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2Laboratoire de Radioastronomie, Département de Physique, Ecole Normale Supérieure, Paris, 75231, France

26 October 2018

ABSTRACT

A-type stars have a complex internal structure with the possibility of multiple convec-
tion zones. If not sufficiently separated, such zones will interact through the convec-
tively stable regions that lie between them. It is therefore of interest to ask whether
the typical conditions that exist within such stars are such that these convection zones
can ever be considered as disjoint.

In this paper we present results from numerical simulations that help in under-
standing how increasing the distance between the convectively unstable regions affects
the interaction. We go on to discuss the effect of varying the stiffness of the stable layer
that lies between the unstable regions. We show that in A-type stars the convectively
unstable regions are likely to interact through the stable region that separates them.
This has profound implications for mixing and transport within these stars.

Key words: convection – stars:interior

1 INTRODUCTION

The internal structure of main sequence stars varies greatly
according to their spectral type (Schwarzschild (1965)). For
example, stars like the Sun typically have a radiative core
with a superadiabatic, convecting outer region. On the other
hand upper main sequence stars, including A-type stars, are
frequently pictured to consist of a radiative outer layer that
surrounds a large convecting hydrogen burning core. Such
variation in structure is important as it can give rise to dras-
tically different transport mixing rates of both passive and
dynamic quantities within these stars. In addition, the con-
nection to the stellar atmosphere, which lies above the pho-
tosphere, is fundamentally different if the outermost part of
the interior is convectively stable or convectively unstable.

Interactions within A-type stars also lead to different
chemical balances, which can give rise to not just one but
multiple convection zones for main-sequence stars of this
type. Observations indicate that, near to the surface of
these stars there is at least one convection zone (Landstreet
(1998); Silaj et al. (2005)). Further considerations of a the-
oretical nature predict at least one further convection zone
near the surface (Toomre et al. (1976); Kupka (2005)). Such
zones are believed to be thin (if compared to the radius of the
star) yet important from the point of view of transportation
and mixing. Their properties have been discussed for several
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decades (Siedentopf (1933); Latour, Toomre & Zahn (1976);
Kupka (2005)). The outer convection zone in these stars,
immediately below the surface, is caused by the partial ion-
ization of hydrogen and the single ionization of helium. The
lower convection zone is the result of the second ionization
of helium (Latour, Toomre & Zahn (1976); Kupka (2005))
and at least one further convection zone has been postu-
lated (Kupka (2005)). There has been a long-standing de-
bate about the nature or even existence of the inner convec-
tion zone(s); in particular whether it can be consistent with
the gravitational settling of heavier elements (see for exam-
ple the papers of Vauclair, Vauclair & Pamjatnikh (1974)
and Richer, Michaud & Proffitt (1992)). We do not attempt
to address these questions in the present study; rather, we
focus on the basic problem; given that two layers can at
least plausibly coexist, what factors influence their interac-
tion, and to what extent do earlier simplified models give a
correct picture of this interaction?

It is now well known that in stars, without the pres-
ence of rigid boundaries, ascending and descending convec-
tively driven motions overshoot the layer that is convectively
unstable. In the Sun (a G-type star) such overshooting is
observed at the solar photosphere and is witnessed in the
form of granulation. Further, such overshooting occurs at
the bottom of the solar convection zone and is believed to
play an important role in the solar dynamo because it trans-
ports magnetic field into the solar tachocline (Tobias et al.

(1998); Tobias et al. (2001)); this is an important part of
the interface dynamo model originally proposed by Parker
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2 L. J. Silvers & M. R. E. Proctor

(Parker (1993)). Such overshooting behaviour will naturally
occur at other similar interfaces. When there are multiple
convection zones such overshooting leads to enhanced com-
munication and transport between the unstable layers. It is
of importance to understand the nature of this interaction.

