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ABSTRACT

Context. Flare Hard X-Rays (HXRs) from non-thermal electrons are commonly treated as solely bremsstrahlung (free-free= f-f),
recombination (free-bound= f-b) being neglected. This assumption is shown to be substantially in error, especially in hot sources,
mainly due to recombination onto Fe ions.
Aims. We analyse the effects on HXR spectraJ(ǫ) and electron diagnostics by including non-thermal recombination onto heavy
elements in our model.
Methods. Using Kramers hydrogenic cross sections with effectiveZ = Ze f f , we calculate f-f and f-b spectra for power-law electron
spectra within both thin and thick target limits and for Maxwellians with summation over all important ions.
Results. We find that non-thermal electron recombination, especially onto Fe, must, in general, be included with f-f for reliable
spectral interpretation, when the HXR source is hot, such asocculted loops containing high ions of Fe (f-b cross-section ∝ Z4). The
f-b contribution is greatest when the electron spectral indexδ is large and any low energy cut-off Ec is small, because the electron flux
spectrumF(E) emitting f-b photon energyǫ is ∝ (E = ǫ − VZ)−δ (VZ is the ionisation potential) and not∝ (E = ǫ)−δ+1 as for f-f. The
f-b spectra recombination edges mean a cut-off Ec in F(E) appears as an HXR feature atǫ = Ec + VZ , offering anEc diagnostic. For
thick target sources, the presence ofEc appears as edges inJ′(ǫ), not in J(ǫ), but it is still detectable. Including f-b lowers theF(E)
needed for prescribed HXR fluxes greatly in some cases; and even when small, it seriously distortsF(E) as inferred by inversion or
forward fitting of J(ǫ) based on f-f alone.
Conclusions. The f-b recombination from non-thermal electrons can be an important contributor to HXR spectra, so it should be
included in spectral analyses, especially for hot sources.Accurate results will require use of better cross sections than ours and
consideration of source ionisation structure.

Key words. Atomic processes; Sun:corona–Sun:flares–Sun:X-rays, gamma rays

1. Introduction

Ever since their first detection (Arnoldy, Kane and Winckler
1968, Kane and Andersen 1970), flare hard X-ray (HXR) bursts
(photon energiesǫ > 10 keV or so) have been recognised as
an important diagnostic of electron acceleration and propagation
(e.g. Brown 1971, Lin and Schwartz 1987, Johns and Lin 1992).
The large electron flux and power imply they play a substantial
role in flare energy budgets and pose challenges for electronac-
celeration mechanisms (see recent reviews by, e.g. Vilmeret al.
2003, Brown 2005, MacKinnon 2006). Recent copious high res-
olution HXR spectral data from the RHESSI mission (Lin et al
2002) have created the possibility of detailed reconstruction of
source electron spectra (following Brown 1971) offering impor-
tant constraints on the electron energy budget and acceleration
processes (Pianaet al. 2003, Conwayet al. 2003, Massoneet al.
2004, Kontaret al. 2004, 2005, Brownet al. 2006).

In inferring electron flux spectraF(E), the HXR radia-
tion mechanism has always been taken to be f-f collisional
bremsstrahlung of fast electron impacts with atoms and ions, gy-
rosynchrotron and inverse Compton radiation being negligible at
these energies for solar magnetic and radiation fields (Korchak
1971). Though included for thermal electrons in hot (a few keV)
plasma, f-b recombination radiation from non-thermals seems
to have been assumed negligible other than in a preliminary
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study by Landini, Monsignori and Pallavicini (1973). In view of
the importance of details in the photon spectrumJ(ǫ) (photons
sec−1kev−1) for accurate reconstruction ofF(E), we re-examine
this assumption, and conclude (cf Mallik and Brown 2007) that it
is not valid under some conditions, which quite commonly exist
in some flare HXR source regions.

It is not the intention of this paper to analyse precisely the
theoretical recombination radiation spectrum from fast electrons
under conditions (e.g. ionisation structure) for specific flares
which are typically both inhomogeneous and time dependent.
Rather we give approximate theoretical estimates of how im-
portant it may be relative to bremsstrahlung under various lim-
iting conditions. Specifically, we compare the two in the sim-
plest, Kramers, cross-section approximations, for limiting cases
of plasma ionisation. The recombination emission rate per elec-
tron is very sensitive to the ionic charge, being∝ Z4AZ (Kramers
1923) per plasma proton for hydrogenic ions of chargeZe and
number abundanceAZ. Thus the emitted f-b flux and spectrum
depend strongly on the ionisation state, hence the temperature, of
the plasma where the fast electrons recombine. In practice this
will involve several ionisation stages of several target plasma
species (sinceZ4AZ may be large even for small abundanceAZ),
which will vary along the paths of the electrons and be time de-
pendent.

The paper is organised as follows. In Section 2 we briefly dis-
cuss relevant processes and the cross-section approximations we
use, and obtain expressions for the total continuum photon spec-
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2 Brown and Mallik: Fast electron recombination HXRs

tral contributionsj(ǫ) expected from an electron flux spectrum
F(E) from f-f and from f-b processes. In Section 3, we com-
pare these for a power-lawF(E) with low cut off at E < Ec and
for a shifted power-law, and discuss implications for flare elec-
tron spectra and energy budgets under several limiting plasma
ionisation assumptions. In Section 4 we look at thermal and
non-thermal components to show how the relative importance
of each contribution depends on conditions in the flare by vary-
ing parameters around those for a specific real event. Section 5
discusses the effect of including the f-b contribution on inverse
problem inference ofF(E) from j(ǫ) while Section 6 summarises
our conclusions and suggests directions for future work. Details
of some of the equations are given in Appendix A. In Appendix
B we discuss the total emission spectra from extended volumes
for thin target, collisional thick target and thermal cases.

2. Free-free and free-bound emissivity spectra

2.1. General considerations

In this section, we discuss only local emissivitiesj(ǫ) (photons
cm−3 sec−1 per unit ǫ ). Relativistic and directivity effects are
disregarded (E, ǫ ≪ mec2) since the f-b/f-f ratio is largest at
low E. Then, if target atom/ion typet has densitynt and the fast
electron flux spectrum isF(E) (electrons sec−1 cm−2 per unitE),
j(ǫ) for a collisional radiation process is

j(ǫ) = Σt jt(ǫ) = Σtnt

∫ ∞

Etmin(ǫ)

F(E)
dQt

dǫ
(ǫ, E)dE, (1)

wheredQt/dǫ(ǫ, E) is the relevant cross-section per unitǫ for
target speciest and the integral is over the range of electron en-
ergies relevant to speciest.

