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LATE-TIME BEHAVIOUR OF THE TILTED BIANCHI TYPE VI−1/9 MODELS

S HERVIK1, R J VAN DEN HOOGEN2,1, W C LIM3 AND A A COLEY1

Abstract. We study tilted perfect fluid cosmological models with a constant equation of state parameter
in spatially homogeneous models of Bianchi type VI

−1/9 using dynamical systems methods and numerical
simulations. We study models with and without vorticity, with an emphasis on their future asymptotic
evolution. We show that for models with vorticity there exists, in a small region of parameter space, a
closed curve acting as the attractor.

1. Introduction

In recent papers the tilted Bianchi models [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] have been studied using dynamical
systems methods [12, 13]. In this paper we will study the general tilted1 perfect fluid Bianchi model of type
VI−1/9, with a constant linear equation of state parameter γ satisfying the causality conditions (i.e., no
superluminal speed of sound), which was not studied in detail in [9]. The tilted models have shown a wide
variety of phenomena including, for example, the existence of closed curves [8] and incompleteness of the
fluid congruence [15, 16].

The general irrotational perfect fluid type VI−1/9 model is the most general of the irrotational Bianchi
models. In fact, the irrotational type VI−1/9 model has a 6-dimensional state space; just one dimension less
than that of of the most general tilted type VI−1/9 model. We will show that, regardless of whether we
consider the general type VI−1/9 model with or without vorticity, the important late time asymptotes are
the non-tilted Collins type VI−1/9 solution (for 2/3 < γ < 10/9),

ds2 = −dt2 + t2dx2 + t
2(4−3γ)

3γ e−
2sx
3γ dy2 + t

4
3γ e

4sx
3γ dz2,

where s =
√
(2 − γ)(3γ − 2), or the Collinson-French (or Robinson-Trautman) vacuum solution (for 10/9 <

γ < 2),

ds2 = −dt2 + t2dx2 + t
2
5

(
e−

√

6
5 xdy +

√
5

2
t
4
5dx

)2

+ t
6
5 e

4
√

6
5 xdz2.

The tilt of the fluid can be asymptotically non-tilted, intermediate or extreme depending on the value of γ.
The Collinson-French solution is a Petrov type III vacuum solution, and hence it has the peculiar feature
that all the curvature invariants of zeroth order vanish2.

The spatial hypersurfaces in a Bianchi type VI−1/9 cosmology are defined as the orbit of the action of the
Bianchi type VI−1/9 Lie group. This Lie group can be equipped with the left-invariant one-forms:

ω̃
1 = dx, ω̃

2 = e−bxdy, ω̃
3 = e2bxdz,

where b is a constant. The exceptional feature of this model does not relate to the group itself (for which
there is nothing extraordinary) but arises from the Einstein field equations. For this particular model one
of the Einstein constraint equations vanishes exactly and hence the vacuum case allows for an extra shear
degree of freedom. This extra shear is present in the Collinson-French vacuum solution and therefore this
metric has no analogue in the other Bianchi vacuum cosmologies.

The aim of this paper is to fill one of the gaps in the analysis of the general tilted type VIh models
presented in [9]. The h = −1/9 case is special (as explained above) and requires a separate analysis, which
has only been done in part previously. In particular, we will show that closed periodic orbits exist for the
general vortic model. However, for the irrotational models, no such closed curve exists. Moreover, we will

Date: October 28, 2018.
1The non-tilted Bianchi model of type VI

−1/9 was studied in [14].
2However, considering differential invariants they will not vanish; for example, Cαβγδ;µC

αβγδ;µ 6= 0.
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also complete a centre manifold analysis appearing in one 6-dimensional invariant subspace describing vortic
Bianchi type VI−1/9 models. All other attractors will be included for completeness.

2. Equations of motion

2.1. The orthonormal frame approach. The line-element of a Bianchi cosmology can be written

ds2 = −dt2 + δabω
a
ω

b,(2.1)

where t is the co-moving cosmological time. The one-forms ω
a are left-invariant one-forms on the hyper-

surfaces spanned by the group orbits and can be related to the left-invariant one-forms, ω̃i, given above by

ω
a = eai(t)ω̃

i.
The geometric (or normal) congruence, nµ, is given by n = ∂/∂t. It is also useful to define and the Hubble

scalar and the shear associated with the congruence nµ:

H ≡ 1

3
nµ

;µ, σµν ≡ nµ;ν −Hhµν .(2.2)

The matter variables are chosen to be the energy density, µ, and the tilt-velocity, va, which is defined as the
3-velocity of the fluid with respect to the geometric (or normal) congruence, nµ. The equations of motion
can now be written down in terms of the Hubble scalar, H ; the shear, σab; the curvature variables nab and
ac; and the matter variables µ and va.