In A-type stars in particular, with two convection zones
that are in quite close proximity, fascinating dynamics and
mixing may occur. Overshooting plumes from an upper con-
vection zone and a lower convection zone can interact in the
convectively stable region separating them. Furthermore if
conditions are right it is possible for plumes to overshoot
completely and pierce the other convection zone, which
would lead to transportation of ‘contaminants’ directly from
one convectively unstable region into the other. Therefore,
the two fundamental questions are: How far apart do these
layers need to be before they can be considered as disjoint;
and how close must they be for direct penetration from one
layer to the other to occur.

Earlier analytic work (Toomre et al. (1976);
Latour, Toomre & Zahn (1976)) on this problem adopted a
mean-field approach, which gives a highly simplified view
of the nonlinear interactions but allows the reduction of the
problem to a relatively simple set of ODE’s, and it serves
as a guide for the fully compressible simulations that are
the subject of this paper. Latour et al. concluded that the
two convectively unstable layers need to be separated by a
distance of at least two pressure scale heights for there to
be no interaction between the layers. Such a condition can
be achieved in a number of ways via the variation of the
different parameters that naturally occur in the model. One
way is to increase the vertical extent of the domain and so
increase the width of the intermediate layer. Another way
is to vary the conductivity of the mid layer. In this paper
we choose to explore the effects of both of these changes
given that the separation of the two zones as well as their
relative conductivities can be different in different stars.
For simplicity we choose to focus on convective layers of
fixed width but we note that one could alternatively fix the
domain height and decrease the width of the convection
zones and so increase the width of the convectively stable
region; this was the approach adopted in a preliminary
investigation by Muthsam, Wolfgang, Friedrich & Liebich
(Muthsam et al. (1999)).

Muthsam et al. examined three cases in a three dimen-
sional model in a Cartesian geometry with a small aspect
ratio. In this simple study they showed that bringing the two
convection zones closer together, by shrinking the width of
the convectively unstable region, led to the convection lay-
ers merging as the interaction between the layers increased.
However, their preliminary investigation warrants a more
detailed study for a number of reasons. First, while they did
make a passing remark as to the pressure scale height change
across the box they did not comment on how the pressure
scale height changes across the mid-layer, which Toomre et

al. indicated was the important factor. Further, while they
acknowledge the earlier work by Toomre et al. they did not
relate their numerical calculation directly to that work.

This paper is organised as follows: In the next section
we provide a detailed discussion of our model, the numerical
method used to solve the equations and the parameters that
we select. In section 3 we examine the effect of varying the

mid-layer thickness and stiffness of the convectively stable
region before concluding in section 4.

2 MODEL

We consider the evolution of a compressible fluid in a layer
and consider a model that is in the spirit of earlier papers on
penetrative convection (Tobias et al. (1998); Tobias et al.

(2001)); these in turn represent a simple extension of stud-
ies of convection in a single Cartesian layer. The following
scalings are used to express the equations in dimension-
less form (Matthews, Proctor, & Weiss (1995)): lengths are
scaled with the layer depth d, times with the isothermal
sound travel time d/

√
R∗T0, density with its value at the

top of the layer ρ0, temperature with its value at the top of
the layer T0.

The governing equations can then be expressed as:

∂ρ

∂t
+∇.ρu = 0, (1)

ρ
(

∂u

∂t
+ u.∇u

)

= −∇P + θ(m+ 1)ρẑ+ σκ∇.ρτ, (2)

∂T

∂t
+ u.∇T = −(γ − 1)T∇.u+

κ(γ − 1)στ 2

2
+

γκ

ρ
∇2T, (3)

where z is taken downward, θ is the dimensionless tempera-
ture difference across the layer, R∗ is the gas constant, m is
the polytropic index, κ = K/dρ0cP

√

(R∗T0) is the dimen-
sionless thermal diffusivity, γ is the ratio of specific heats, τ
is the stress tensor given by:

τij =
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

, (4)

