly from the
range [-1,1]. The Rm’s for each of vx and vy are independent
realizations. However, each model presented in this paper
uses the same pair of realizations of Rm for generating the
initial perturbations.

2.3 Numerical Parameters

A set of fundamental units for this problem are cs0, H0, and
ρ0. These yield a time unit t0 = H0/cs0. The initial magnetic
field strength introduces one dimensionless free parameter,

β0 ≡ 8πp0
B2

0

=
8πρ0c

2
s0

B2
0

, (19)

the ratio of gas to magnetic pressure at z = 0.
In the sheet-like equilibrium cloud with a vertical mag-

netic field, β0 is related to the mass-to-flux ratio for Spitzer’s
self-gravitating cloud. The mass-to-flux ratio normalized to
the critical value is

µS ≡ 2πG1/2ΣS

B0

(20)

where

ΣS =

∫

∞

−∞

ρSdz = 2ρ0H0 (21)

is the column density of Spitzer’s self-gravitating cloud.
Therefore,

β0 = µ2
S . (22)

Although the initial cloud we used is not exactly the same
as the Spitzer cloud, β0 is a good indicator to whether or
not the magnetic field can prevent gravitational instability
(Nakano & Nakamura 1978).

Dimensional values of all quantities can be found
through a choice of ρ0 and cs0. For example, for cs0 = 0.2
km s−1 and n0 = ρ0/mn = 104 cm−3, we get H0 = 0.05 pc,
t0 = 2.5 × 105 yr, and B0 = 20µG if β0 = 1.

2.4 Numerical Technique

In order to solve the equations numerically, we use the
CIP method (Yabe & Aoki 1991; Yabe, Xiao, & Utsumi
2001) for equations (1), (2) and (7), and the method
of characteristics-constrained transport (MOCCT;
Stone & Norman (1992)) for equation (3), including
an explicit integration of the ambipolar diffusion term.
The combination of the CIP and MOCCT methods is
summarized in Kudoh, Matsumoto, & Shibata (1999)
and Ogata et al. (2004). It includes the CCUP method
(Yabe & Wang 1991) for the calculation of gas pressure, in
order to get more numerically stable results. The numerical
code in this paper is based on that of Ogata et al. (2004).

In this paper, the ambipolar diffusion term is only in-
cluded when the density is greater than a certain value,
ρcr. We let ρcr = 0.3ρ0 both for numerical convenience
and due to the physical idea that the low density region
is affected by external ultraviolet radiation so that the
ionization fraction becomes large, i.e. τni becomes small
(Ciolek & Mouschovias 1995). Under this assumption, the
upper atmosphere of the sheet-like cloud is not affected by
ambipolar diffusion. This simple assumption helps to avoid
very small time-steps due to the low density region in order
to maintain stability of the explicit numerical scheme.

We used a mirror-symmetric boundary condition at
z = 0 and periodic boundaries in the x and y-directions.
At the upper boundary at z = zout = 4H0, we also used
a mirror-symmetric boundary except when we solve the
gravitational potential. This symmetric condition is just
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Figure 1. The time evolution of the density at the location
where the density reaches its maximum value in each simulation.
Each line shows a case of different β0.

for numerical convenience. However, because the results
we show later in this paper are consistent with previous
two-dimensional simulations, we believe that the boundary
conditions do not affect the result significantly. The Pois-
son equation (5) is solved by the Greens function method
to compute the gravitational kernels in z-direction, along
with a Fourier transform method in the x and y-directions
(Miyama, Narita, & Hayashi 1987b). This method of solv-
ing the Poisson equation allows us to find the gravitational
potential of a vertically isolated cloud within |z| < zout.

The computational region is |x|, |y| 6 8πH0 and 0 6

z 6 4H0. The number of grid points for each direc-
tion is (Nx, Ny , Nz) = (64, 64, 40). Since the most un-
stable wavelength for no magnetic field is about 4πH0

(Miyama, Narita, & Hayashi 1987a), we have 16 grid points
within this wavelength. We have also 10 grid points within
the scale height of the initial cloud in the z-direction. While
this is not a high-resolution simulation, we believe that we
have the minimum number of grid points to study the grav-
itational instability, especially by using the code based on
CIP (Ogata et al. 2004). The maximum computational time,
which occurs for the case of the subcritical cloud, is about 85
hours of CPU time using a single processor of the VPP5000
in the National Astronomical Observatory of Japan.