Expansion-normalised variables are introduced (by dividing the variables with the appropriate powers of
H). The papers [7, 11] contain all the details regarding the determination of the evolution equations for
the tilted cosmological models under consideration. Here, we shall adopt the so-called N -gauge in which
the function N× is purely imaginary; this is realised by the choice φ′ =

√
3λΣ−, where λ is defined by

N̄ = λIm(N×). The evolution equation for N̄ can then be replaced by an evolution equation for λ, which
ensures a closed system of equations. We will also adopt the dimensionless time parameter τ , which is related
to the cosmological time t via dt/dτ = (1/H), where H is the Hubble scalar.

Using expansion-normalised variables, the equations of motion are (see [7, 11] for the complete derivation
of the equations):

Σ′
+ = (q − 2)Σ+ + 3(Σ2

12 +Σ2
13)− 2N2 +

γΩ

2G+

(
−2v21 + v22 + v23

)
(2.3)

Σ′
− = (q − 2− 2

√
3Σ23λ)Σ− +

√
3(Σ2

12 − Σ2
13) + 2AN +

√
3γΩ

2G+

(
v22 − v23

)
(2.4)

Σ′
12 =

(
q − 2− 3Σ+ −

√
3Σ−

)
Σ12 −

√
3 (Σ23 +Σ−λ) Σ13 +

√
3γΩ

G+
v1v2(2.5)

Σ′
13 =

(
q − 2− 3Σ+ +

√
3Σ−

)
Σ13 −

√
3 (Σ23 − Σ−λ) Σ12 +

√
3γΩ

G+
v1v3(2.6)

Σ′
23 = (q − 2)Σ23 − 2

√
3N2λ+ 2

√
3λΣ2

− + 2
√
3Σ12Σ13 +

√
3γΩ

G+
v2v3(2.7)

N ′ =
(
q + 2Σ+ + 2

√
3Σ23λ

)
N(2.8)

λ′ = 2
√
3Σ23

(
1− λ2

)
(2.9)

A′ = (q + 2Σ+)A.(2.10)
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The equations for the fluid are:

Ω′ =
Ω

G+

{
2q − (3γ − 2) + 2γAv1 + [2q(γ − 1)− (2− γ)− γS]V 2

}
(2.11)

v′1 = (T + 2Σ+) v1 − 2
√
3Σ13v3 − 2

√
3Σ12v2 −A

(
v22 + v23

)
−
√
3N
(
v22 − v23

)
(2.12)

v′2 =
(
T − Σ+ −

√
3Σ−

)
v2 −

√
3 (Σ23 +Σ−λ) v3 +

√
3λNv1v3 +

(
A+

√
3N
)
v1v2(2.13)

v′3 =
(
T − Σ+ +

√
3Σ−

)
v3 −

√
3 (Σ23 − Σ−λ) v2 −

√
3λNv1v2 +

(
A−

√
3N
)
v1v3(2.14)

V ′ =
V (1− V 2)

1− (γ − 1)V 2
[(3γ − 4)− 2(γ − 1)Av1 − S] ,(2.15)

where

q = 2Σ2 +
1

2

(3γ − 2) + (2− γ)V 2

1 + (γ − 1)V 2
Ω

Σ2 = Σ2
+ +Σ2

− +Σ2
12 +Σ2

13 +Σ2
23

S = Σabc
acb, caca = 1, va = V ca,

V 2 = v21 + v22 + v23 ,

T =
[(3γ − 4)− 2(γ − 1)Av1] (1 − V 2) + (2 − γ)V 2S

1− (γ − 1)V 2

G+ = 1 + (γ − 1)V 2.

These variables are subject to the constraints

1 = Σ2 +A2 +N2 +Ω(2.16)

0 = 2Σ+A+ 2Σ−N +
γΩv1
G+

(2.17)

0 = −
[
Σ12(N +

√
3A) + Σ13λN

]
+

γΩv2
G+

(2.18)

0 =
[
Σ13(N −

√
3A) + Σ12λN

]
+

γΩv3
G+

(2.19)

0 = 3A2 −
(
1− λ2

)
N2.(2.20)

The parameter γ will be assumed to satisfy γ ∈ (0, 2). The generalized Friedmann equation (2.16) yields an
expression which effectively defines the energy density Ω. We will assume that this energy density is non-
negative: Ω ≥ 0. Therefore, the state vector can be considered X = [Σ+,Σ−,Σ12,Σ13,Σ23, N, λ,A, v1, v2, v3]
modulo the constraint equations (2.17)-(2.20). Thus the dimension of the physical state space is seven (and
hence of equal generality to the other models of type VIh for a given value of h). Additional details are
presented in [7].