P = ρT and σ is the Prandtl number.
In order to achieve the required basic state we allow the

thermal profile to be non-linear and we take

K =
K1

2

[

1 +
K2 +K3

K1

− tanh
(

z − 1

∆

)

+
K3

K1

tanh
(

z −D + 1

∆

)

− K2

K1

tanh
(z −D + 1

∆

)

tanh
(z − 1

∆

)]

(5)

where ∆ is the characteristic size of the transition region
between each of the layers. In this work the characteristic
sizes of the transition regions are taken to be the same for
simplicity. The static density and temperature profiles are
found by solving the equations of hydrostatic balance. To
this static state, throughout the domain, random perturba-
tions are introduced, with amplitudes which lie within the
interval [-0.05,0.05].

The aspect ratio for the computational domain in this
study is 4:4:D, where D is the total depth of the box, and the
domain is assumed to be periodic in x and y. The conditions
on the upper and lower boundaries are:

T = 1, uz = 0,
∂ux

∂z
= 0 at z = 0. (6)

∂T

∂z
= θ, uz = 0,

∂ux

∂z
= 0. at z = D. (7)

The governing equations above are solved using a par-
allel hybrid finite-difference/pseudo-spectral code; the most
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Param. Description Value

σ Prandtl Number 1.0
m1 = m3 Polytropic Index in layers 1 and 3 1.0

θ Thermal Stratification 10
γ Ratio of Specific Heats 5/3
Ra Rayleigh number 1.7× 105

Table 1. The parameter definitions and values.

comprehensive description of the code can be found in
(Matthews, Proctor, & Weiss (1995)). Nonlinear products
are performed in configuration space, the transformation
from phase space being facilitated by fast fourier transforms.
Time-stepping is carried out in configuration space and an
explicit second-order Adams-Bashforth scheme is used with
variable weights to accommodate adaptive step-sizes.

The system we study has a large number of dimension-
less parameters, making it impractical to conduct a com-
plete survey. Thus a number are held fixed at values shown
in Table 1. These parameters have been chosen so that we
have time dependent, highly supercritical convection occur-
ring in both convection zones. Of course, stellar convection
operates in a highly turbulent regime. The computational
cost of simulating fully turbulent convection at very high
Reynolds number is presently prohibitive. Nonetheless our
flows are fully time-dependent and possess sufficient spatial
complexity for our purposes.

We use a subscript 1 on quantities relating to the upper
convection zone. Similarly, subscript 2 will be used to denote
quantities for the convectively stable layer and 3 to denote
quantities in the lower convective zone.

The stiffness parameter, S, provides a useful measure of
the relative conductivities in this problem (for more detailed
discussion see, Hurlburt et al. (1994); Tobias et al. (1998)).
S2 and S3 are related to the various polytropic indexes that
appear in the problem via:

S2 =
m2 −mad

mad −m1

(8)

S3 =
m3 −mad

mad −m1

(9)

Since m3 = m1, S3 = S1 for this simple model.

3 THE EFFECT OF VARYING THE

THICKNESS OF THE STABLE LAYER

The primary focus of this paper is to explore the effect of
increasing the width of the convectively stable region, via
increasing the total domain depth D, on strength of the in-
teraction between the unstable layers. Increasing the width
of the convectively stable zone is the most natural way to
increase the number of pressure scale heights across this re-
gion. We begin by considering the case where all there zones
are equal and so D = 3.0. The resolution for this case is
64:64:400. Our tests have shown, as is frequently the case in
convection simulations, that fewer modes are needed in the
x and y directions than grid points needed in the vertical.
We employ this resolution throughout, except in the next
section where the height of the box is varied.
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Figure 1. The initial temperature and density profiles when D =
3.0.

As we outlined in the previous section, the conductivity
is non-linear in this problem and so we must solve for the
initial density and temperature profile for each case. For the
fiducial case (for which the stable region is the same width
as the unstable regions) the initial temperature and density
variations are shown in Figure 1. As the earlier analytic
theory indicated that the number of pressure scale heights of
separation between the two unstable layers is a crucial factor
we will focus on this quantity. For the fiducial case there
are 1.60 pressure scale heights across the convectively stable
mid-layer, which is rather less than the two pressure scale
heights estimate suggested by the earlier analytic theory as
necessary for true separation.

The state shown in Figure 1 is perturbed and allowed
to evolve. At early times, as Figure 2 shows, the motion is
strongest in the upper convectively unstable zone while com-
paratively small at the bottom of the box. However, Figure
3 shows that as time progresses motion in the lower layer
becomes more vigorous. A statistically steady state is fully
established within a few turnover times although there are
significant temporal fluctuations. This state is illustrated in
Figure 4 and Figure 5 shows horizontal slices though each
of the three zones. As one might expect the convection is
noticeably different in the two convection zones and we find
that the average kinetic energy in the middle zone is com-
parable with that for the top region but that the energy in
the bottom region is three times larger.

While Figure 4 provides a useful picture of the con-
vective state it is difficult to gauge the motions within the
convectively stable region from such a figure. To obtain a
clearer picture of the potential interactions between the two
convectively unstable regions it is helpful to note that, if the
two layers are to be considered as ‘independent’ from each
other, then there needs to be a region between the layers
where the velocity becomes very small. Therefore, to facili-
tate a clearer picture of the degree of interaction of the layers
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4 L. J. Silvers & M. R. E. Proctor

Figure 2. Plot at t = 2.81 Sides of the box show the vertical
momentum flux and the top shows the vertical momentum flux
near the top of the box for the case where D = 3.0 and S2 = 5.0.

we calculate the variation in z of the horizontal averages of
the modulus of the z component of momentum.

Figure 7 shows that while there is clearly more vertical
motion in the convectively unstable regions, as one might
anticipate, there is still a non-negligible vertical component
of momentum in the middle of the box. Thus the two con-
vection zones are connected in this case and so there is a
conduit for mixing between the two convection zones for this
level of separation. Any reduction in the width of the con-
vectively stable region will decrease the number of pressure
scale heights of variation across the layer and increase the
level of interaction between the two unstable zones. Such vig-
orous motion in the convectively stable layer was discussed
in the context of the downward directed hexagon case of La-
tour et al. and is further confirmed by a plot of the vertical
component of velocity as shown in 6.

Although the Rayleigh number of the convection is very
large the numerical resolution is not available to conduct
simulations with very large Reynolds numbers; here the peak
values are of order 100. Improving the resolution, and so
using even larger Rayleigh numbers, would serve to increase
the amount of interaction of the unstable layers.

The most obvious way to limit the interaction of the
unstable regions is to increase the layer depth, D, and so in-
crease the width of the stable region if the convectively un-
stable regions have the same height. In this paper we discuss
three further values of D namely, 3.5, 4.0 and 5.0, for which
the corresponding pressure scale height variations across the
mid-layer are 2.23, 2.80 and 3.77. It is important to note
that all three of these cases are above the two pressure scale

Figure 3. Plot at t = 8.41 Sides of the box show the vertical
momentum flux and the top of the box shows the vertical mo-
mentum flux near the top of the box for the case where D = 3.0
and S2 = 5.0.

heights estimate that suggsted by the analytic theory as the
transition between connected and unconnected convection
layers.

Figure 8 shows a snapshot of the vertical component of
the momentum for the case where D = 3.5. This figure is
qualitatively the same as that for D = 3.0 and we note here
that similar plots are obtained at larger box heights.

As for the case when D = 3.0, we consider the vari-
ation of the planar average vertical component of momen-
tum throughout the domain in the established statistically
steady state, for each of the increased box heights. Figures
9-11 show this quantity for each case. Note that there is a
change in the magnitude of the vertical momentum flux in
the bottom zone as the box height is increased. This is be-
cause the density in this lower region increases as the box
height is elongated. This is a follow on effect of increasing
the stable layer. One should note that in the static state the
density and temperature differences across the upper convec-
tion zone remains unchanged. The increase in the depth of
the convectively stable region alters the difference in these
quantities across the stable layer, which implies a greater
density at the top of the lower convection zone.

