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Abstract

The topological mapping between a torus of big radius and a sphere is applied to the

Riemannian geometry of a stretched and twisted very thick magnetic flux tube, to obtain

spherical dynamos solving the magnetohydrodynamics (MHD) self-induction equation for the

magnetic flux tubes undergoing differential (non-uniform) rotation along the tube magnetic

axis. Constraints on the shear is also computed. It is shown that when the hypothesis of

the convective cyclonic dynamo is used the rotation is constant and a solid rotational body is

obtained. As usual toroidal fields are obtained from poloidal magnetic field and these fields

may be expressed in terms of the differential rotation Ω(r, θ(s)). In the case of non-cyclonic

dynamos the torsion in the Frenet frame is compute in terms of the dynamo constant. The

flux tube shear ∂
∂r
Ω is also computed. The untwisted tube case is shown to be trivial in

the sense that does not support any dynamo action. This case is in agreement with Cowl-

ings antidynamo theorem, since in the untwisted case the tube becomes axially symmetric

which the refereed theorem rules out. We also show that it is consistent with the Zeldovich

antidynamo theorem which rules out planar dynamos. Knowledge of the differential rota-

tion of the Earth, for example, allows one to place limits on the curvature and torsion of

the flux tube axis and vice-versa , knowledge of the topology permit us to infer differen-

tial rotation and other physical parameters of the stars and planets. PACS numbers:
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I Introduction

Earlier Parker [1] investigated the so-called convective cell cyclonic dynamos in terms of the dif-

ferential rotation of celestial and astrophysical objects and solutions of self-induction equation

equations coupled with the self-induction equation of the magnetic fields. Non-homogeneous

rotation of celestial and astrophysical [2] also called differential rotation, happens due to the

fact that these bodies are not solid, but undergo distinct rotations between the poles and

equator. This physical phenomena is supposed to produce and amplify magnetic fields in the

so-called dynamo mechanics. On the other hand, Arnold, Zeldovich, Ruzmaikin and Sokoloff

[3] showed dynamos could considered as stationary solutions of self-induction equations in

Riemannian three-dimensional spaces. Here we consider the Riemann metric of a very thick,

stretched and twisted magnetic flux tube recently Garcia de Andrade [4, 5] to investigate

magnetic flux tubes in superconducting plasmas, and use the map between spheres and very

thich tori to obtain spherical dynamo solutions of MHD self-induction equation. Thiffault and

Boozer [6] following the same reasoning applied the methods of Riemann geometry in the

context of chaotic flows and fast dynamos. Yet more recently Thiffeault [7] investigated the

stretching and Riemannian curvature of material lines in chaotic flows as possible dynamos

models. In this paper he argued that filaments with torsion can also be constructed. Also

Boozer [8] has obtained a geomagnetic dynamo from conservation of magnetic helicity. This

can also be shown here in the generalization to non-holonomic Frenet frame [9]. Since in

the case of kinematical dynamos we address here, the flow does not depend on the magnetic

field (nonlinear MHD), we consider that the differential rotation Ω(r, θ(s)) depends on the

radial and angular coordinates. Since we know that the Zeldovich [10] stretch, twist and fold

method allows us to obtain kinematical dynamos, the stretch and twist of the magnetic flux

tube seems providential to be consider as the germ of a spherical dynamo which has been so

usually employed to explain the origin and physical nature of the geomagnetic and solar mag-

netic fields. The paper is organised as follows: In section II a brief outline of the explanation

of the Riemannian geometry of magnetic flux tubes and how we may transform it into the

Riemann metric [11] of a sphere is presented. Section III presents anti-dynamo tests theorems

of Zeldovich and Cowlings to show that both of them are fulfilled by the stretched, and twisted
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thick flux tube. In section IV general thick flux tube solutions of the self-induction equation on

the Riemannian magnetic flux tube background metric as is usually done in handling Maxwells

equations in Einsteins general theory of relativity, are presented. In section V conclusions are

presented.

II Spherical dynamos from closed flux tubes

According to Ricca [12] the Riemann metric of a twisted magnetic flux tube may be written

as

dl2 = dr2 + r2dθR
2 +K2(s)ds2 (II.1)

where the tube coordinates are (r, θR, s) [12] where θ(s) = θR −
∫
τds where τ is the Frenet

torsion and κ is the curvature of the tube axis and K(s) is given by

K2(s) = [1− rκ(s)cosθ(s)]2 (II.2)

Note that the limit of a very thin tube is K := 1, since the radial coordinate r tends to zero

by shrinkink the tube. But if we substitute this value of K into the flux tube Riemann metric