The dynamical system is invariant under the following discrete symmetries :

φ1 : [Σ+,Σ−,Σ12,Σ13,Σ23, N, λ,A, v1, v2, v3] 7→ [Σ+,Σ−,Σ12,Σ13,Σ23,−N, λ,−A,−v1,−v2,−v3]
φ2 : [Σ+,Σ−,Σ12,Σ13,Σ23, N, λ,A, v1, v2, v3] 7→ [Σ+,−Σ−,Σ13,Σ12,Σ23,−N, λ,A, v1, v3, v2]
φ±
3 : [Σ+,Σ−,Σ12,Σ13,Σ23, N, λ,A, v1, v2, v3] 7→ [Σ+,Σ−,±Σ12,∓Σ13,−Σ23, N,−λ,A, v1,±v2,∓v3]

φ4 : [Σ+,Σ−,Σ12,Σ13,Σ23, N, λ,A, v1, v2, v3] 7→ [Σ+,Σ−,−Σ12,−Σ13,Σ23, N, λ,A, v1,−v2,−v3]

These discrete symmetries imply that without loss of generality we can restrict the variables A ≥ 0 and
N ≥ 0, since the dynamics in the other regions can be obtained by simply applying one or more of the maps
above. The third and fourth symmetries listed imply that one can add additional constraints on the variables
Σ12,Σ13, v2 or v3. For the type VI−1/9 we can use φ4 to restrict v2 to be non-negative (since v2 = 0 implies
v3 = 0, see below); hence, we will assume v2 ≥ 0. There is no natural way to restrict any of the remaining
variables using the symmetry φ+

3 , and so we will not do so here.
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2.2. Invariant sets. For the case h = −1/9 we define (Nabv
avb is identically zero for h = −1/9)

D̂ =
[
λ(Σ2

12 +Σ2
13) + 2Σ12Σ13

]
.(2.21)

In this analysis we will be concerned with the following invariant sets:

(1) T (V I−1/9): The general tilted type VI−1/9 model: |λ| < 1.
(2) T1(V I−1/9): A one-tilted type VI−1/9 model: |λ| < 1, v2 = v3 = Σ12 = Σ13 = 0.
(3) T1,0(V I−1/9): A one-tilted diagonal type VI−1/9 model: v2 = v3 = Σ12 = Σ13 = Σ23 = λ = 0.

(4) N±(V I−1/9): A class of tilted type VI−1/9 models: |λ| < 1, D̂ = 0.

(5) T+
2 (V I−1/9): A two-tilted type VI−1/9 model. This is the fixed-point-set of φ+

3 and is given by
v3 = Σ13 = Σ23 = λ = 0.

(6) T−
2 (V I−1/9): A one-tilted irrotational type VI−1/9 model. This is the fixed-point-set of φ−

3 and is
given by v2 = v3 = Σ12 = Σ23 = λ = 0.

(7) B(V I−1/9): Non-tilted type VI−1/9: |λ| < 1, v1 = v2 = v3 = Σ12 = Σ13 = 0.
(8) B0(V I−1/9): A class of diagonal non-tilted type VI−1/9 models (nα

α = 0): V = Σ12 = Σ13 = Σ23 =
λ = 0

(9) T (II): The general type II model: λ = ±1, A = 0.
(10) B(I): Type I: N = A = V = 0.
(11) ∂T (I): “Tilted” vacuum type I: Ω = N = A = 0.

Regarding N±(V I−1/9), to verify that this is indeed an invariant subspace, we calculate D̂′:

D̂′ = 2
(
q − 2− 3Σ+ −

√
3λΣ23 + 3Av1

)
D̂;

hence, D̂ = 0 defines an invariant subspace. Note also that this invariant set is not a manifold; it is similar
to the light-cone in 2-dimensional Minkowski space. Therefore, N±(V I−1/9) − T1(V I−1/9) consists of 4
disconnected pieces. By the symmetry φ4, these are actually only two inequivalent pieces. Here, we choose
N±(V I−1/9) such that

T+
2 (V I−1/9) ⊂ N+(V I−1/9), T−

2 (V I−1/9) ⊂ N−(V I−1/9)

Since N+(V I−1/9) ∩N−(V I−1/9) = T1(V I−1/9), both N+(V I−1/9) and N−(V I−1/9) are invariant sets.
We note that the closure of the set T (V I−1/9) is given by

T (V I−1/9) = T (V I−1/9) ∪ T (II) ∪B(I) ∪ ∂T (I).(2.22)

Since the boundaries may play an important role in the evolution of the dynamical system we must consider
all of the sets in the decomposition (2.22).