2.2. Bremsstrahlung

In the case of f-f (bremsstrahlung),dQt/dǫ(ǫ, E) is essentially
the same for any state of ionisation of an atomic speciesZ (Koch
and Motz 1959), and thet summation in (1) need only be car-
ried out over elementsZ to give, for element abundancesAZ (by
number relative to hydrogen), and total proton (p+H) densitynp,

jB(ǫ) = npΣZ AZ

∫ ∞

ǫ

F(E)
dQBZ

dǫ
(ǫ, E)dE, (2)

wheredQBZ/dǫ(ǫ, E) is the bremsstrahlung cross-section for el-
ementZ and Emin = ǫ since any free-free transition can only
yield a maximumǫ = E. The bremsstrahlung cross-section per
nucleusZ scales asZ2 and can be written

dQBZ

dǫ
=

8αr2
e Z2

3
mec2

ǫE
q(ǫ, E) , ǫ ≤ E (3)

(and zero forǫ > E). Hereα = e2/~c is the fine structure con-
stant andre = e2/mec2 the classical electron radius, whileq(ǫ, E)
is the ratio of the actual cross section to the Kramers cross sec-
tion (Kramers 1923), which is the factor in front ofq. While
this is only a first approximation, not suitable for accurateabso-
lute spectral inversion/reconstruction algorithms (Brown 2005),
it will be adequate for the present purpose of comparing f-f with
f-b emission, which we also treat in the Kramer’s approximation.
Then (2) and (3) give, for bremsstrahlung,

jB(ǫ) =
8αr2

e

3
mec2

ǫ
ζBnp

∫ ∞

ǫ

F(E)
E

dE, (4)

where

ζB = ΣZζBZ = ΣZ AZZ2 (5)

is the heavy element correction for bremsstrahlung, withζB ≈
1.6 for the solar coronal abundances we use - see later.

2.3. Recombination Radiation

The situation here is more complicated. Firstly, 2-body radiative
recombination (we neglect 3-body recombination) of a free elec-
tron of energyE to a bound levelm of energy−V(Z, i,m) in ionic
stagei yields a photon energyǫ, which, apart from quantum un-
certainty, is unique, namely:

ǫ = E + V(Z, i,m). (6)

That is, when a fast electron does recombine, all of its kinetic
energyE plus V goes into a photon of that energy, in contrast to
bremsstrahlung where photons of all energiesǫ ≤ E are emitted.

Furthermore, for each elementZ, there is a range ofZ+1 dis-
tinct ion stagesi each with its own distinct set of energy levels
(m) and a set ofZ, i,m-dependent recombination cross-sections.
Thus recombination collisions of a mono-energetic beam with
a multi-species plasma gives rise to a set of delta-function-like
spectral features at all energies (6) corresponding to elements
Z, ionic stagesi and levelsm . For a continuous electron spec-
trum, this yields a continuum photon spectrum that is a sum of
an infinite series of energy-shifted electron flux contributions. In
contrast to bremsstrahlung it does not involve an integral over a
continuum of electron energies.

For a general plasma the basic particle type ”t” onto which
recombination occurs is levelm of ion stagei of elementZ with
recombination cross-section differential inǫ for thatt:

dQRt

dǫ
(ǫ) = QRtδ(E − ǫ + Vt), (7)

whereQRt is the total radiative recombination cross-section for
speciest and δ(E′) is the delta-function in energy such that
∫ ∞
−∞ δ(E

′)dE′ = 1. Then the total recombination emission spec-
trum for electron flux spectrumF(E) is

jR(ǫ) = npΣtAt

∫ ∞
Emin(ǫ,t)

QRt(ǫ, E)δ(E − ǫ + Vt)F(E)dE

= ΣtAtnpQRt(ǫ, ǫ − Vt)F(ǫ − Vt), (8)

whereAt is the numerical abundance of speciest relative tonp.
The forms forQRt, for generalt, are complicated and have to be
calculated numerically, as do the values ofAt when individual
ionisation states are considered. However, in the Kramers ap-
proximation (with unit Gaunt factors) there is an analytic expres-
sion for hydrogenic ions, which we will use to estimated jR/dǫ
compared withd jB/dǫ, namely, for recombination onto levelm
of the hydrogenic ion of elementZ (Kramers 1923, Andersenet
al. 1992, Hahn 1997)

QR =
32π

3
√

3α
r2

e
Z4χ2

m3ǫE
, (9)

whereχ = mee4/2~2 is the hydrogen ionisation potential.
For an element in its highest purely hydrogenic ion state the

emissivity spectrum would then be

jRZ(ǫ) =
32π

3
√

3α

r2
eχ

2Z4nz

ǫ
Σm

1
m3

F(ǫ − Z2χ/m2)
ǫ − Z2χ/m2

(10)
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Table 1.Elements with their coronal abundances and ionisation potentials atT ≫ 108 K

Element Z Az AzZ2 AzZ4 Vz = Z2χ (keV)

H 1 1 1 1 0.0136
He 2 0.096 0.384 1.536 0.0544
C 6 3.57 x 10−4 0.013 0.463 0.490
O 8 8.57 x 10−4 0.055 3.511 0.870
Ne 10 1.07 x 10−4 0.011 1.071 1.360
Mg 12 1.33 x 10−4 0.019 2.755 1.958
Si 14 1.27 x 10−4 0.025 4.871 2.666
S 16 1.61 x 10−5 0.0041 1.053 3.482
Ca 20 8.50 x 10−6 0.0034 1.360 5.440
Fe 26 8.61 x 10−5 0.058 39.336 9.914
Ni 28 6.95 x 10−6 0.0054 4.27 10.662

Σ = 1.58 Σ = 61.2

Table 2. Ionic species of iron at 20 MK

Element Z − z Ze f f ΦZe f f Az AzZ4
e f f Vz = Z2

e f f χ (keV)

Fe XXII 21 21.98 0.05 0.43 x 10−5 1.004 6.57
Fe XXIII 22 22.61 0.14 1.21 x 10−5 3.152 6.95
Fe XXIV 23 23.20 0.25 2.15 x 10−5 6.232 7.32
Fe XXV 24 23.77 0.56 4.82 x 10−5 15.381 7.68

with them summation overm ≥ Z(χ/ǫ)1/2, since recombination
to levelm yields only photons ofǫ ≥ Z2χ/m2. If the source were
so hot that all atoms were almost fully ionised the total for all Z
would be, in this approximation,

jR(ǫ) =
32π

3
√

3α

r2
eχ

2

ǫ
nPΣZZ4AZΣm

1
m3

F(ǫ − Z2χ/m2)
ǫ − Z2χ/m2

(11)

for element abundancesAZ , with the samem summation limits.
In reality even super-hot coronal flare temperatures are not

high enough to equal the ultra-hotT ≫ 108 K needed to almost
fully ionise all elements into their hydrogenic states, especially
Fe, which is crucial in having by far the highest value ofAZZ4

- see Table 1. Consequently, to deal accurately withjR for real
flare data, we would have to take into account the actual ionisa-
tion state of the flare plasma, which varies with time and location
(being radically different in loop tops from loop footpoints), and
actual forms ofQR(Z),VZ for non-hydrogenic ion stages.

For our purpose of making first estimates we make the fol-
lowing simplifying approximations:

– We treatall ions using hydrogenic Equations (9) - (11) but
with suitably chosenZe f f so that

VZ = Z2
e f fχ ; QRZ =

32π

3
√

3α
r2

e

Z4
e f fχ

2

m3ǫE
, (12)

whereZe f f makes allowance for screening and other non-
hydrogenic effects. While this will be a rough estimate for
some ions, such approximations are often quite satisfac-
tory for suitableZe f f (e.g. Hahn and Krstic 1994, Erdas,
Mezzorani and Quarati 1993). Here we adoptZe f f such that
hydrogenic Equation (12) gives the correct value ofQRZ as
given by exact calculations such as those of Arnaud and
Raymond (1992) for Fe, which is the most important ion in
our analysis. Typically, for an element of atomic numberZ
in an ionic state withz bound electrons left,Ze f f is between
Z − z andZ − z + 1

– Noting thatQR ∝ 1/m3 we include here only recombination
to m = 1 (in the sense of the lowest empty level of the ion
- hydrogenic withZ = Ze f f - not of the atom). Higherm
contributions are weaker, being∝ 1/m3 though extending

to lower energies with edges atZ2
e f fχ/m

2. These should be
included in quantitative data fitting.

– We focus on situations where the emitting region is near
isothermal and either quite cool, so that only lowVZ ele-
ment recombination matters, or very hot so that highVZ el-
ements (mainly Fe) are dominant. The former are typically
loop chromospheric footpoints (thick target) and the latter
very hot coronal loops which are either at the limb with their
footpoints occulted, or are so dense as to be coronal thick
targets (Veronig and Brown 2004).

Under these conditions, Equation (11) becomes

jR(ǫ) =
32π

3
√

3α

r2
eχ

2

ǫ
npΣZe f f Z

4
e f f AZe f f

F(ǫ − Z2
e f fχ)

ǫ − Z2
e f fχ

, (13)

whereAZe f f = AZΦZe f f with ΦZe f f the fraction of atoms of ele-
mentZ in ionic stateZe f f .

Note that, since there is no integration overE here, if F(E)
contains a sharp feature at an electron energyE∗, such as a low or
highE cut-off, this will appear in the recombination contribution
to the photon spectrumj(ǫ) as a series of sharp features at photon
energiesǫ(m, Z, E∗) = E∗ +Z2

e f fχ/m
2 ; m = 1,∞ for every ionZ

present. The same is true for broad features like smooth bumps
or dips. This is in contrast with the bremsstrahlung contribution,
in which such features are smoothed out by integration overE.
Thus, even ifjR ≪ jB, it may have an important effect in infer-
ring F(E) from j(ǫ) since this essentially involves differentiating
j(ǫ) (Section 5).

2.4. Element parameters and flare plasma ionisation

The heavy element correction for bremsstrahlung,ζB, is almost
independent of ionisation state (since the bremsstrahlungcross
sections for atoms and ions of the sameZ are essentially the
same), beingζB ≈ 1.6 for solar abundances. On the other hand
ζRZe f f = Z4

e f f AZe f f depends on the number of empty ion levels
available for recombination. The importance of fast electron re-
combination radiation thus depends on the state of ionisation of
the plasma in which the fast electrons are moving, which is pri-
marily a function of plasma temperatureT .
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In Table 1 we show the values ofZ, Z2AZ = ζBZ, Z4AZ =

ζRZ, VZ for various elements/ions whoseζRZ = Z4AZ is large
enough to be significant, if the element is sufficiently ionised.
With ζRZ ≈ 40 for FeXXVI, Fe is by far the most important
if conditions are such that it is highly ionised. ThekT where
maximum ionisation of an ion stage is reached is typically of
the order 0.1Z2

e f fχ to Z2
e f fχ. In Table 2 we show more detailed

values for several stages of ionisation of Fe (XXII-XXV, i.e. 21+
to 24+) with the appropriateAZe f f = AZe f fΦZe f f for each of these
Fe ionic states for the typical coronal flare case ofT = 2 × 107

K. These are taken from Arnaud and Raymond (1992) as are
the actual ionisation fractions we adopt later (Section 4) for the
temperatures of the real flare we consider.

The radiative recombination coefficients giveZe f f , which
differ slightly from theZ values, as mentioned in Section 2.3.
For the 2002 April 14 event, to which we return later, the peak
flare temperature was 19.6 MK,∼ 5% of the iron appearing as
Fe XXII (Fe21+), ∼ 14% in the Fe XXIII (Fe22+) state,∼ 25%
appearing as Fe XXIV and∼ 56% as Fe XXV. The respective
Ze f f values are 21.98, 22.61, 23.20 and 23.77.

Broadly speaking in typical flare/micro-flare conditions we
can consider the followingT regimes:

– At T ≤ 104 K (’cold’) even H and other lowVZe f f ions are
neutral soζRZ ≈ 0 for all Z. This would be typical of very
dense cool chromospheric thick target footpoints relevantto
deeply penetrating electrons.

– For 105 ≤ T ≤ 106 K (’cool’) the predominant elements
ionised are H, O, Mg, Si givingΣZζRZ ≈ 15. This is most
relevant to upper chromospheric dense warm plasma reached
by moderate energy thick target electrons.

– At T ≥ 107 K (’hot’) Fe is well ionised up to about Fe XXV
giving ΣZζRZ ≈ 50. This is relevant to the hot ’coronal’ loop
regime, hence either to (i) typical upper (SXR) flare loops of
moderate density (thin target) whose HXR emission is seen
in isolation either by HXR spectroscopic imaging or volume
integrated but with the cool footpoints occulted because they
are over the solar limb; or (ii) cases of coronal thick target
loops (Veronig and Brown 2004) where the upper loop den-
sity suffices to stop the fast electrons collisionally.

