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BOHR AND ROGOSINSKI ABSCISSAS FOR

ORDINARY DIRICHLET SERIES.

LEV AIZENBERG, VICTOR GOTLIB, ALEKOS VIDRAS

Abstract. We prove that the abscissas of Bohr and Rogosinski
for ordinary Dirichlet series, mapping the right half-plane into the
bounded convex domain G ⊂ C are independent of the domain G.
Furthermore, we obtain new estimates about these abscissas.

1. Preliminaries

Let us recall the theorem of H.Bohr [19] in 1914.

Theorem 1.1. If a power series

f(z1) =

∞∑

k=0

ckz
k
1 (1.1)

converges in the unit disk U1 and its sum has modulus less than 1, then
∞∑

k=0

|ckz
k
1 | < 1, (1.2)

if |z1| <
1
3
. Moreover, the constant 1

3
cannot be improved.

For reasons of convenience we write the inequality (1.2) in the fol-
lowing equivalent form

∞∑

k=1

|ckz
k
1 | < 1− |c0|.

Generalizations and modifications of this result can be found in [2],
[4], [5] – [7], [11], [14], [24], [25], [27], [30], [31] . On the other hand,
formulation of Bohr theorem in several complex variables appeared very
recently. Given a complete Reinhardt domain D ⊂ Cn, we denote by
R(D) the largest non-negative number r with the property that if the
power series

f(z) =
∑

|α|≥0

cαz
α, z ∈ D, (1.3)
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where as usual, α = (α1, . . . , αn) ∈ Nn
0 , z

α = zα1
1 . . . zαn

n , |α| = α1 +
. . . αn, converges in D and the modulus of its sum is less than 1, then

∑

|α|≥1

|cαz
α| < 1− |c0|

in the homothetic domain Dr = rD. Here c0 = c0,...,0. A variety
of results, related to this particular R(D) or other multidimensional
generalizations of Bohr radius are found in [1] - [11], [14] - [16], [20] –
[24]. Key results, used by us in the present paper, were obtained in [4],
[8], [12].

Let G̃ be a convex hull of the domain G ⊂ C. For a a complete
Reinhardt domain D in Cn, denote by R(D, G) the largest r ≥ 0 such
that if the function f(z) from (1.3) is holomorphic in D, f(D) ⊂ G and

G̃ 6= C, then
∑

|α|≥1

|cαz
α| < dist(c0, ∂G̃)

in homothety Dr. A point p ∈ ∂G is called a point of convexity if
p ∈ ∂G̃. A point of convexity p is called regular if there exists a disk
U ⊂ G so that p ∈ ∂U .
The following result is a consequence of a more general result, proved
[4]. We state it in a suitable for us form for the purposes of the present
article.

Theorem 1.2. If G̃ 6= C, then R(D, G) is not smaller than R(D, U1).
If ∂G contains at least one point of regular convexity , then

R(D, G) = R(D, U1).

Corollary 1.1. If the domain G is convex and G 6= C, then R(D, G)
is independent of the choice of G.

Besides the Bohr radius we will use the radius of Rogosinski, whose
classic result of 1923, [28, 29, 26], is described in the following state-
ment:

Theorem 1.3. If the function f(z1) from (1.1) is holomorphic in the
unit disk U1 and |f(z1)| < 1 in U1, then all of its partial sums are less
than 1 in the disk of radius 1

2
, that is:

|
m∑

k=0

ckz
k
1 | < 1

for |z1| <
1
2
and this radius is sharp.
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The following result is the consequence of more general fact proved
in [8]. Again, we are going to use its particular, convenient for us,
formulation: let A be a lattice in Nn

0 , which is represented by

A = {α ∈ Nn
0 : m1α1 + · · ·+mnαn ≤ m},

where all the numbersm1, . . . , mn, m belong to N0 and have no common
divisor.

Theorem 1.4. Let the function f(z) in (1.3) be holomorphic in the
Reinhardt domain D and f(D) ⊂ G, where G is a convex domain in C

so that G 6= C. Then the polynomial (partial sum)
∑

α∈A
cαz

α

maps DA into G, where

DA = {z ∈ Cn : (
z1

rm1
m

, . . . ,
zn

rmn
m

) ∈ D},

does not depend on G, r1 =
1
2
, r2 =

√
3
8

and for l ≥ 3 the number rl is
the unique positive solution of the equation

1− r − 2rl+1 = 0.

In the present article we investigate the Dirichlet series

f(s) =

∞∑

n=1

an

ns
, (1.4)

converging in the right half-plane Π = {s ∈ C : ℜs = σ > 0} and
f(s) ∈ H∞(Π), that is ‖f‖ = sup

s∈Π
|f(s)| < ∞. Following [12], we call

isometric Bohr abscissa b the non-negative real number defined as the
infimum of those σ ≥ 0 such that for all f ∈ H∞(Π) which can be
expressed as a Dirichlet series (1.4), the following holds

∞∑

n=1

|an|

nσ
< ‖f‖. (1.5)

For reasons of convenience, we write (1.5) as

∞∑

n=2

|an|

nσ
≤ ‖f‖ − a1.

The next result was obtained in [12].
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Theorem 1.5. For the isometric Bohr abscissa the following estimates
are valid

1.5850 · · · =
log 3

log 2
≤ b < 1.8154

If f ∈ H∞(Π) and ‖f‖ = 1, then

|a1|
2 +

∞∑

n=2

|an|

nσ
≤ 1,

where σ < 1.7287.

Analogously, to the Bohr radiusR(D, G), the isometric Bohr abscissa

b(G), where G is a domain in C, G̃ 6= C, is defined as the infimum of
those σ ≥ 0 such that if f ∈ H∞(Π), f(s) is like in (1.4) and f(Π) ⊂ G,
then

∞∑

n=2

|an|

nσ
< dist(a1, ∂G̃). (1.6)

Furthermore, we define the Rogosinski abscissa r(G) for functions f ∈
H∞(Π), f(Π) ⊂ G, as the infimum of σ′ ