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1. Introduction

The current observational data [2] strongly support Dark Energy domination in the Uni-

verse. The nature of the Dark Energy is still a mystery and the “coincidence question”

unanswered. So, alternative pictures exist in the literature, among which is the one pro-

posed recently in the framework of Brane-World cosmology [3, 4, 5], based on the obser-

vation that due to energy exchange with the bulk, the present accelerating Universe may

be a late-time stable attractor of the cosmological evolution equations [6]. This is an effort

towards a natural resolution of the “coincidence problem” of cosmology, which in addition

leads to several phenomenologically interesting properties at the fixed point. However, to

accommodate the correct amount of matter Ωm ≃ 0.3 at the fixed point, one has to assume

that the brane has negative tension, with the exponential expansion on the brane driven

by energy influx from the bulk [7].

However, negative tension branes are believed a priori to be unsatisfactory for a realistic

physical model, for essentially two reasons. First, it is known that the gravitational force

on a negative tension brane in Randall-Sundrum-like scenarios [4] (with AdS bulk) becomes

repulsive. Indeed, following [8] one can show that the four-dimensional Newton’s constant

GN in this case is proportional to the brane tension σ with positive definite coefficient,

leading to negative GN for negative σ. Additional matter in the bulk, for instance in the

form of a minimally coupled scalar field with normal kinetic term and arbitrary potential,

does not improve the situation [9]. Second, negative tension RS-II branes are believed to

be unstable.

However, the physics changes considerably, if one extends the model to include the Ricci

scalar term on the brane, induced by matter quantum loops or by finite brane-thickness
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effects. The action of this, so called DGP, model [5] in its simplest version (without bulk

cosmological constant or matter) is

S =
1

2

∫

d4xdy
√

−g̃M̃3R̃+

∫

d4x
√−gM̃3∆K +

1

2

∫

d4x
√−gM2R+ σ

∫

d4x
√−g (1.1)

and describes a 3-brane with tension σ but no extra matter on it, embedded in Minkowski

4+1-dimensional bulk. R is the aforementioned intrinsic scalar curvature term on the

brane, while ∆K = K+−K− is the jump of the trace of the extrinsic curvature across the

brane. As usual, the purpose of this modified K dependent Gibbons-Hawking (GH) term

is to cancel unwanted terms in the variation of the bulk action related to the discontinuities

of the derivative of the metric across the brane, so that one ends up with the proper Israel

matching conditions1.

The solution for the metric, relevant to cosmology which is our main interest here, is

found to be

g̃AB =







(1 + εH|y|)2
(

−1 0

0 e2Htδab

)

0

0 1






(1.2)

where Z2 symmetry across the brane is manifest and ε = ±1. The parameter H is given

by

H2 = 2ε
M̃3

M2
H +

σ

3M2
⇒ H =

M̃3

M2



ε±
√

1 +
σM2

3M̃6



 . (1.3)

Metrics with opposite H are related by time reversal. So, only two of these four values of

H correspond to independent solutions. We choose the ones which correspond to the two

values of ε = ±1, both with the + sign in front of the square root.

We are interested in solutions with the following properties: (a) H > 0, in order to

correctly describe the present accelerating expansion of the Universe, (b) εH < 0 in order

to improve the chances for stability, (c) attractive Newton’s law on the brane, and (d) all

the above consistent even with σ ≤ 0. This, may eventually allow for a natural explanation

of the cosmic acceleration and a resolution of the “coincidence issue” [6].

Notice, though, that none of the solutions given in (1.2), (1.3) satisfies these require-

ments. Closest to being satisfactory is the self-accelerating one, corresponding to ε = +1.

This has H > 0 even with a not too negative σ, but the metric in this case grows in the bulk

and leads, perhaps not surprisingly, to ghost instabilities in the spectrum of perturbations

[11, 12, 13, 14, 15, 16]. For a positive tension brane a helicity-0 excitation of the spin-2

graviton is a ghost, while for a negative tension brane the spin-0 mode becomes a ghost.

For tensionless brane the ghost field is a linear combination of the spin-0 mode and the

helicity-0 excitation of the graviton.

The other independent solution with ε = −1 is stable, but it is unsatisfactory in

connection with (d) above, because one needs positive cosmological constant on the brane

to explain the accelerating cosmic expansion. Is there a way to satisfy all four requirements

(a)-(d)?

1A very explicit derivation of the variation of the GH term can be found in [10].
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A step in this direction was outlined in [1]2. The proposal was to modify the bulk

action (1.1) by the multiplication with an appropriate smearing function near the brane as

follows

Sbulk =
1

2

∫

d4xdy
√

−g̃M̃3R̃→ 1

2

∫

d4xdy
√

−g̃M̃3F̃ (x, y)R̃ (1.4)

where in the simplest case F̃ (x, y) = 1 − mδ̄(y) with m a parameter and δ̄(y) a δ-like

function with a second parameter α. A simple choice is δ̄(y) = π−1α/(α2 + y2). The

extrinsic curvature terms should be modified accordingly. The model still has the solution

(1.2) for the metric, with H now given by

H =
M̃3

M2

(

1− m

πα

)

(

ε±
√

1 +
σM2

3M̃6
(

1− m
πα

)2

)

. (1.5)

The solution with the + sign in front of the square root, ε = −1 and in the limit α→ 0

and m→ 0 with m/(πα) ∼ const > 1, has H > 0, describes a self-accelerated brane, which

satisfies all our requirements, with the exception of the stability issue which cannot be

decided at the level of such a non-covariant formulation of the model. Nevertheless, as it

was shown in [1] such a modification leads to a flip of the sign in front of the extrinsic

curvature terms in the brane equations of motion. Exactly this sign is responsible for the

stability of the metric perturbations and the absence of unstable modes in the normal

branch. Thus, modifying the action in the above mentioned way we expect to obtain self-

acceleration while keeping equations as they are in the normal stable branch. Further nice

properties of this modification are considered the relaxation of the bulk gravity scale and

the conservation of the number of parameters.

The purpose of the present paper is to develop a manifestly covariant formulation of

the above modification, making use of a bulk scalar field instead of the function F̃ (x, y).

Naturally, extra complications arise from the fact that one has to satisfy also the scalar

field equation of motion, as well as the corresponding additional matching condition on the

brane.

2. Codimension-1 brane in 5-dimensional bulk

Consider a 3-brane embedded in a 5-dimensional bulk. The coordinates in the bulk are

denoted by xA with capital latin indices running from 0 to 4 and with x4 ≡ y. The

coordinates on the brane are denoted by ξµ, with Greek indices from the middle of the

alphabet taking values from 0 to 3. Occasionally, we shall use t instead of the coordinate

with index 0, while spatial indices on the brane will be denoted by lowercase Latin letters

a, b, . . . . The position of the brane in the bulk is parameterized as xA = XA(ξµ), X4 ≡ Y .

Finally, we shall be using tildes to designate quantities referring to the bulk. Thus, the

bulk metric is g̃AB and the induced metric on the brane is gµν = ∂µX
A∂νX

B g̃AB(X
A(ξµ)).

Here ∂µ ≡ ∂/∂ξµ and our convention for the signature is (−,+,+,+,+).

2For a related approach see also [17].
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We shall be interested in the model described by the generic action

Sbulk =

∫

d4xdy
√

−g̃
(

M̃3

2
F̃ (Φ)R̃ − 1

2
X̃(Φ)g̃AB∂AΦ∂BΦ− Ṽ (Φ)

)

, (2.1)

Sbrane =

∫

d4x
√
−g
(

M̃3F̃ (Φ)∆K + Lbrane(gµν ,Φ, ψ)
)

. (2.2)

The bulk scalar field Φ is supposed to be a modulus field. This is the field relevant to the

hereby proposed modification of the DGP model. Ṽ (Φ) may have a constant term Λ̃, being

the cosmological constant in the bulk. F̃ , X̃ and Ṽ do not depend on g̃. ∆K = K+ −K−

is, as in (1.1), the jump of the trace of the extrinsic curvature across the brane. Standard

Model fields ψ confined on the brane may also be present. They will not be needed in our

discussion. We choose to study the equations of motion (EOM) in the Gauss-Normal (GN)

coordinate system, with the brane located at y = 0. In GN coordinates it is convenient to

identify Xµ = ξµ so that xµ and ξµ are indistinguishable (static gauge). Further, in this

coordinate system g̃ = diag(g̃µν , 1) and the induced metric on the brane is gµν = g̃µν |y=0.

The non-vanishing Christoffel symbols are Γ̃y
µν = −1

2
∂g̃µν
∂y , Γ̃ν

µy = 1
2 g̃

νρ ∂g̃ρµ
∂y and Γ̃ρ

µν , where

Γ̃ρ
µν |y=0 = Γρ

µν , the being the Christoffel symbols obtained from the brane metric gµν . With

xµ and ξµ identified, we have ∂µ = ∂/∂xµ = ∂/∂ξµ, while ∂A ≡ ∂/∂xA.

As a side remark, notice that if F̃ (Φ) is not a constant, it can be brought to any

other non-constant form by an appropriate redefinition of the field Φ. The two actions are

equivalent at the classical level. A similar observation applies to the function X̃(Φ). If it

is non-zero, it may be transformed to any non-vanishing constant. The two redefinitions

cannot, in general, be applied together.

2.1 Bulk

Varying the bulk action (2.1) with respect to the metric one obtains in the bulk

− M̃3F̃ G̃AB + M̃3(D̃AD̃BF̃ − g̃AB�̃F̃ ) + X̃∂AΦ∂BΦ− X̃

2
g̃AB g̃

CD∂CΦ∂DΦ− g̃ABṼ = 0.

(2.3)

Here G̃AB = R̃AB − 1
2R̃g̃AB is the bulk Einstein tensor, D̃ is the covariant derivative for

the bulk metric g̃AB and �̃ = g̃ABD̃AD̃B . Similarly, the EOM of the scalar field Φ reads

X̃�̃Φ+
X̃(1)

2
g̃AB∂AΦ∂BΦ+

M̃3F̃ (1)R̃

2
− Ṽ (1) = 0. (2.4)

Here the superscript (n) denotes the n-th derivative with respect to the field Φ.

For simplicity we shall restrict ourselves to diagonal bulk metrics. Furthermore, fol-

lowing the cosmological principle, we shall take space on the brane to be homogeneous and

isotropic. In the special case of zero spatial curvature on the brane the most general ansatz

for the metric in GN coordinates is then

g̃AB =







−N2(t, y) 0 0

0 A2(t, y)δab 0

0 0 1






. (2.5)
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The non-zero Christoffel symbols for the (µ, ν) part are Γ̃t
tt = Ṅ/N , Γ̃t

ab = AȦδab/N
2,

Γ̃b
at = Ȧδba/A. In what follows, we will use dot for time derivative and prime for y derivative.

Direct calculation of the Einstein tensor gives the following non-zero components

G̃tt = (−N2)3

[

− Ȧ2

A2N2
+
A′2

A2
+
A′′

A

]

, (2.6)

G̃ab = (A2δab)

[

− 1

N2

(

Ȧ2

A2
+ 2

Ä

A
− 2

ȦṄ

AN

)

+
A′2

A2
+ 2

A′′

A
+ 2

A′N ′

AN
+
N ′′

N

]

, (2.7)

G̃yy = 3

[

− 1

N2

(

Ȧ2

A2
+
Ä

A
− ȦṄ

AN

)

+
A′2

A2
+
A′N ′

AN

]

, (2.8)

G̃ty = 3

[

ȦN ′

AN
− Ȧ′

A

]

. (2.9)

2.2 Brane

Life on the brane is described by the equations of motion on the brane. They are obtained

from the brane lagrangian, supplemented by the GH term. We use the following conven-

tions: the unit vector nA normal to the brane is taken to point from the region y < 0

into the region y > 0 in GN coordinates. The same on both sides of the brane. In terms

of this vector the induced metric is given by the tangent to the brane components of the

projection operator gAB = g̃AB − nAnB . The extrinsic curvature (the second fundamental

form of the surface) is defined as KAB = −gCAgDB D̃CnD and its trace is K = gABKAB .

Its components in the GN frame are Kµν = −1
2∂yg̃µν |y=const. For our purposes, we will

have to evaluate it at y = 0+ and y = 0−, since we put our brane at y = 0 and allow for

discontinuities of the y derivatives of the metric components.

The equations of motion for the metric on the brane become

− M̃3
[

F̃ (Kµν − gµνK) + gµν F̃
′

]

−M2FGµν +M2(DµDνF − gµν�F )+

+X∂µΦ∂νΦ− X

2
gµνg

αβ∂αΦ∂βΦ− gµνV = 0.
(2.10)

Here � = gµνDµDν and Dµ is a covariant derivative built upon the induced metric. From

now on, we shall be using square brackets to denote the discontinuity across the brane

of the quantity inside, i.e. [W ] ≡ W (y = 0+) − W (y = 0−), for any quantity W . Of

course, if one assumes Z2 symmetry across the brane, then W (y = 0+) = −W (y = 0−)

and [W ] = 2W (y = 0+).

Similarly, the field Φ obeys the following equation on the brane

[

X̃ ′ + M̃3F̃ (1)K
]

+X�Φ+
X(1)

2
gµν∂µΦ∂νΦ+

M2F (1)R

2
− V (1) = 0. (2.11)

3. Static scalar Φ = Φ(y)

This is the simplest possibility, since to implement the modification proposed in [1], we need

eventually a non-trivial y-dependent function F̃ . With Φ a function of y only, the system
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simplifies considerably. Namely, Φ-dependent quantities on the brane become constants

and all derivatives of Φ along the brane are zero. In the bulk only y-derivatives survive

and one is led to the following set of equations.

In the bulk

−M̃3F̃ G̃µν + M̃3

(

1

2
g̃′µν F̃

′ − 1

2
g̃µν ḡF̃

′ − g̃µν F̃
′′

)

− X̃

2
g̃µνΦ

′2 − g̃µν Ṽ = 0, (3.1)

−M̃3F̃Gyy −
M̃3

2
ḡF̃ ′ +

X̃

2
Φ′2 − Ṽ = 0, (3.2)

X̃

(

Φ′′ +
1

2
ḡΦ′

)

+
X̃(1)

2
Φ′2 +

M̃3F̃ (1)R̃

2
− Ṽ (1) = 0, (3.3)

ȦN ′

AN
− Ȧ′

A
= 0. (3.4)

Where ḡ ≡ g̃αβ g̃′αβ and �̃ = ∂2y +
1
2 ḡ∂y. Contracting the Einstein equations (3.1) and (3.2)

with g̃AB one obtains

3M̃3F̃ R̃

2
− 2M̃3

(

ḡF̃ ′ + 2F̃ ′′

)

− 3X̃

2
Φ′2 − 5Ṽ = 0. (3.5)

Under our assumption that F̃ ′ 6= 0 we can solve (3.3) and (3.5) for R̃ and ḡ, provided

X̃ 6= −4

3
M̃3 (F̃

(1))2

F̃
. (3.6)

This leads to time-independent R̃ and ḡ. In what follows we assume that condition (3.6)

is valid.

On the brane the field equations are

−M̃3gµν [F̃
′]− M̃3F̃ [Kµν − gµνK]−M2FGµν − gµνV = 0, (3.7)

[X̃ ′] + M̃3F̃ (1) [K] +
M2F (1)R

2
− V (1) = 0. (3.8)

All tilded quantities are evaluated on the brane and consequently are constants. Contract-

ing equation (3.7) with gµν one obtains

−4M̃3[F̃ ′] + 3M̃3F̃ [K] +M2FR− 4V = 0. (3.9)

This, together with (3.8) form a system of two linear algebraic equations for [K] and R,

which has a solution provided 3F̃ F (1) − 2F̃ (1)F 6= 0. In this case both [K] and R are

constants. If, on the other hand, 3F̃F (1) − 2F̃ (1)F = 0, then for consistency we have to

require 3F̃
(

V (1) − [X̃ ′]
)

= 4F̃ (1)
(

V + M̃3[F̃ ′]
)

and [K] and R would not, a priori, have to

be time-independent. However, given that in our notation K(y0) = −1
2g

µνg′µν = −1
2 g̃|y=y0 ,

which is time-independent, we conclude that R is also necessarily time-independent, a

consequence of our assumption that Φ = Φ(y).

It is rather straightforward to take into account the remaining equations. One is led

to the following conclusions:
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• R̃, ḡ, R and [K] do not depend on time

• A = α(y)a(t) and N = ν(y)n(t), i.e. the functions A and N are factorized.

• There are two possibilities for these functions: either N = b(t)Ȧ, or Ȧ = 0 and N

undetermined.

The second possibility gives Minkowski brane, which is not particularly interesting for our

purposes. The solution in this case can be found analytically, reduced to quadratures.

The first possibility, to which we concentrate next, looks more interesting for cosmology,

because it leads to a time-dependent metric on the brane.

4. Construction of the solution for static scalar and N = b(t)Ȧ

4.1 Bulk part

In this case n(t) = b(t)ȧ(t) and α(y) = ν(y). The non-zero components of the Einstein

tensor become

G̃tt = (−b2Ȧ2)3P, G̃ab = (A2δab) (P + 2Q) , G̃yy = 3

(

P +Q− 2
ν ′′

ν

)

,

where P = − 1

A2b2
+
ν ′2

ν2
+
ν ′′

ν
, Q =

ḃ

AȦb3
+
ν ′2

ν2
+
ν ′′

ν
.