3. Local (thin target) HXR spectra of f-f and f-b for
power-law F(E) with cut-off

3.1. Basic expressions for jB, jR

To estimate how the fast electron recombinationjR(ǫ) compares
with bremsstrahlungjR(ǫ), we first consider the commonly stud-
ied case of a power-law with a low energy cut-off

F(E) = (δ − 1)
Fc

Ec

(

E
Ec

)−δ
; E ≥ Ec, (14)

where Fc is the total electron flux atE ≥ Ec. Then, from
Equations (4) and (14), we obtain for f-f emission

jB(ǫ) = δ−1
δ

8αζB
3

mec2r2
e

ǫ

npFc

Ec

×
[

ǫ
Ec

]−δ
; ǫ ≥ Ec

× 1; ǫ < Ec, (15)

while for f-b emission from an ion of effective chargeZe f f ,

jRZe f f (ǫ) = (δ − 1)
32πζRZe f f

33/2α

r2
eχ

2

ǫ

npFc

E2
c

×
[

ǫ−Z2
e f f χ

Ec

]−δ−1

; ǫ ≥ Ec + Z2
e f fχ

× 0; ǫ < Ec + Z2
e f fχ, (16)

where

ζRZe f f
= AZe f f Z

4
e f f . (17)

So the total for all relevantVZe f f is

jR(ǫ) = ΣZe f f ≥[(ǫ−Ec)/χ]1/2 jRZe f f (ǫ). (18)

3.2. Ratio of jR to jB

For this truncated power-law case, the ratio of f-b to f-f emissiv-
ity is

Ψ =
jR(ǫ)
jB(ǫ)

2πδ√
3
χ

ǫ
ΣZ2

e f f >(ǫ−Ec )/χ)
ζRZe f f

ζB

[

1− Z2
e f f χ

ǫ

]−δ−1

≈ 0.25(δ/5)
ǫ(keV) ΣZ2

e f f >(ǫ−Ec)/χ)
ζRZe f f

ζB

[

1− Z2
e f f χ

ǫ

]−δ−1

, (19)

where each term in the summation is zero atǫ < Ec + Z2
e f fχ.

Forǫ ≫ Ec,Ψ→ 0.25ΣZe f f AZe f f Z
4
e f f /ǫ(keV). In pure ionised

H (ΣZζRZ = 1) this is only 2.5% at 10 keV. This rather small
value ofΨ must be the origin of the conventional wisdom that
f-b can be ignored compared to f-f emission at HXR energies.
However, this notion neglects several crucial facts:

– At high coronal flare temperatures, where all elements are
highly ionised, in plasmas of cosmic chemical abundances,
heavy elements are the main contributors to theAZZ4 sum.
For the extreme ultra-hot case of near-total ionisation of all
Z, and for modern solar coronal abundances theΣZ factor
is ≈ 61.2, mainly due to Fe as discussed in Section 2.4 - see
Tables 1 and 2. Note that Fe coronal abundance, for example,
has been assumed to be 2.9 times photospheric Fe abundance
(Feldmanet al. 1992). Even higher factors of about 4 have
been suggested (Dennis, personal communication).

– At lower ǫ the contribution from eachZe f f rises steeply to a
sharp recombination edge atǫ = Ec +VZ, where the flux can
be large, especially ifEc is small andδ large.

– At the edge, the [ ] factor in Equation (19) goes to [1+
Z2

e f fχ/Ec]δ+1. This is because the flux of electrons emitting
recombination photons of energyǫ is not the flux of those at
E ≥ ǫ, as for bremsstrahlung, but of those atE = ǫ − Z2

e f fχ.
ConsequentlyΨ is not negligible even atǫ ≫ Ec. For fully
ionised Fe alone, this factor is≈ [1+10/Ec(keV)]δ+1, which,
for δ = 5 and atǫ = 10 keV, is 64, 11.4, 5.5 forEc = 10,
20, 30 keV respectively. Even for lower stage Fe ions (e.g.
XXV), common in flare coronal loops, evidently recombina-
tion must be a significant contributor to the HXR emission
in those parts of the flare.

3.3. Typical results in limiting regimes

N.B. All spectrum figures in this paper (except Figure 5) have
been plotted for a bin-width of 1 keV to match RHESSI’s spec-
tral resolution. However, in Figure 5 we use 0.01 keV resolution
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NT f−b (ultra−hot)

NT f−b (hot)

NT f−b (cool)

NT ultra−hot total (x 10)

NT hot total (x 10)

NT cool total (x 10)

Non−thermal (NT) f−f, f−b and total spectral shapes

delta = 3
Ec = 10 keV

delta = 5
Ec = 25 keV

delta = 3
Ec = 25 keV

delta = 5
Ec = 10 keV

Fig. 1.Actual shapes of non-thermal f-b and f-f spectra for different temperature regimes and non-thermal electron parameters. Note
that the cool, hot and ultra-hot totals are almost identicaland the dashed curves nearly indistinguishable forEc = 25 keV.

so as to compare it with Plot A of Figure 4 to see how f-b edges
would look if they were observed at a higher resolution. The 1
keV binning smears out a lot of the edges of different elements
that are clearly noticeable in Figure 5. Hence in Figures 3 and 4,
the edges are not ’infinitely’ steep as they should be; this isevi-
dent in Figure 5 where they do look ’infinitely’ steep due to the
finer resolution. Also important to note is that the featuresseen
in Figures 3, 4 and 5 are recombination edges and not spectral
lines. None of the figures in this paper includes spectral lines -
leaving them out shows more clearly where f-b edges exist in the
HXR continuum.

In Figure 1 we show forδ = 3, 5 the actual spectral shapes
for Ec = 10, 25 keV respectively in plasmas of normal solar
coronal abundances, which are: ultra-hot (T ≫ 108 K; Fe is
nearly fully ionised), hot (T = 2× 107 K; Fe well ionised up to
Fe XXV) and cool (T = 106 K; elements up to Si are almost fully
ionised). In Figure 2 we show the ratiosΨ(ǫ) for the ultra-hot,
hot and ’cool’ cases, respectively. The following key features of
the hot thin target situation are apparent from these Figures:

– The peak non-thermal f-b contribution, in each hot or ultra-
hot case shown, adds at least 50% to the usual f-f one and in
some cases (δ = 5, Ec = 10 keV) is up to 10 times greater
(1000% increase) even when only ions up to Fe XXV are
present. This is essentially due to the high abundance of Fe -
much higher than thought when recombination spectra were
first discussed (Culhane 1969, Culhane and Acton 1970). In

appendix A we evaluate the efficiency with which f-b yields
HXRs compared to f-f, and also derive the ratioΨ for the
case of a smoothF(E) with no cut-off. This proves, that in a
hot enough plasma, far less electrons and power are needed
than is found when only f-f is included and that, for smooth
F(E),Ψ is largest for largeδ and lowE spectral roll-over.

– In the ’cool’ case (T ≈ 106 K) of elements up to Si almost
fully ionised, the f-b contribution is smaller but not in general
negligible. For example, in the bottom left panel of Figure 1
(δ = 5, Ec = 10 keV), f-b is about 30 % of f-f at 15 keV
energies. This is amply large enough to have a major impact
on inferringF(E) by inversion or by forward fitting (Section
5).

– In hot plasma, Fe is by far the most important contributor of
recombination radiation.

– The peak ratio of f-b to f-f increases asδ is increased and/or
Ec is decreased. This is because f-b photons of energyǫ are
emitted by electrons of energyE −V which have fluxF(E −
V) ∝ (E −V)−δ which is greatest when the minimumE = Ec
is smallest,V is largest and the steepnessδ greatest.

– Recombination edges are apparent for the elements with the
highest values ofAZe f f Z

4
e f f - Fe, Si, Mg and O and at energies

ǫ = Ec+Z2
e f fχ, thereby creating the possibility of finding the

location of a low energy cut-off Ec should one exist.
– The harder asymptoticγ = δ + 1 for f-f compared withγ =
δ + 2 for f-b (Equations (15) and (16)) results in an upward
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Fig. 2. Photon flux ratio of non-thermal f-b to f-f emission for different temperature regimes and parameters. Line styles havethe
same meaning as in Figure 1.

’knee’ in the total spectrum clearly visible in Figure 1 for
Ec = 10 keV but also present for higherEc outside theǫ
range of the Figure. This could be an important signature in
data of a substantial f-b contribution.

While the edge locations and the spectral shape trends will
be roughly right, our use of the hydrogenic andZe f f approx-
imations, and adoption of unit Gaunt factors, mean that these
curves/analytic forms can only be used for approximate quantita-
tive fitting of real data. As far as we are aware (Kaastra, personal
communication) the Gaunt factors, rates etc. have only everbeen
systematically evaluated for MaxwellianF(E) and sometimes
for forms which can be written as sums of these (such as pure
power-laws with no cut-off), and some occasional consideration
of specific non-thermal spectra (e.g. Landini, Monsignori Fossi
and Pallavicini 1973). Comparison of our Maxwellian results,
in the unit Gaunt factor Kramers approximation, with those of
Culhane for the same parameters shows the necessary correc-
tions in the Maxwellian case to be significant for quantitative
comparison with real data. In addition, in real cases the non-
thermal emission will always be superposed on thermal contri-
butions (especially important for the very hot plasmas of spe-
cial interest here) and also in many cases on a thick target non-
thermal contribution (unless this is from occulted footpoints),
from the flare volume as a whole. In Appendix B we derive the
generalisation of the above equations to the various cases in-
volved in real flares, viz. finite volume thin targets, Maxwellian

plasmas and thick targets for use in Section 4, where we evaluate
the sum of all these contributions for a specific case.

4. Some practical case study results derived from a
real flare

We saw above and in the appendices that the most favourable
conditions for a substantial recombination contribution are when
the maximum possible amount of the observable HXR source is
a hot plasma (e.g. loop) at SXR temperatures. High density max-
imises the emission measure but may make the source/loop colli-
sionally thick and smear recombination edge spectral signatures
of low energy cut offs. So an optimal case could be a loop which
is just tenuous enough to be collisionally thin and for whichthe
cool dense thick target footpoints are occulted. (Footpoint re-
moval by imaging is limited by RHESSI’s dynamic range). Such
sources will have a strong HXR source in the coronal loop. One
such event was adopted as a basis for a case study, starting from
the real event parameters. This was the 2002 April 14 event,
which Veronig and Brown (2004) showed to be a hot, dense, col-
lisionally thick loop with a strong coronal HXR source and no
footpoints up to at least 60 keV. Thus the hot coronal source of
non-thermal f-b emission was not diluted by cold footpoint thick
target f-f emission though the f-b edges were smeared because
the hot loop itself slowed the fast electrons to rest. In Figure 3
we show the theoretical spectrum from a hypothetical resolved
part of the coronal loop for twoEc values. We have evaluated
the theoretical thermal, non-thermal and the whole volume hy-
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the second plot shows very distinct oxygen (≈ 21 keV (= Ec)) and iron (≈ 28 keV) edges. This shows the value of recombination as
anEc diagnostic. The ’edges’ appear to be of finite slope because of the finite (1 keV) resolution used.

pothetical totalJB(ǫ), JR(ǫ) (from Sections 2-3 and Appendix B)
for such a loop, based on our approximate Kramers expressions,
in three loop parameter regimes (Figure 4):

– Plot A: With the actual hot thick target loop parameters
found by Veronig and Brown, namelyδ = 6.7; T = 19.6
MK; L = 45× 108 cm; A = 19.1 × 1016 cm2; np = 1011

cm−3; N = 4.9× 1020 cm−2; F1 = 5× 1035 sec−1 aboveE1 =

25 keV. The totalJ is dominated by thermal f-b and f-f at
low ǫ but thick-target f-b at mediumǫ and thick-target f-f
at highǫ. Locally within the loop volume, if this were spa-
tially resolved, the spectrumj would be like those in Figure
3, where edges are clearly visible in positions corresponding
to cut-off energies of 15 and 21 keV. At a higher resolution,
these edges would look similar to the edges shown in Figure
5. Should such edges be found in data, they can diagnose the
all-importantEc parameter.

– Plot B: With the actual parameters found by Veronig and
Brown except withnp reduced by a factor of 25 so that the
loop is collisionally thin above about 10 keV but with the
footpoints hidden (limb occulted) so there is no cold thick
target contribution. In this case the thermal emission is also
much reduced becauseEM = 2n2

pAL is down by a factor of
625. Somewhere between this and the first case should be the
optimum condition for seeing maximum f-b contribution.

– Plot C: The same as B but with the dominant cold footpoint
thick target emission added to show its diluting effect.

– Plot D: The same as C but with a reduced injection rate and
so the thermal is more dominant than in C and this alters the
total spectral shape a little bit.

The upward ’knee’ apparent in Figures 4 A,B at around 40
keV due to the transition from a f-b to a f-f dominated spec-
trum (cf. Section 3 and Figure 3) is rarely seen in data but may
be present in some events (Conwayet al. (2003)). A statistical
survey of a large sample of events should shed light on con-
ditions where non-thermal f-b is important. Also note that an
upward ’knee’ is present at the transition from a thermal- toa

non-thermal-dominated spectrum. The position of this kneede-
pends on the plasma temperature and may interfere with the f-b
to f-f ’knee’, which depends mainly on theEc parameter. Hence,
although for certain parametric conditions one may be able to
notice two separate upward ’knees’, ifEc is low andT is high,
the ’knees’ may occur at similarǫ and may not be distinguish-
able in real data.

5. The inverse problem - effect of f-f on F(E)
inferred from data on j(ǫ)

We note again that, since even the thin targetjB involves an
integral overE while jR does not, any sharp features inF(E)
would be smoothed out in the bremsstrahlung contribution to
the photon spectrum but not in the recombination contribution.
Consequently, an important way to study the effect of includ-
ing f-b on the required properties ofF(E) is to consider it as an
inverse problem (Craig and Brown 1986) to inferF(E) from ob-
servedj(ǫ). Here we consider the following experiment for the
thin target case. (Thick target and thermal cases always involve
even greater error magnification - Brown and Emslie 1988).
Generate the totalj(ǫ) including f-b as well as f-f from a spec-
ified F1(E) and evaluate theF2(E) which would be erroneously
inferred by solving the inverse problem ignoring the presence
of the f-b term, as is currently done in all HXR data analysis,
whether by inversion or forward fitting.