Let us consider the constraint equations (2.18) and (2.19) as a linear map

L : (Σ12,Σ13) 7→ (v2, v3)/G+,

where L is considered as given in terms of A, N , λ and Ω. For h 6= −1/9, det(L) 6= 0 and the image of L is
2-dimensional. However, for h = −1/9, det(L) = 0 and the image of L is 1-dimensional; hence, in this sense
the constraint equations are degenerate. This implies that (v2, v3) has to be restricted to a 1-dimensional
submanifold. We will therefore say that the general type VI−1/9 model only allows for 2 tilt degrees of
freedom. In particular, we can solve for v3 and obtain

v3 = − λv2

1 +
√
1− λ2

.

It is illustrative to consider the eigenvectors of the map L:

x0 =

(
− λ

1 +
√
1− λ2

, 1

)
, Lx0 = 0,

xa =

(
1, − λ

1 +
√
1− λ2

)
, Lxa = axa, a > 0.

For each of these eigenvectors, D̂ = 0 and hence, alternatively, we can define N±(V I−1/9) when (Σ12,Σ13)

is proportional to one of these eigenvectors. More specifically, for N+(V I−1/9), (Σ12,Σ13) ∝ xa, while for

N−(V I−1/9), (Σ12,Σ13) ∝ x0.
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Table 1. The dimensions of the invariant sets for the Bianchi type V I−1/9 model. The
right-most column indicates the specialization in terms of the G2 cosmologies. Here, Diag
means diagonal, HO means hypersurface orthogonal, and OT means orthogonally transitive.
The stars indicate the exceptional cases where the models aquire an addition shear degree
of freedom.

Dim Invariant set No of Tilt G2 action
2 B0(V I−1/9) 0 Diag
3 T1,0(V I−1/9) 1 Diag

B0(V I∗−1/9) ⋆ 0 HO

4 B(V I−1/9) 0 OT
T+
2 (V I−1/9) 2 HO

T−
2 (V I−1/9) ⋆ 1 HO

5 T1(V I−1/9) 1 OT
B(V I∗−1/9) ⋆ 0 Gen G2

6 N+(V I−1/9) 2 Gen G2

N−(V I−1/9) ⋆ 1 Gen G2

7 T (V I−1/9) 2 Gen G2

Note also that, due to the presence of the eigenvector with zero eigenvalue x0, (v2, v3) = 0 does not
necessarily mean that (Σ12,Σ13) is zero. In particular, for the non-tilted models this implies that we may
have an additional shear degree of freedom; these models have usually been called the exceptional case and
are denoted by an asterisk; e.g., B0(V I∗−1/9) and B(V I∗−1/9). We also note that for the tilted models, there

is an exceptional case of the one-tilted models T1(V I−1/9) which could be denoted T1(V I∗−1/9). However,

T1(V I∗−1/9) = N−(V I−1/9) as explained above. Therefore, we keep the notation N−(V I−1/9). Similarly, we

have T1,0(V I∗−1/9) = T−
2 (V I−1/9).

2.3. Fluid Vorticity. The various invariant subspaces can also be categorised in terms of the (Hfluid-
normalised, where Hfluid ≡ (1/3)uµ

;µ) fluid vorticity, Wα. The vorticity of the fluid for the type VI−1/9

models is given by:

Wa =
1

2B
(Nab + εabcA

c) vb, W0 = 0,(2.23)

where

B ≡ 1− 1
3 (V

2 + V 2S + 2Aav
a)

[1− (γ − 1)V 2]
√
1− V 2

.

For the invariant sets:

(1) T (V I−1/9): W
0 = W 1 = 0, most general vortic type VI−1/9.

(2) N+(V I−1/9): W
0 = W 1 = 0.

(3) N−(V I−1/9): W
0 = W a = 0, non-vortic.

(4) T+
2 (V I−1/9): W

0 = W 1 = W 2 = 0.

(5) T−
2 (V I−1/9): W

0 = W a = 0, non-vortic.

(6) T1(V I−1/9): W
0 = W a = 0, non-vortic.

(7) B(V I−1/9): W
0 = W a = 0, non-tilted and non-vortic.

We note that the most general non-vortic model is of dimension 6. Hence, since the non-vortic type VIh
and VIIh models – regarding h as fixed – are of dimension 5, the type VI−1/9 model is the most general
non-vortic model of all Bianchi models.

In general we can also solve for the vorticity component W 2:

W 2 =
λ

1 +
√
1− λ2

W 3.

This follows from the constraint equations and eq.(2.23).
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3. Qualitative behaviour

3.1. Monotone functions. There are a number of monotone functions in the state space of interest. For
0 < γ ≤ 6/7, there exists a monotonically increasing function Z1 defined by

Z1 ≡ αΩ1−γ , α =
(1− V 2)

1
2 (2−γ)

G1−γ
+ V γ ,(3.1)

Z ′
1 = [2(1− γ)q + (2− γ) + γS]Z1.

This function can be used to show [7]:

Theorem 3.1. For 0 < γ ≤ 6/7, all tilted Bianchi models (with Ω > 0, V < 1) of solvable type are
asymptotically non-tilted at late times.