Let us, now, take a closer look at the {tt} component of equation (3.1). All terms in this

equation, with the exception of the first one, are of the form ȧ × (a function of y). This

is a direct consequence of the factorization property of g̃tt and the t−independence of Φ.

Only the first term may a priori depend on time, due to the presence of the −1/(A2b2)

term in P . Thus, the {tt} component of equation (3.1) for non-vanishing ȧ takes the form

a(t)b(t) = (function of y), and leads to b = 1/(Ha) where H is a constant. The Einstein

tensor then becomes

G̃µν =
3

ν2
(−H2 + ν ′

2
+ νν ′′)g̃µν , G̃yy =

6

ν2
(−H2 + ν ′

2
). (4.1)

The Einstein equations read

3

ν2
(−H2 + ν ′

2 − νν ′′) = +
1

M̃3F̃

(

X̃Φ′2 + M̃3F̃ ′′ − M̃3 ν
′

ν
F̃ ′

)

, (4.2)

6

ν2
(−H2 + ν ′

2
) = − 1

M̃3F̃

(

−1

2
X̃Φ′2 + Ṽ + 4M̃3 ν

′

ν
F̃ ′

)

. (4.3)

Notice that a(t) remains arbitrary and will not be fixed by the equations of motion. How-

ever, any form of a(t) leads to (anti) de Sitter brane metric, because it can be absorbed

into the definition of time by ȧ/(HA)dt = dτ , in terms of this new time τ one obtains

a(τ) = a0e
Hτ . So, the bulk metric reads

g̃AB =







ν2(y)

(

−1 0

0 e2Hτ

)

0

0 1






(4.4)
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where, without loss of generality, a0 was chosen equal to 1.

Given the functions F̃ (y) and ν(y) one can use (4.2) to obtain X̃Φ′2 as a function of y

X̃Φ′2 =
3hM̃3F̃

ν2
− M̃3

(

F̃ ′′ − ν ′

ν
F̃ ′

)

(4.5)

where h = −H2+ν ′2−νν ′′. Finally, plug this into equation (4.3) and express the potential

Ṽ

Ṽ = −(9h+ 12νν ′′)M̃3F̃

2ν2
− M̃3

2

(

F̃ ′′ +
7ν ′

ν
F̃ ′

)

. (4.6)

One can check by direct substitution that equation (2.4) is satisfied.

4.2 Life on the brane

The geometry and dynamics on the brane, using the time coordinate τ , are given by

gµν =

(

−1 0

0 e2Hτ δab

)

, R = 12H2, Gµν = −3H2gµν ,

[Kµν ] = −[ν ′]gµν , [K] = −4[ν ′].

As usual, [ν ′] ≡ ν ′+ − ν ′
−

is the discontinuity of the function ν ′(y) across the brane. Z2

symmetry would force them to satisfy ν ′+ = −ν ′
−
. Also we choose ν(0) = 1.

As discussed above, we have to distinguish two cases. (a) If 3F̃F (1) − 2F̃ (1)F 6= 0 we

may unambiguously express [ν ′] and H through F̃ , F and V as follows

[ν ′] =
F
(

V (1) − [X̃ ′]
)

− 2F (1)
(

V + M̃3[F̃ ′]
)

2M̃3(3F̃ F (1) − 2F̃ (1)F )
,

H = ±

√

√

√

√

3F̃
(

V (1) − [X̃ ′]
)

− 4F̃ (1)
(

V + M̃3[F̃ ′]
)

6M2(3F̃F (1) − 2F̃ (1)F )
.

(4.7)

(b) If, on the other hand, 3F̃F (1) − 2F̃ (1)F = 0, we have to require 3F̃
(

V (1) − [X̃ ′]
)

=

4F̃ (1)
(

V + M̃3[F̃ ′]
)

. In this case, one of the quantities [ν ′] and H remains undetermined.

However, they are related by

H = ±

√

M̃3F̃

M2F
[ν ′] +

V + M̃3[F̃ ′]

3M2F
. (4.8)

As a special case, it is easy to check that taking F̃ = F = 1, X̃ = X = Ṽ = 0, V = σ and

ν ′+ = −ν ′
−
= εH one reproduces the known relation (1.3) between brane-tension and H of

the DGP setup.