3 RESULTS

Figure 1 shows the time evolution of the density at the lo-
cation where the density reaches its maximum value in each
simulation. The simulations are stopped when the maximum
density is about 30ρ0. Each line shows a case of different β0.
When β0 is 100 or 4, the magnetic field is not strong enough
to suppress the self-gravitational instability of the cloud.
In these cases, the density evolves rapidly, over the sound-
crossing time of the most unstable wavelength (∼ 4πH0).
However, when β0 = 0.25, the cloud is self-gravitationally
stable unless ion-neutral slip is present. Therefore, the den-
sity evolves gradually over the diffusion time of the magnetic
field. According to the two-dimensional linear analysis by

Figure 2. The logarithmic density contours for β0 = 0.25 at t =
150. Arrows show velocity vectors on each cross section. Upper
panel shows the cross section at z = 0, and the lower panel shows
the cross section at y = 4.3.

Ciolek & Basu (2006), the evolutionary time scale of a sig-
nificantly subcritical cloud is about ten times longer than the
dynamical time, for a standard ionization fraction, as used
here. Our numerical result is consistent with their analysis.

Figure 2, Figure 3, and Figure 4 show the logarithmic
density contours for β0 = 0.25 at t = 150, β0 = 4 at t = 15.3,
and β0 = 100 at t = 11.1 respectively. Each upper panel
shows the cross section at z = 0, and the lower panel shows
the cross section at y = 4.3 for β0 = 0.25, y = 5.1 for β0 = 4,
and y = 5.1 for β0 = 100 respectively. The values of y for
the lower panels are chosen so that the vertical cut passes
through at least one dense core. (In these numerical simu-
lations, we use the term ”core” to refer to the region where
the density is greater than the mean background density by
about a factor of 3.) The size of cores for β0 = 4 is bigger
than that of β0 = 100. The size becomes smaller again when
the magnetic field is stronger than critical (β0 = 0.25). This
result is consistent with the two-dimensional linear analy-
sis of Ciolek & Basu (2006), who found a hybrid mode for
critical or mildly supercritical clouds in which the combined
effect of field-line dragging and magnetic restoring forces en-
force a larger than usual fragmentation scale. Arrows show
velocity vectors on each cross section. Maximum velocities
become supersonic for β0 = 4 and β0 = 100, but remain
subsonic for β0 = 0.25. This is also consistent with the two-
dimensional numerical simulations of Basu & Ciolek (2004).

Figure 5 and Figure 6 shows the close up views of the
density contours around cores for β0 = 0.25 and β0 = 4
respectively. Magnetic field lines near cores are also plotted
in three-dimensional space. When β0 = 0.25, the neutral gas
has to slip through the field lines to make a gravitationally
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Figure 3. The logarithmic density contours for β0 = 4 at t =
15.3. Arrows show velocity vectors on each cross section. Upper
panel shows the cross section at z = 0, and the lower panel shows
the cross section at y = 5.1.

Figure 4. The logarithmic density contours for β0 = 100 at
t = 11.1. Arrows show velocity vectors on each cross section.
Upper panel shows the cross section at z = 0, and the lower
panel shows the cross section at y = 5.1.

Figure 5. The close up views of the density contours around
cores for β0 = 0.25. Magnetic field lines near cores are also plotted
in three-dimensional space.

Figure 6. The close up views of the density contours around
cores for β0 = 4. Magnetic field lines near cores are also plotted
in three-dimensional space.

bound core. Therefore, the field lines are not so deformed in
the case of β0 = 0.25, in contrast to those of β0 = 4.

Figure 7 and Figure 8 show the logarithmic contours of
plasma β for β0 = 0.25 at t = 150 and β0 = 4 at t = 15.3, re-
spectively. When β0 = 0.25, the plasma β in cores is greater
than in the surroundings. This is because the mass-to-flux
ratio (and therefore β) has to increase in order for the core to
become gravitationally unstable. The maximum β is larger
than 1 at the centre of a core, which means that the centre of
the core is approximately supercritical. In contrast to this,
the plasma β in cores is slightly lower than the surround-

ings when β0 = 4. In this case, the magnetic field is swept
up by the contracting cloud before ion-neutral slip works
efficiently. If hydrostatic equilibrium along the z-direction
is exactly satisfied, the plasma β would remain constant in

c© 0000 RAS, MNRAS 000, 000–000



6 T. Kudoh et al.

Figure 7. The logarithmic contours of plasma β for β0 = 0.25
at t = 150. Upper panel shows the cross section at z = 0, and the
lower panel shows the cross section at y = 4.3.

Figure 8. The logarithmic contours of plasma β for β0 = 4 at
t = 15.3. Upper panel shows the cross section at z = 0, and the
lower panel shows the cross section at y = 5.1.

Figure 9. The densities, plasma β, and vx along x-axes for lines
that cut through the cores shown in Figure 5 and Figure 6. The
left panel shows the core for β0 = 0.25. The right panel shows the
core for β0 = 4.

Figure 10. The densities, plasma β, and vz along z-axes for
lines that cut through the cores shown in Figure 5 and Figure
6. The left panel shows the core for β0 = 0.25. The right panel
shows the core for β0 = 4.

time and space. The slightly lower values of β in cores are
probably caused by the modestly nonequilibrium state along
z during the evolution.

Figure 9 shows the densities, plasma β, and vx along
x-axes for lines that cut through the cores shown in Figure
5 and Figure 6. The left panel shows the core for β0 = 0.25.
The right panel shows the core for β0 = 4. Figure 9 shows
that the plasma β in the core is higher than the surroundings
for β0 = 0.25 and lower for β0 = 4. The infall velocity for
β0 = 4 shows supersonic values, while the velocity for β0 =
0.25 is subsonic. These velocities are comparable to those in
Figure 2 and Figure 3 of Basu & Ciolek (2004). Figure 10
shows the densities, plasma β, and vz along z-axes for lines
that cut through the same cores. It also shows that the infall
velocity for β0 = 4 reaches mildly supersonic values, while
the velocity for β0 = 0.25 is subsonic.

Figure 11 shows the relation between density and mag-
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Molecular Cloud Fragmentation 7

Figure 11. Open circles show the magnetic field strength as a
function of density along z = 0 at t = 150 for the model with
β0 = 0.25. The strength of the magnetic field is normalized by
√

8πρ0c2s0. Filled circles are the same for β0 = 4, at t = 15.3. The

blue line shows the evolutionary track of the point at which the
density achieves its maximum value for the model with β0 = 0.25.
The red line is the same for β0 = 4.

netic field on the plane z = 0. The strength of the magnetic
field is normalized by

√

8πρ0c2s0. Open circles show the mag-
netic field strength as a function of density along z = 0 at
t = 150 for the model with β0 = 0.25 (see Fig. 2). Filled
circles are the same for β0 = 4, at t = 15.3 (see Fig. 3). The
blue line shows the evolutionary track of the point at which
the density achieves its maximum value for the model with
β0 = 0.25. The red line is the same but for β0 = 4. This fig-
ure shows that the snapshot of the relation between density

and magnetic field at different spatial points in the midplane

of the cloud overlaps with the evolutionary track of an in-

dividual core . The dashed line shows B ∝ ρ0.5. When the
density becomes large, each relation approximately tends to
B ∝ ρ0.5. In the case of β0 = 0.25, the relation shows that
core initially evolves to greater density without increasing
the magnetic field strength. This is caused by the slip of
neutral gas through the magnetic field during the subcriti-
cal phase of evolution.

4 CONCLUSIONS AND DISCUSSION

We have studied fragmentation of a sheet-like self-
gravitating cloud by three-dimensional MHD simulations.
The main results are as follows.

• We confirmed that in the case of an initially subcritical
cloud (β0 = 0.25), cores developed gradually over an am-
bipolar diffusion time, while the cores in an initially super-
critical cloud (β0 = 4 or β0 = 100) developed in a dynamical
time.

• The infall speed on to cores is subsonic in the case of
an initially subcritical cloud, while there is extended super-
sonic infall in the case of an initially supercritical cloud. This
is consistent with the result of the two-dimensional simula-
tions of Basu & Ciolek (2004). In our three-dimensional sim-

ulations, we also find that the z-component of the velocity
follows the same pattern.

• The size of cores for mildly supercritical cloud (β0 = 4)
is bigger than that of highly supercritical cloud (β0 =
100). The size becomes smaller again when the magnetic
field is stronger than the critical (β0 = 0.25). This re-
sult is consistent with the two-dimensional linear analysis
of Ciolek & Basu (2006).

• When the cloud is initially subcritical (β0 = 0.25), the
plasma β in cores is greater than in the surroundings. In
contrast to this, the plasma β in cores is slightly lower than
the surroundings when the cloud is initially supercritical
(β0 = 4). The latter result is probably caused by the mod-
estly nonequilibrium state along z during the evolution.

• In the B−ρ plane, the snapshot of the relation between
magnetic field strength (B) and density (ρ) at different spa-
tial points of the cloud overlaps with the evolutionary track
of an individual core. When the density becomes large, each
relation approximately tends to B ∝ ρ0.5.

Our simulation is the first fully three-dimensional sim-
ulation to study the role of magnetic fields and ion-neutral
friction in fragmentation. In this paper, we concentrated on
the effect of initially small perturbations, partly as a way to
compare with established predictions of linear theory. Our
models also serve as a guide to understand fragmentation oc-
curring exclusively in dense subregions of clouds that contain
only subsonic or transonic motions. Real molecular clouds
certainly contain supersonic turbulence, at least in their low-
density envelopes, as is observed through large line-widths
of emission lines from relatively low-density tracers. The ad-
ditional effect of supersonic turbulence on three-dimensional
fragmentation with magnetic fields and ion-neutral friction
will be studied in an upcoming paper.
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