Corollary 3.2 (Cosmic no-hair). For Ω > 0, V < 1, and 0 < γ < 2/3 we have that

lim
τ→∞

Ω = 1, lim
τ→∞

V = 0.

Moreover, the following function is a monotone function in T (V I−1/9):

Z2 =
A4N2G5

+D̂
2

(1− V 2)
5
2 (2−γ)Ω5

,(3.2)

Z ′
2 = (5γ − 6)(3− 2Av1)Z2,(3.3)

where D̂ is defined in eq.(2.21). This function is monotonically decreasing for γ < 6/5 and monotonically
increasing for 6/5 < γ.

We note that in the subspace N−(V I−1/9) we have the monotone function:

Z3 =
v21Ω

A2G+(1 − V 2)
1
2 (2−γ)

,(3.4)

Z ′
3 = −(2− γ)(3− 2Av1)Z3.(3.5)

This function is monotonically decreasing in N−(V I−1/9).
The monotonic function Z3 immediately implies:

Theorem 3.3 (Future behaviour in N−(V I−1/9)). For 2/3 < γ < 2, Ω > 0, A > 0, v21 < 1, v2 = v3 = 0 we
have that:

either lim
τ→∞

Ω = 0, or lim
τ→∞

V = 0.

This implies that all irrotational type VI−1/9 universes are either asymptotically vacuum or non-tilted at
late times.

3.2. Equilibrium points.

3.2.1. B(I): Equilibrium points of Bianchi type I.

(1) I(I): Σ+ = Σ− = Σ12 = Σ13 = Σ23 = A = N = V = 0 and Ω = 1. Here, |λ| < 1 and is an
unphysical parameter. This represents the flat Friedman-Lemâıtre model.

The remaining equilibrium points are all in ∂T (I).

3.2.2. T (II): Equilibrium points of Bianchi type II. All of the tilted equilibrium points come in pairs. These
represent identical solutions (they differ by a frame rotation); however, since their embeddings in the full
state space are inequivalent, two of their eigenvalues are different. All of these equilibrium points have an
unstable direction with eigenvalue −2

√
3Σ23 corresponding to the variable A. These equilibrium points are

given in [8].
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3.2.3. T (V I−1/9): Equilibrium points of Bianchi type VI−1/9.

(1) C(−1/9): Collins perfect fluid solution, 2/3 < γ < 5/3

Σ12 = Σ13 = Σ23 = λ = V = 0, Σ+ = − 1
4 (3γ − 2), Σ− =

√
3

12 (3γ − 2), N2 = 3
16 (3γ − 2)(2 − γ),

A = N/
√
3, Ω = 1

3 (5− 3γ). This equilibrium point is in B(V I−1/9).

(2) R+(−1/9): The Apostolopoulos h = −1/9 solution [17], 4/3 < γ < 3/2
This is a vortic solution lying in the invariant subspace T+(V I−1/9). The solution is given in terms
of the expansion-normalised variables in [11] with h = −1/9, k = 1/3.

(3) Bianchi type VI−1/9 vacuum plane waves. All of these solutions have

Ω = Σ12 = Σ13 = Σ23 = 0, Σ− = N =
√
−Σ+(1 + Σ+), A = (1 + Σ+), −1 < Σ+ < −3/4, |λ| < 1.

It is avantageous to introduce r ≡
√
1− λ2, which implies that we can write

Σ+ = − 3

3 + r2
, 0 < r ≤ 1.

We will also define ρ by
ρ = v22 + v23 .

The equilibrium points are then determined by the tilt velocities:
(a) L(−1/9): v1 = v2 = v3 = 0. These represent ’non-tilted’ plane waves and lie in B(V I−1/9).

(b) L̃(−1/9): v1 = 3γ(3+r2)−2(9+2r2)
2r2(γ−1) , v2 = v3 = 0, 6(3+r2)

9+5r2 < γ < 2. These represent ’intermediately

tilted’ plane waves and lie in T1(V I−1/9).

(c) L̃±(−1/9): v1 = ±1, v2 = v3 = 0. These represent ’extremely tilted’ plane waves and lie in
T1(V I−1/9).

(d) F̃+(h): Here, (9 + 7r2)/[3(3 + r2)] ≤ γ ≤ 3(3 + r2)/(9− r2) and

v1 = −3γ(3 + r2)− (9 + 7r2)

2r2(3 − γ)
, v22 − v23 = ρr

ρ =
(9 + r2) [5− 3γ]

[
3γ(3 + r2)− (9 + 7r2)

]

8r4(3− γ)2

These represent ’intermediately tilted’ plane waves and lie in N+(V I−1/9) (for λ = 0 they lie

in T+
2 (V I−1/9)).