By (4) and (11) the total f-f+ f-b emission spectrumdJ/dǫ
from a homogeneous volumeV can be written

H(ǫ) =
∫ ∞

ǫ

G(E)dE + DΣ
Ze f f ≤
√
ǫ/χ

Z4
e f f AZe f f G(ǫ − VZe f f ), (20)

where

H(ǫ) =
3

8αr2
e

1
ζBmec2npV

ǫ
dJ
dǫ

; G(E) = F(E)/E (21)

and D is as given in Equation (A.2). If we ignore the second
(recombination) term in Equation (20), as has always been done
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Fig. 4.The spectral components for 4 different hypothetical situations. We show these spectra by varying the parameters around the
results in the Veronig and Brown 2004 paper that analyses thecoronal thick target 2002 April 14 event. In all cases we keepthe
same values ofδ = 6.7, Ec = 10 keV andT = 19.6 MK. Plot A is for the thick-target coronal case with the actual event parameters
np,Foc according to Veronig and Brown. Plot B was obtained for the same event parameters but withnp reduced 25 times to make
the loop collisionally thin above 10 keV and with footpoint emission occulted. The injection rate is the same as Plot A so the density
fraction of fast electrons is 25 times higher. The non-thermal emission is down by 25 times while the thermal is down by a factor
of 625. Plot C is the same as B but with cold thick target footpoints included. The cold footpoint emission (motsly f-f) is dominant.
Plot D is the same as C, but with an injection rate reduced by a factor of 25 so that the density fraction of fast electrons is the same
as in Plot A. Evidently the detectability of the f-b contribution and of associated features inF(E) is sensitive to plasma parameters
and observing conditions/geometry.

in the past, for the Kramers f-f term, the inverse is just (Brown
and Emslie 1988)

G(ǫ) = −H′(E). (22)

The neglect of the second term can be thought of as an ’error’
∆H in our data and if we apply inversion formula (22) to this
’data’, ignoring the recombination ’error’ we get a resulting error
∆G in the inferredG given by

∆G(E) =
F2(E) − F1(E)

E
(23)

= −DΣ
Ze f f≤
√
ǫ/χ

Z4
e f f AZe f f G

′(E − VZe f f ).

It is at once clear that any sharp change inj(ǫ) i.e. in H(E),
such as the presence of f-b edges, however small, can have a
very large effect on the inferredF2(E). (If the inverse problem is

addressed for more realistic smoother forms of f-f cross section
than Kramers, the ’error magnification’ is in general even larger
- Brown and Emslie 1988, Pianaet al. 2000). For a power law
F with cut off around say 20 keV, analytically speaking this ex-
pression gives infinite negatives in∆G(E) at the spectral edges
around 30 keV (for Fe). However when smoothed over a few
keV and added to the f-f term the result would be a ’wiggle’
in the F(E) solution in the 30-40 keV range. This is just where
enigmatic features have been reported in some RHESSI spec-
tra and variously attributed to the effects of photospheric albedo
(Kontaret al. 2006), possibly pulse pile up (Pianaet al. 2003),
or a high value ofEc (Zhang and Huang 2004).

Another case providing insight is that of a smooth shifted
power-lawG(E) = A(E + E∗)−δ−1, which has no edges though
the correspondingF(E) has a smooth peak atE = E∗/δ. In this
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case the fractional error inG due to applying (22) ignoring the
recombination term can be expressed as

∆G(E)
G(E)

= (δ+1)
D

E + E∗
ΣZe f f Z

4
e f f AZe f f

[

1
1− VZe f f /(E + E∗)

]δ+2

, (24)

where each term in theZe f f sum is zero forE < VZe f f = Z2
e f fχ.

In the case of recombination onto Fe XXV alone (hot
plasma), this gives forδ = 5,

∆G
G
≈ 10 keV

E + E∗
[1 − 7 keV/(E + E∗)]−7 , (25)

which is shown in Figure 6 forE∗ = 5, 10, 20 keV. Evidently
errors due to neglect of recombination can be large at lowE.
The reason is that theZe f f recombination contribution to the
bremsstrahlung solution forG(E) at E comes from the slope of

G, and not justG itself and atE − VZe f f not at E. Figure 6 is
similar to Figure A.2 becauseF2/F1 = G2/G1 = 1+ ∆G/G1.

This error has very serious consequences for past analyses
of HXR flare spectra, at least in cases where a significant hot
dense coronal loop is involved. For example, the f-b emission
spectrum is most important at lower energies (5-30 keV or so),
depending on the plasma temperatureT and low energy elec-
tron cut-off or roll-overEc, E∗ and is steeper than the free-free.
This will offset some of the spectral flattening caused around
such energies by photospheric albedo (Alexander and Brown
2003, Kontaret al. 2005) resulting in underestimation of the
albedo contribution and hence of the downward beaming of the
fast electrons. This fact would weaken the finding of Kontar and
Brown (2006) that the electrons are near isotropic, in contradic-
tion of the usual thick target description, but for the fact that the
flares they used had rather hard spectra and substantial footpoint
emission - conditions where the f-b correction should be rather
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small. Nevertheless it illustrates that care is needed to ensure f-b
emission is properly considered.

Finally, recognising the presence of the f-b contribution,
one can in fact convert integral Equation (20) into a differen-
tial/functional equation forF(E) by differentiation, namely

G(E) − DΣZe f f ≥E/χ1/2AZe f f Z
4
e f f G

′(E − Z2
e f fχ) = −H′(E), (26)

which is a wholly new class of functional equation in need of
exploration.

6. Discussion and Conclusions

It is clear from our findings that ignoring non-thermal f-b contri-
bution as negligible, as has been done in the past, is erroneous.
Even if we ignore coronal enhancement of element abundances,
and use photospheric abundances, f-b contribution can be very
significant. In certain flaring regions, especially in dense-hot
coronal sources or occulted loop-top events, fast electronrecom-
bination can be of vital importance in analysing data properly
and in inferring electron spectra and energy budgets. It canhave
a major influence on inferred electron spectra both as an inverse
problem and also in forward fitting parameters, including the im-
portant potential to find and evaluate low-energy electron cut-
offs, which are vital to flare energy budgets. While incorporat-
ing f-b into spectral fitting procedures will make it considerably
more complicated, an advantage is that the f-b, unlike the f-f,
contribution retains itsJ(ǫ) signatures of any sharp features in
F(E).