Each of these figures clearly illustrates that, while there
is a significant reduction in vertical motion in the convec-
tively stable region, there is a non negligible vertical compo-
nent of momentum throughout the box for all box heights.
The motion within the convectively stable region in all these
cases is generated by overshooting plumes from the convec-
tively unstable regions that lie on either side of this layer. As
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Figure 4. Plot at t = 15.02 Sides of the box show the vertical
momentum flux and the top of the box shows the vertical mo-
mentum flux near the top of the box for the case where D = 3.0
and S2 = 5.0.

there is no point at which the vertical component of momen-
tum vanishes in any of these cases there is a route for mixing
of passive and dynamic quantities between the two convec-
tively unstable regions. Only for a substantial increase in the
box height will the vertical component of momentum fall to
a very small value at one plane in the box. However, further
increase in the box height would be extremely computation-
ally expensive for this problem and also unwarranted in the
physical context. In A-type main sequence stars the sepa-
ration between the unstable layers does not extend past a
couple of scale heights. Therefore, on the basis of the present
work we can conclude that in A-type stars there is a clear
connection between the convectively unstable zones that lie
immediately below the stellar photosphere.

4 THE EFFECT OF VARYING THE

STIFFNESS OF THE STABLE LAYER

In the context of A-type stars, the conductivity in the con-
vectively stable layer is not expected to vary greatly from
that in the unstable zones and so, in the language of the
model, the stiffness is low. However, from a mathemati-
cal view point it is interesting to give some consideration
to what happens if the stiffness of the mid-region is in-
creased. Typical values of the stiffness in the convectively
stable layer in previous numerical simulations have reached
15 (Tobias et al. (1998); Tobias et al. (2001)), a very large
value. However, here we choose to push up even further to
a S2 value of 30; this is certainly greater than that which is

Figure 5. Slices showing the vertical component of momentum
through each of the three zones.

encountered in A-type stars. Even such a large stiffness pa-
rameter only yields a variation of 1.91 pressure scale heights
across the stable region. Therefore, the analytic arguments
by Latour et al. lead us to expect that, even for such an ex-
treme choice of the stiffness parameter, there will be some
connection between the two convectively unstable layers.

To show that this conjecture is valid, we fix the height
of the box to 3.0 units and consider three further values
of S2 namely, 10 15, and 30. Such values of the mid-layer
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6 L. J. Silvers & M. R. E. Proctor

Figure 6. Plot at t = 15.02. The variation of the vertical com-
ponent of velocity as a function of height at the centre of the box
for the case where D = 3.0 and S2 = 5.0.

Figure 7. Variation of the horizontal average of the modulus of
the z-component of momentum at t = 15.02 for the case where
D = 3.0 and S2 = 5.0.

stiffness give rise to a difference across the mid-layer of 1.72,
1.78 and 1.91 pressure scale heights.

Figures 12-15 clearly show that, even for cases with
an extreme mid-layer stiffness, the convectively unstable re-
gions can not satisfactorily be considered as separate enti-
ties, which once again has important implications for future
models that aim to examine mixing and transport in stars
with multiple convection zones.

Figure 8. Plot at t = 15.34 Sides of the box show the vertical
momentum flux and the top of the box shows the vertical mo-
mentum flux near the top of the box for the case where D = 3.5.

Figure 9. Variation of the horizontal average of the modulus of
the z-component of momentum at t = 15.34 when D = 3.5.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 10. Variation of the horizontal average of the modulus of
the z-component of momentum at t = 15.17 when D = 4.0.

Figure 11. Variation of the horizontal average of the modulus of
the z-component of momentum at t = 15.16 when D = 5.0.