(e) Ẽ+
p (−1/9), 0 < γ < 2:

v1 = − 4r2

3(3− r2)
, v22 − v23 = ρr

ρ = 1− v21 =
(9 + r2)(9 − 7r2)

9(3− r2)2

These represent ’extremely tilted’ plane waves and lie in N+(V I−1/9). For λ = 0 these equilib-

rium points lie in T+
2 (V I−1/9), and due to the special importance for the late-time behaviour,

we will denote Ẽ+
p0(−1/9) ≡ Ẽ+

p (−1/9)
∣∣∣
λ=0

. Therefore,

Ẽ+
p0(−1/9) : v1 = −2

3
, v2 =

√
5

3
.

(4) CF : The Collinson-French (Robinson-Trautmann) solution is given by:

Σ+ = −1

3
, Σ− =

1

3
√
3
, Σ13 =

√
15

9
, N =

1√
2
, A =

1√
6
,

Σ12 = Σ23 = Ω = λ = 0.

There are the following equilibrium points associated with the Collinson-French solution:
(a) CF0: v1 = v2 = 0, 0 < γ < 2.

(b) C̃F1+: v1 = −
√
6(3γ−4)
2(3−γ) , v2 =

√
5(3γ−4)(3−2γ)√

2(3−γ)
, 4

3 < γ < 3
2 .

(c) C̃F2: v1 =
√
6(9γ−14)
6(γ−1) , v2 = 0, 24−

√
6

15 < γ < 24+
√
6

15 .
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(d) ẼCF±: v1 = ±1, v2 = 0, 0 < γ < 2.
These equilibrium points, and their stability, were studied in [7].

(5) W : Wainwright γ = 10/9 solution:

Σ+ = −1

3
, Σ− =

1

3
√
3
, 0 < Σ13 <

√
15

9
, N =

1

6

√
8 + 54Σ2

13, A =
1√
3
N, Ω =

5

9
− 3Σ2

13,

Σ12 = Σ23 = λ = V = 0.

4. Late-time behaviour

The late-time behaviour of models with 0 < γ < 2/3 is determined by (the Cosmic no-hair) Corollary 3.2.

4.1. The invariant subspace N+(V I−1/9). Here, we have the following late-time attractors:

• 2/3 < γ ≤ 4/3: The Collins solution, C(−1/9).
• 4/3 < γ < 3/2: The Apostolopoulos solution, R+(−1/9).

• 3/2 ≤ γ < 2: ”Extremely tilted” vacuum plane waves, Ẽ+
p0(−1/9)

The stability of these points for γ < 3/2 follows from the eigenvalues of the linearised matrix. For 3/2 ≤ γ < 2
several zero-eigenvalues occur and a centre manifold analysis is needed to determine the late-time behaviour.

4.1.1. The case 3/2 < γ < 2: the centre manifold. Let us present the centre manifold analysis of the

equilibrium point Ẽ+
p0(−1/9) in some detail. The centre manifold in this case is a 2-dimensional submanifold

of the 5-dimensional extremely tilted invariant subspace N+(V I−1/9)
∣∣
V =1

. To find the centre manifold, we
will therefore set V = 1. Let us choose variables

(Σ+,Σ23, N, λ, v2) =

(
−3

4
+ x1, x2,

√
3

4
+ x3, x4,

√
5

3
+ x5

)
,(4.1)

let Σ−, Σ12, Σ13 and Ω be determined from the constraint equations, and v21 = 1 − v22 − v23 . Let us define
the column vector x = [x1, x2, x3, x4, x5]

T . We can now expand the equations of motion to 2nd order in x:

x′ = Ax+ C(x, x) +O(x3),(4.2)

where C(−,−) is a bilinear vector-valued function. It is convenient to align the vector x with the Jordan
canonical form of A. This can be accomplished by defining

P =




7
5 − 2

5 0 0 0
0 1 0 0 1

2
√
3

5 − 2
√
3

5 0 0 0

4
√
3 −4

√
3 0 4

√
3 −4

√
3

− 48
√
5

25
64

√
5

45
112

√
5

225 0 0



.(4.3)

Now, defining y = P−1x, the equation for y becomes

y′ = Jy + C̃(y, y) +O(y3),

where J is the Jordan block matrix

J = diag

(
0,−1

2
,−5

6
, 0,−1

2

)
.