A major consequence of the low energy f-b contribution is
that, to fit an actual photon spectrum, less electrons are needed,
than in f-f only modelling, at the lowE end, which is where
most of the power inF(E) lies. For example, if we consider the
caseδ = 5, Ec = 10 keV and ionisation up to Fe XXV, then we
see from Figures 1 and 2 that inclusion of f-b increasesj by a
factor of 2-10 in the 15-20 keV range forδ = 3-5. Thus, to get
a prescribedj in that range we need only 10− 50% as many
electrons as inferred from f-f emission only.

We also note that the importance of non-thermal f-b emission
is greatest when non-thermal electrons are present at lowE and
with largeδ such as in microflares with ’hard’ XRs in the few
to ten KeV range (Kruckeret al. 2002). Such low energy elec-
trons have short collisional mfps and so are more likely to emit
mainly in hot coronal regions, if accelerated there. Microflares
are therefore important cases for inclusion of f-b.

Before we conduct any precise fitting ofF(E), involving the
f-b contribution, to real data (e.g. from RHESSI) and include it
in software packages it will be important to include, for both f-b
and f-f, more accurate cross-sections with Gaunt factors etc. and
ionisation fractions as functions of plasma temperature. By do-
ing this, it will be possible to show, for certain events, howvital
recombination is and to improve our understanding of electron
spectra and their roles in flares. However, our Kramers results
already bring out the fact that recombination should not be ig-
nored in the future, and that it may be invaluable in some cases
as a diagnostic of the presence or otherwise of electron spectral
features.
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Appendix A: Efficiency and smooth F(E)

A.1. Comparison of the efficiency of f-b versus f-f HXR yield

In Section 3.1 and 3.2, we predicted thejB, jR from a power-
law F(E) and found that thejR contribution could sometimes be
more important thanjB. It is of interest therefore, to consider
the following question. If one observes a power-lawj(ǫ) ∝ ǫ−γ
above someǫ ≥ VZ, what electron fluxFR(E) would be needed
to generate it in a plasma of solar abundancespurely by non-
thermal electron recombination on ionZe f f as compared with
theFB(E) required to do sopurely by f-f bremsstrahlung? If we
write, from Equation (15), the latter asFB(E) = CE−γ+1 then the
former has to be, by Equation (16),

FR(E) = C(E + VZe f f )
−γ/DZ4

e f f AZe f f , (A.1)

where

D =
2πχ
√

3ζB
≈ 0.04keV (A.2)

and the ratio measuring recombination efficiency relative to
bremsstrahlung is

FB(E)
FR(E)

= γZ4
e f f AZe f f

D
E

[1 + VZe f f /E]γ, (A.3)

which we show in Figure A.1 forγ = 5 in terms of each of
the dominant f-b contributions from fully ionised O, Mg, Si and
Fe respectively while the f-f is for all elements. Evidentlynon-
thermal recombination could be dominant over bremsstrahlung
up to many 10s of keV as the most efficient HXR source if
the electrons are emitted entirely in a plasma hot enough (T ≈
20MK) for elements up to Fe 24+ to be ionised and is significant
even at lower temperatures.

In terms of the total required electron fluxesFR1, FB1 above
energyE1, the ratio is

FB1

FR1
=
γ−1
γ−2Z4

e f f AZe f f
D
E1

[1 + VZe f f /E1]γ−1

≈ 0.02Z4
e f f AZe f f

10 keV
E1

[1 + VZe f f /E1]γ−1, (A.4)

which is about 10 for Fe, 0.25 for Si and 0.1 for Mg and O at
E1 = 10 keV.

At higher electron energies (E ≥≈ 17 keV), O becomes more
efficient than Mg, as can be seen in Figure A.1, because of the
combined effects of theAZZ4 factor and the term containingVZ.

A.2. Ratio of jR to jB for an example of a smooth F(E) with
no cut-off

All of the above results are forF(E) with a sharp cut off Ec. To
illustrate how the appearance ofj(ǫ) is modified by inclusion of
f-b as well as f-f for a smoothF(E), a simple case to evaluate is
F(E) ∝ E(E + E∗)−δ−1, which behaves asE−δ at E ≫ E∗ but has
a smooth roll-over atE∗/δ. It is simple to show that the resulting
jB(ǫ) ∝ (E + E∗)−δ/δ for f-f alone and that the ratio of f-b to f-f
in this case is, for ionZe f f alone,

Ψsmooth =
DζZe f f

ǫ + E∗















1−
Z2

e f f

ǫ + E∗















−δ−1

, (A.5)

which is shown in Figure A.2 forδ = 5, Ze f f = 23.77 andE∗ =
5, 10, 20 keV. We see again thatΨsmooth is largest for largeδ and
for smallE∗.
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Appendix B: Whole Flare Thin Target, Thermal, and
Thick Target Expressions for f-f and f-b HXR
Emission Spectra

Here we extend the above results on local emissivitiesj(ǫ) to
estimate total spectral emission rateJ(ǫ) (photons sec−1 per unit
ǫ) from extended flare volumes as required for real flare data.

B.1. Thin Target Coronal Loop

A thin target is one in whichF(E) is not significantly modified
by energy losses or gains over the volume. For a loop of half
lengthL, transverse areaA, volume 2AL and densitynp, the total
emission rate spectra contributionsJthin(ǫ) are for a power law
F(E) with a low energy cut-off, by Equation (15),

JBthin(ǫ) =
δ−1
δ

8αζB
3

mec2r2
e

ǫ

2npALFc

Ec
×

[

ǫ
Ec

]−δ
; ǫ ≥ Ec

1; ǫ < Ec (B.1)

and by Equation (16),

JRthin(ǫ) = (δ − 1)
32πζRZe f f

31/2α

r2
eχ

ǫ

2npALFc

E2
c
× ΣZe f f

×
[

ǫ−Z2
e f f χ

Ec

]−δ−1

; ǫ ≥ Ec + Z2
e f fχ

× 0; ǫ < Ec + Z2
e f fχ,

(B.2)

where the summation is over allZe f f ≤ (ǫ−Ec]1/2. These spectral
shapesJ(ǫ) are of course just the same as the thin targetj forms,
scaled by the plasma volume.
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Fig. B.1.Non-thermal f-f and f-b spectra for the thick target case (Equations (B.11) and (B.12)) shown for 2 different temperatures:
20 MK that is pertinent to events such as the 2002 April 14 event and 10 MK, which is more in the range of ’microflare’ temperatures.
It is interesting to note the three distinct energy regimes for the f-b spectrum, namely:ǫ < VFe; VFe ≤ ǫ ≤ VFe + Ec; ǫ > VFe + Ec.
Clearly f-b is very important in the 10-50 keV range, precisely where albedo issues are also important.