– 8 –



5. Application to the modified DGP model and discussion

Let us recapitulate the steps one has to take to construct a modified model of the type we

are proposing here, based on Φ which depends only on y. For our purposes, it is convenient

to start with a given F̃ , since the modified DGP model [1] gives some idea about the

desirable form of F̃ (y). Namely, F̃ = 1 − mδ̄(y) such that F̃ (y = 0) = const < 0 and

F̃ (y ≫ α) = 1, where α is the width of localization of F̃ near the brane. The metric has

the general form (4.4). Given, in addition, the function ν(y), one uses equations (4.5) and

(4.6) to obtain X̃ and Ṽ as functions of y. Finally, on the brane, one has to satisfy (3.7)

and (3.8). It remains to determine the Φ dependence of the bulk quantities. For that, one

needs to specify (or know independently) either Φ(y) or the dependence on Φ of one of F̃ ,

X̃ or Ṽ .

Consider the special case of Minkowski bulk. This fixes ν(y) = 1 + ν1y, with ν1 = εH

and we assume Z2 symmetry. Take F̃ = 1− m
α cosh(y2/α2)

and Φ(y) = y. One is led to the

following model

F̃ = 1− m

α cosh (Φ2/α2)
,

X̃ = − mM̃3

α5 cosh3 (Φ2/α2)

(

2Φ2
(

3− cosh
(

2Φ2/α2
))

+ α2 sinh
(

2Φ2/α2
)

1 + ν1Φ

)

,

Ṽ = − mM̃3

α5 cosh3 (Φ2/α2)

(

Φ2
(

3− cosh
(

2Φ2/α2
))

+ α2 1 + 8ν1Φ

2(1 + ν1Φ)
sinh

(

2Φ2/α2
)

)

,

F = 1, V = σ.

(5.1)

It is easy to check that bulk equations are satisfied. Equation (3.8) on the brane is satisfied

trivially, while equation (3.7) reduces to

−6M̃3
(

1− m

α

)

εH + 3M2H2 − σ = 0 (5.2)

which determines H as

H =
M̃3

M2

(

1− m

α

)

(

ε±
√

1 +
σM2

3M̃6
(

1− m
α

)2

)

(5.3)

which coincides with one given in (1.5) up to the rescaling of α by π and thus explicitly

realizes the trick outlined in [1].

As another special model, let us take X̃ = 0, still with Minkowski bulk. Then expres-

sion (4.5) becomes an equation for the function F̃ with the general solution

F̃ (y) = C1(1 + ν1y)
2 + C2. (5.4)

Here we see that F̃ is not localized near the brane and becomes important in the whole

range of y up to the Rindler horizon y = −1/ν1. However, the potentially dangerous

domain of y with F̃ < 0 can be made arbitrarily narrow, with |F̃ (y = 0)| also infinitesimal.

Indeed, adjust F̃ (y = 0) = C2 + C1 = −α < 0 to be extremely small. Then, the width of
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the negative domain becomes −α/(C2ν1). In order to have realistic H we have to adjust

(αM̃3) ∼ (100MeV)3 [18].

Let us briefly summarize the results of the present analysis. A covariant implemen-

tation of the modified DGP model [1] was constructed, by means of a bulk scalar field,

with appropriate coupling to gravity. Flat metric in the bulk is a possible solution with

non-constant scalar field. The parameters of the theory can be adjusted in such a way that

one has not growing metric in the bulk (the usual normal-branch behavior) with positive

Hubble constant on the brane, leading to accelerating expansion on the brane, even with-

out any extra matter and even with negative brane tension. We explicitly demonstrated

two models satisfying our requirements (a)-(d) of the Introduction. (i) In the first one the

δ-function-like profile of the function F̃ is localized near the brane and in the limit α→ 0

the width of localization goes to zero. Thus, in the α → 0 limit the bulk is modified in

a narrow domain near the brane only. However, the presence of the kinetic term for the

scalar field in the bulk is necessary. (ii) In the second model, on the other hand, the scalar

field does not have a kinetic term, but the profile of F̃ does not go rapidly to unity away

from the brane. However, one may adjust integration constants and make the y-domain

with negative F̃ infinitesimal, if necessary to be consistent with observations.

A detailed stability analysis of the hereby proposed class of models is an open question.

Also, time-dependent bulk scalar field solutions, which were not studied here, may give rise

to interesting phenomena on the brane. Finally, asymmetric brane-world setups in the spirit

of the recent paper [19] may provide further possibilities for model building.
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