The centre manifold correspond to the zero-eigenvalues of J. We can therefore parameterise the centre
manifold using the variables (y1, y4). The next step is to expand the variables yi, i = 2, 3, 5, in terms of
(y1, y4) on the centre manifold, to second order. We therefore define the quadratic forms Yi(y1, y4), i = 2, 3, 5,
such that yi − Yi(y1, y4) = 0 is (to second order) an invariant subspace. On the centre manifold we then
have:

yi = Yi(y1, y4) +O(y3).(4.4)

By substituting these into the y1 and y4 evolution equations, we finally get, on the centre manifold:

y′1 = −16y21 +O(y3),

y′4 = −16y1y4 +O(y3).(4.5)
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To lowest order, these equations can be solved to give y1 ≈ 1/(16τ), y4 ≈ C/τ , where a constant of
integration has been eliminated by a translation of time. Note that, in principle, there are essentially two
kinds of behaviour: for τ < 0 the variables diverge, while for τ > 0 the variables decay. However, requiring
Ω > 0 leaves only the decaying mode as physically acceptable. These decay rates will therefore be the
dominant ones since the centre manifold will dominate the behaviour at late times.

In terms of the original variables, we therefore get the decay rates in N+(V I−1/9) (only dominant decay
rates are included):

Σ+ ≈ −3

4

(
1− 7

60τ

)
,

Σ− ≈
√
3

4

(
1 +

1

60τ

)
,

Σ12 ≈
√
15

60τ
,

Σ13 ≈ − (1 + 16C)
√
5

160τ2
,

Σ23 ≈ − (1 + 16C)

8τ2
,

N ≈
√
3

4

(
1 +

1

10τ

)
,

λ ≈ (1 + 16C)
√
3

4τ
,

Ω ≈ 3

40τ
,

v1 ≈ −2

3

(
1 +

9

20τ

)
,

v2 ≈
√
5

3

(
1− 9

25τ

)
,

√
1− V 2 ≈ (

√
1− V 2)0 exp

[
−5(2γ − 3)

3(2− γ)
τ

]
.(4.6)

This confirms that the ’extremely tilted’ vacuum plane wave Ẽ+
p0(−1/9) is the attractor for N+(V I−1/9),

3/2 < γ < 2. Note, however, that this solution is unstable in the fully tilted space T (V I−1/9), which can be

verified by calculating, for example, D̂′ ≈ (3/4)D̂ close to Ẽ+
p0(−1/9).

4.2. The invariant subspace N−(V I−1/9): non-vortic type VI−1/9 models.

• 2/3 < γ < 10/9: The Collins solution, C(−1/9).
• γ = 10/9: The Wainwright solution, W .

• 10/9 < γ < 2: The Collinson-French solution, C̃F . We have the following refinement for the
asymptotic tilt (which follows from an analysis of the eigenvalues):

⋆ 10/9 < γ ≤ (24−
√
6)/15: The tilt is asymptotically zero (CF0).

⋆ (24−
√
6)/15 < γ ≤ 14/9: The tilt is either asymptotically zero (CF0) or extreme (ẼCF−).

⋆ 14/9 < γ < (24 +
√
6)/15: The tilt is either asymptotically intermediate (C̃F2) or extreme

(ẼCF−).

⋆ (24 +
√
6)/15 ≤ γ < 2: The tilt is asymptotically extreme (ẼCF−).

4.3. T (V I−1/9): The fully tilted type VI−1/9 model. For the fully tilted model, the late-time behaviour
can be summarised as follows:

• 2/3 < γ < 10/9: The Collins solution, C(−1/9).
• γ = 10/9: The Wainwright solution, W .

• 10/9 < γ < 2: The Collinson-French solution, C̃F . We have the following refinement for the
asymptotic tilt:
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⋆ 10/9 < γ ≤ (24−
√
6)/15: The tilt is asymptotically zero (CF0).

⋆ (24−
√
6)/15 < γ ≤ 4/3: The tilt is either asymptotically zero (CF0) or extreme (ẼCF−).

⋆ 4/3 < γ ≤ 5/6 +
√
721/42: The tilt is either asymptotically intermediate (C̃F1+) or extreme

(ẼCF−).

⋆ 5/6+
√
721/42 < γ < γH ≈ 1.47392: The tilt is either asymptotically oscillatory (closed curve)

or extreme (ẼCF−).

⋆ γH < γ < 2: The tilt is asymptotically extreme (ẼCF−).

Most of these results comes from an analysis of the eigenvalues of the various equilibrium points. However,

for γ = 5/6 +
√
721/42 the equilibrium point C̃F1+ undergoes a Hopf-bifurcation and a stable closed curve

results. The analysis of this Hopf-bifurcation is given below. Interestingly, this closed curve co-exists with
an extremely tilted attractor.

4.3.1. The Hopf-bifurcation. Our main aim for this section is to show the following.

Theorem 4.1. There exists a γ0 such that for 5
6 +

√
721
42 < γ < γ0 there exists a closed orbit, c(τ), acting as

the future attractor for a set of non-zero measure of tilted Bianchi type VI−1/9 models.