5 CONCLUSIONS

There is still a variety of questions and issues that need to be
fully resolved about the complex dynamical interactions that
occur within A-type stars. The mere presence of multiple
convection zones within these stars implies an extra degree
of complexity compared to that found in G-type stars such
as the Sun. In the present paper we focus on a basic question
concerning the conditions that would be required for the
convection zones in A-type stars to be considered as non-
interacting. To this end we considered an idealized model to

Figure 12. Plot at t = 15.12 Sides of the box show the vertical
momentum flux and the top of the box shows the vertical mo-
mentum flux near the top of the box for the case where D = 3.0
and S2 = 10.

Figure 13. Variation of the horizontal average of the modulus
of the z-component of momentum at t = 15.12 in the case where
D = 3.0 and S = 10.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 14. Variation of the horizontal average of the modulus of
the z-component of momentum at t = 15.17 for the case where
S = 15.

Figure 15. Variation of the horizontal average of the modulus of
the z-component of momentum at t = 15.16 for the case where
S = 30.

shed greater light on the outer convection zones that exist
below the stellar photosphere.

In this paper we focused on two potential ways by which
the interaction between two convection zones could be re-
duced, namely the effect of increasing the distance between
the two convection zones and increasing the stiffness on the
mid-layer. Both of these approaches naturally give rise to
an increase in the number of pressure scale heights of vari-
ation across the convectively stable layer that separates the

two convectively stable zones, which was suggested to be an
important factor in earlier analytic work.

In section 3 we examined the effect of increasing the
height of the box from a fiducial case where the box height
is such that both convectively unstable and stable regions
have the same height. As we increased the height of the box
we fixed the height of the unstable layers and therefore a
box height increase implies and increase in the height of the
convectively stable layer. Such an increase naturally drives
up the pressure scale height variation across the stable zone
in the middle of the box and so, with this approach, we are
also able to test the earlier theory of Latour et al. that at
least two pressure scale heights of separation is required for
the convectively unstable layers not to interact. We showed
that even for a box height of five units and a correspond-
ing pressure variation of almost four scale heights we did
not find that the convectively unstable regions can be con-
sidered as separate, which is not what was suggested by
the earlier analytic theory, though quantitative comparison
cannot be expected from such idealized models. For main-
sequence A-type stars it is unlikely that there are more than
four pressure scale heights of difference spanning the convec-
tively stable region that separates the outer two convection
zones. Therefore, this work shows that these two regions
will interact and the interaction will give rise to drastically
different mixing and transport than if they could be consid-
ered as separate. It is thus clear that the convection work
that was motivated by a desire to understand transport in
the solar convection zone does not naturally extend to these
stars.

In the second results section we attempted to separate
the two convection zones by increasing the stiffness of the
stable layer. However, we greatly exceeded the level of stiff-
ness that can be anticipated in the region in A-type stars
and we still found that the two convectively stable regions
are connected. This adds further weight to the point made
above that when contemplating the mixing and transport
in A-type stars the convection layers cannot be treated as
isolated.

One of the major objectives of this paper is to pro-
vide a solid hydrodynamical basis on which more com-
plex models can be constructed to understand fully the
dynamics that occur below the surface of A-type stars.
With such a simple model we are not yet in a position
to address important secondary questions such as the in-
fluence of the observed chemical anomalies (see discussions
in Michaud (1970) and Vauclair & Vauclair (1982) for more
details). However, our model provides a platform on which
we can build, so as to address the effects of rotation, mag-
netic fields and other issues related to the dynamics in
these stars. We acknowledge here that it has been sug-
gested by some models that the second convection zone
(see, for example, Vauclair, Vauclair & Pamjatnikh (1974)
and Richer, Michaud & Proffitt (1992)) could vanish under
certain conditions although there is clearly no concensus in
the literature. We anticipate that the model could be ex-
tended so as to clarify this issue also. Work on these exten-
sions is currently in progress.
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