(II.1) one obtains

dl2 = dr2 + r2dθR
2 + ds2 (II.3)

which by substituting the coordinate-s along the magnetic flux tube axis by the straight cylin-

drical coordinate-z one obtains the Riemann flat metric of a very thin cylindrical tube, which

implies that when we compute the self-induced equations in this metric the presence of the

tube will not be fully felt by this equation. To remedy this situation, we shall address here the

other extreme of a very thick tube where the internal radius can even surpass the value of the

radius of the tube. In this case expression (II.2) becomes

K2(s) = [rκ(s)cosθ(s)]2 (II.4)

by taking into account that the Frenet curvature κ = 1

R
where R is the local radius of the

tube, substitution of (II.4) into (II.1) yields

dl2 = dr2 + r2[dθR
2 + cos2θ(s)dφ2] (II.5)
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where the coordinate φ given by dφ := ds
R

is the angular coordinate in the plane of the

torus. Expression (II.5) is clearly the Riemann metric describing the 3D sphere. Since most

of the celestial bodies including planets and stars can be described by spherical or spheroidal

symmetries, solving the self-induction equation for non-turbulent fluids inside the twisted and

stretched thick magnetic flux tubes, seems to be the a useful approach to dynamo theories.

Computing the Riemannian gradient operator ∇ in terms of the thick flux tube curvilinear

coordinates [13] reads

∇ = [∂r,
1

r
∂θ,

1

K
∂s] (II.6)

where ∂j :=
∂

∂xj . The magnetic field here can be expressed as

~B = ept ~B0 := ept[Bθ(r, θ)~eθ +Bs(r)~t] (II.7)

where p is the dynamo constant and real parameter here, the dynamo condition is p ≥ 0.

These solutions will be tested as dynamos in the next section.

III Testing Cowling and Zeldovich anti-dynamo the-

orems in stretched and twisted thick flux tubes

To test Cowlings antidynamo theorem which states that axially symmetric magnetic devices

cannot support dynamo action, in this section we solve the MHD equations

∇. ~B = 0 (III.8)

∂

∂t
~B −∇×[~v× ~B]− ǫ∇2 ~B = 0 (III.9)

∇.~v = 0 (III.10)

where ~u is a solenoidal field while ǫ is the resistivity coefficient. Equation (III.8) represents the

induction equation. The expression ~v = [0,Ωr, v0] where v0 is the constant speed of the flow

along the magnetic axis. Since here we shall only consider nondissipative flows , ǫ vanishes

and we do not need to compute the Riemannian Laplacian ∇2. Here

~eθ = −~ncosθ +~bsinθ (III.11)
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which by using the Frenet frame relations

~t′ = κ~n (III.12)

~n′ = −κ~t + τ~b (III.13)

~b′ = −τ~n (III.14)

where the dash represents the ordinary derivation with respect to coordinate-s , yields

∂

∂s
~eθ = κsinθ~t (III.15)

Substitution of these expressions into the MHD equations yields

p ~B0 + [
vθ

r
∂θ +

v0

K
∂s] ~B0 − [

Bθ

r
∂θ +

Bs

K
∂s]~v = 0 (III.16)

Substitution of expressions (II.7), (III.11) and (III.15) into (III.16) yields the following three

scalar equations along the Frenet basis (~t, ~n,~b)

p = τtgθ[v0 +
Ωr

Tw
] (III.17)

p =
τ

Tw
[−v0 + Ωr] (III.18)

p =
v0tgθ

r
[1 + Tw] (III.19)

Here we consider the twist definition as Tw = Bθ

Bs
.We also consider in this derivation the other

MHD equations
∂Bθ

∂s
=

Bθκτrsinθ

K
(III.20)

which is valid also for vθ. An immediate astrophysical consequence of these equations is that

the twisted flux tube does not support dynamo action when the tube is planar. By planar

here, we mean that the torsion of the magnetic axis is planar which geometrically means that

the Frenet torsion vanishes. This is exactly the Zeldovich anti-dynamo theorem [10]. To prove

this result here we make the substitution τ = 0 into equations (III.17),(III.18), and (III.19),

which yields

p = 0 (III.21)

and

p =
v0tgθ

r
[1 + Tw] (III.22)
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these two last equations together imply that either v0 = 0 or coordinate r at infinity. The

first and more realistic hypothesis yield a planar circular flow. In other words, the helical flux

inside the magnetic flux tube reduces to a planar circular flow. Of course our main result is

in equation (III.21) which shows the dynamo action is not supported. Let us now turn our

attention to show that the Cowling theorem is fulfilled, or that the untwisted, axially symmetric

flux tubes do not support dynamo actions. To accomplished this task we simply substitute the

expression Tw = 0 for the unwisted tube, into the same equations were used to test Zeldovich

theorem, which in turn yields

τtgθΩr = 0 (III.23)

v0 = Ωr (III.24)

p =
v0tgθ

r
(III.25)

Assuming that the torsion does not vanish in the equation (III.23), and since the tube being

thick, coordinate r cannot vanish, we conclude that the angular velocity Ω of the flow also

vanish which from equation (III.24) that v0 and from the last equation (III.25) we obtain

p = 0. In the next section we shall analyse the general dynamo solution of the stretched ,

twisted tube.

IV Differential rotation of stretched, twisted thick

flux tubes dynamos

In this section we shall consider the general solution of self-induced equations and also consider

the constraints of the other divergence-free equations on the non-uniform motion (differential

rotation) of the flux tube. Expressions (III.17),(III.18) and (III.19) altogether yields an algebraic

equation to the twist of the tube, given by

Tw2 − [τr − v0]Tw − τΩr2

v0
= 0 (IV.26)

Solutions of this algebraic equation for the tube twist are

Tw =
1

2
[τr ± ((τr)2[1 + 4Ω])

1

2 ] (IV.27)
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to simplify this first solution let us assume the cyclonic hypothesis [1], where Ω >> 1. Sub-

stitution of this value into the last expression yields

Tw =
1

2
τr[±(2Ω)

1

2 ] (IV.28)

where we have consider the strong torsion bound τr >> v0. This allows us to determine the

differential rotation in terms of the twist as

1

2
Ω(r, θ(s)) =

Tw2

τ 2r2
(IV.29)

Since the flux tube twist is given by the ratio between the poloidal and toroidal components

of the magnetic field, we obtain a relation between these components and the differential

rotation as

Bs
2 =

√
2

2

Ω

[τr]2
Bθ

2 (IV.30)

Assuming that the cyclonic hypothesis also implies that Ω >> v0 equation (III.18) becomes

p =
τ

Tw
[Ωr] (IV.31)

Substitution of expression (IV.29) into last expression yields

p =
√
2Ω > 0 (IV.32)

Since p > 0 a dynamo action is supported , however since p by hypothesis is constant, the

differential rotation degenerates in a solid homogeneous rotation. Let us now investigate the

case of non-cyclonic rotation where Ω << 1 and Ω << v0. Under these bounds the twist

algebraic solutions reduces to Tw = τr. Substitution of this result into the expression (III.18)

yields

p = Ω (IV.33)

which supports also anti-dynamos or non-dynamos (p¡0) for anti-cyclonic rotations (Ω < 0).

To further investigate the diferential rotation let us consider the equation

∂vθ

∂s
=

vθκτrsinθ

K
(IV.34)

which by substitution of the thickness condition on K and vθ = Ωr yields the shear relation

∂Ω

∂s
= Ωτtgθ (IV.35)
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Since in this our case Ω is constant either Ω or τ vanishes, which does not represent dynamos

as we have just seen, or yet tgθ vanishes which yields θ = 0 region. The only dynamo condition

which finally survives is to consider that the product between torsion and Ω = p product is

very weak. This is however a not very efficient dynamo since though p > 0 , it is close to

zero, which also gives a very weak rotation which also yields an anti-dynamo as for example,

in the case of the Venus planet which does not support a magnetic field provenient from

dynamo actions since its rotation is 243 lower that the Earths. As a final attempt to obtain

our dynamo solution let us drop the strong torsion of the flux tube dynamo and τr = v0,

which from expression (IV.26) yields

Tw2 = Ωr (IV.36)

which upon substitution into expression (III.18) yields the differential rotation as

Ω(r, s) =
p2

τ 2r
(IV.37)

which is now is not constant and a true differential rotation and besides it is also a dynamo since

p = τ
√
Ωr > 0 if τ > 0. The shear also does not vanish and is written as ∂Ω

∂s
= −2p2

r
τ−3tgθ

since τ > 0. Substitution of this last result into equation (IV.35), allows us to determine the

torsion in terms of the dynamo constant p as τ = p√
rtgθ

which to be real only on certain

branches of the flux tube unless the constant p or this purely imaginary, which gives us the

general dynamo condition as Re(p) > 0 [14].

V Conclusions

In conclusion, we have tested Cowling and Zeldovich anti-dynamo theorems in thick stretched

and twisted flux tubes, as solution of MHD cyclonic flows. Two dynamo solutions are obtained

, one which is a very inefficient dynamo and the other which is a better efficient dynamo where

the differential rotation is also computed along the shear along the magnetic axis of the tube.

Since the Riemann metric of the very thick tube coincides with the sphere metric in three

dimensions we may argue that spherical dynamos are also obtained by this technique. Other

interesting test for Cowling antidynamo theorem can be obtained by using other metrics besides

the four-dimensional black hole spacetime considering recently numerically by Brandenburg
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[15]. Future prospects included the investigation of general relativistic MHD dynamos on the

background of Lewis metric.
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