To prove this theorem we will first show the existence of a closed period orbit acting as an attractor in a
particular subset. We consider the invariant subset given by the Collinson-French solution with 2 tilts. We
introduce (X,Y ) = (v1, v

2
2):

X ′ =

(
T − 2

3

)
X − 2

√
6

3
Y,

Y ′ = 2

(
T +

2
√
6

3
X

)
Y.(4.7)

We set X0 = −
√
6(3γ−4)
2(3−γ) , Y0 = 5(3γ−4)(3−2γ)

2(3−γ)2 , and perform the transformation x = X −X0, y = Y − Y0 with

respect to the equilibrium point C̃F1+.
The normal form of a Hopf-bifurcation can be written

Z ′ = (λ+ b|Z|2)Z,(4.8)

where b is some complex number and λ = α+ iβ is a parameter. If Re(b) < 0 for α = 0, there exists a stable
closed orbit for 0 < α sufficently small.

We will therefore set γ = 5
6 +

√
721
42 and expand to cubic terms in x and y. It is also convenient to introduce

a complex variable z chosen such that it aligns with the Jordan form of the linearised matrix. This can be
achieved by setting:

z = x+ iay,

where a is a real number chosen such that the linear term of z′ = f(z, z̄) is

∂zf(0, 0) =
i

6

√
−1205 + 45

√
721, ∂z̄f(0, 0) = 0.(4.9)

By a transformation

Z = z + a11z
2 + a12zz̄ + a22z̄

2 + a111z
3 + a112z

2z̄ + a122zz̄
2 + a222z̄

3,

we can choose the coefficients aij and aijk so that the equation for Z takes the form

Z ′ = (λ+ b|Z|2)Z +O(|Z|4),(4.10)

where

λ =
i

6

√
−1205 + 45

√
721, Re(b) =

1

291600

(
−15990233+ 595193

√
721
)
≈ −0.029.

Hence, there exists a γ0 such that there exists a closed stable orbit for 5
6 +

√
721
42 < γ < γ0.
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The next step is to show that this orbit is also stable in the fully tilted type VI−1/9 models. We can show
this as follows: for a function B, we introduce the average, 〈B〉, with respect to the closed orbit c(τ), defined
by

〈B〉 = 1

T

∮

c(τ)

Bdτ, T =

∮

c(τ)

dτ.

We can use this average, using similar manipulations as for the closed curves in the type IV, VIh and VIIh
models [8, 11] to show that:

Theorem 4.2. Assume that there exists a closed periodic orbit c(τ) for the dynamical system (4.7). Then

〈X〉 = −
√
6(3γ − 4)

2(3− γ)
, 〈λΩ〉 = −5(5γ − 6)

3(3− γ)
.

Proof. From the Y equation, we get 〈T 〉 = −2
√
6 〈X〉 /3. A manipulation of the V equation yields 〈T 〉 = 〈S〉,

and 〈S〉 = (3γ − 4)− 2(γ − 1)A 〈X〉. These can now be solved to yield the desired value for 〈X〉. A similar
manipulation of the Ω equation yields 〈λΩ〉. �

This implies that the vacuum solution is stable when the closed curve is perturbed by Ω. Hence, since
the Collinson-French solution is stable with respect to vacuum perturbations, this closed curve is stable for

the fully tilted type VI−1/9 models whenever 5
6 +

√
721
42 < γ < γ0.

It remains to determine the maximal value for γ0? It seems that this limiting value is related to the

existence of a heteroclinic orbit originating and ending at the saddle points CF0 and C̃F2, respectively. For
the limiting value of γ, which we will call γH , there exists such a heteroclinic orbit, while for values γ 6= γH
no such heteroclinic orbit exists connecting these two equilibrium points. We can use this to numerically
estimate the value for γH . Our estimate gives:

1.473920 < γH < 1.473921.

Since 5/6+
√
721/42 = 1.472653409... this means that the region in which the closed orbit exists is extremely

small.3

Note also that this implies that these closed orbits co-exist with the extremely tilted attractor ẼCF−,
which makes this closed orbit even more difficult to detect. In addition, it appears as if the curves asymptote
to the closed curve relatively slowly, which implies that the numerics have to run for a relatively long time
in order to see the late-time asymptote. A numerical plot of some generally tilted type VI−1/9 models
approaching this closed orbit is shown in Fig.1.

5. Conclusion

In this paper we have examined the tilted Bianchi type VI−1/9 model in some detail. This model is a
special case (due to the vanishing of one of the constraint equations) and necessitates a separate analysis
from the general type VIh models. We showed that in these models there exists a tiny region of parameter
space where there exists a closed curve acting as an attractor. This closed curve co-exists with an extremely
tilted attractor. In the case of the most general irrotational models this closed curve, which appears in terms
of the tilt velocities, is absent. We have also confirmed the analytical results with an extensive numerical
investigation.

3However, this seems to be typical for these models, the loophole for the type IV and VIIh models also appears to be
extremely small.
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