B.2. Hot Coronal Loop Thermal Emission (in the Kramers
approximation)

Both f-f and f-b emissions are included in the standard analy-
ses (e.g. Meweet al. 1987, Dereet al. 1996) of isothermal hot
plasma contributions to flare spectra, using full cross sections
and ionisation balance expressions. It is therefore surprising that
f-b is omitted from calculations of non-thermal emission, espe-
cially at lowǫ, where electrons of comparable energy are present
in both thermal and non-thermal populations. In applying our
study of the non-thermal f-b to real data we wish to include ther-
mal emission as it is important at energies under about 20 keV
and so dilutes the visibility of non-thermal contributions. In or-
der to treat the thermal and non-thermalj consistently and allow
meaningful comparisons we use the expressions for the thermal j
relevant to the Kramers cross sections just as in the non-thermal
case - but see remarks previously and below concerning Gaunt
factors and absolute accuracy of our results.

For an isothermal plasma the local Maxwellian electron flux
spectrum is

Ftherm(E) =

[

8
πme

]1/2 E

(kT )3/2
np exp(−E/kT ), (B.3)

which, by Equation (4), gives for the thermal bremsstrahlung
emission from a uniform loop

JBtherm(ǫ) =
16αr2

e

3
ζBmec2 ×

[

8
πme

]1/2 2n2
pALe−ǫ/kT

ǫ(kT )1/2
(B.4)

and for the recombination

JRtherm(ǫ) =
√

2π
27me

64r2
eχ

2

α

2n2
pAL

ǫ(kT )3/2ΣZe f f ζRZe f f ×

exp
(

Z2
e f f χ−ǫ

kT

)

. (B.5)

These results can be compared with those of Culhane (1969)
and Culhane and Acton (1970) who were among the first to ex-
plicitly address the X-Ray spectrum from hot coronal plasmas.

Using the Kramers cross sections is essentially equivalentto set-
ting to unity all Gaunt factors in their expressions. When we
do so, theǫ, T dependences of ourJRtherm, JBtherm are identical
to theirs - e.g.JRtherm/JBtherm is independent ofǫ, the only differ-
ence being that ourJRtherm is much larger (in absolute value) than
theirs, mainly because they used the very much lower value of
AZ for Fe believed at that time. Examination of theǫ, T depen-
dences of Culhane’s Gaunt factors shows that they affect quite
significantly both the f-f and the f-b spectra from a Maxwellian
F(E) and we should expect the same to be true for non-thermal
F(E) like power-laws. Thus, any accurate absolute comparison
of predictions with data will require incorporation of appropriate
g,G. However, these do not affect the absolute orders of magni-
tude ofJRtherm, JBtherm nor the dependencies onnp,V, Fc etc., nor
the locations of edges. So, for the present purpose of demonstrat-
ing the importance of f-b, the Kramers expressions will suffice.

B.3. Thick target (dense loop or footpoint) f-f and f-b
emission spectra

In the thick target case,j evolves in space along with the energy
losses of the electrons. To findj locally one uses the continuity
equation (Brown 1972) and then integrates over volume to get
J. However, to get the whole volumeJ, it is actually simpler
(Brown 1971) to start with the electron injection rate spectrum
Fo(Eo) electrons/sec per unit injection energyEo and use the
expression

Jthick(ǫ) =
∫

Eo

Fo(Eo)η(ǫ, Eo)dEo, (B.6)

whereη(ǫ, Eo) is the total number of photons per unitǫ emitted
by an electron of energyEo as it decays in energy. For purely
collisional lossesdE/dN = −K/E with K = 2πe4Λ, e being the
electronic charge andΛ the Coulomb Logarithm. Then

η(ǫ, Eo) =
1
K

∫

E
E

dQ
dǫ

dE (B.7)

for the relevant radiation cross sectiondQ/dǫ. Note that this as-
sumes H to be uniformly and fully ionised along the electron
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path. For partially ionised H the energy loss constantK is re-
duced but this situation is not relevant to our hot source situa-
tions.

For our KramersdQ/dǫ f-f and f-b expressions (3), (7) and
(9), the resulting expressions, in the case whereAZe f f are uniform
along the path, Equation (B.7) gives

ηB(ǫ, Eo) = 8αζB
3

r2
e mec2

K ×
[

Eo
ǫ
− 1

]

; ǫ ≤ Eo

0; ǫ > Eo (B.8)

and

ηRZ(ǫ, Eo) =
32πAZe f f Z4

e f f

33/2α

r2
eχ

2

Kǫ ×
1; Eo ≥ ǫ + Z2

e f fχ

0; Eo < ǫ + Z2
e f f . (B.9)

For a power-law injection rate spectrum of spectral indexδo,
viz

Fo(Eo) = (δo − 1)
Foc

Eoc

[

Eo

Eoc

]−δo
; Eo ≥ Eoc, (B.10)

whereFoc is the total rate above low energy cut-off Eoc, the
expressions for the non-thermal emission spectra are then by
Equation (B.6)

JBthick(ǫ) =
8αr2

e
3

ζBmec2Foc

(δo−1)(δo−2)K ×
(

ǫ
Ec

)−δo+1
; ǫ ≥ Ec

[

(δo − 1)Ec
ǫ
− (δo − 2)

]

; ǫ < Ec

(B.11)

and, for ionZe f f ,

JRZe f f thick(ǫ) =
32πr2

e mec2

33/2α
ζRZe f f

χ2

Kǫ
Foc
Eoc
×

[

ǫ−Z2
e f f χ

Eoc

]−δo+1

; ǫ ≥ Eoc + Z2
e f fχ

[

Eoc−Z2
e f f χ

Eoc

]−δo+1

; Z2
e f fχ < ǫ < Eoc + Z2

e f fχ

0; ǫ < Z2
e f fχ. (B.12)

For the case of a cold thick target footpoint the totalζR can be
almost as small as 1 if only hydrogen and some lowζR elements
are ionised and even zero ifT < 8000 K or so (there being almost
no charged ions present). In these sources the f-b contribution is
negligible or at most a very small correction. For a collisonally
thick hot loopζR is, however, very much higher.

The main distinction of these hot thick target spectra com-
pared to hot thin targets is that the decay of all electrons tozero
energy means that the signature of the cut off Eoc in the injection
spectrum appears not as a discontinuity inJ(ǫ) but only in its
gradientJ′(ǫ). This gradient break is very noticeable in Figure
B.1 at energyǫ = Ec + VFe. So, even in the thick target case,
spectral diagnosis of anyEoc present is possible. The recombina-
tion edges themselves appear at the relevant ionisation energies

ǫ = Ve f f , these being from thick target electrons decelerated to
zeroE. These non-thermal recombination spectral edges are then
down in the energy regime below 10 keV which is complicated
by Fe lines etc., making the interpretation ofFo there, and of the
lines, more difficult.
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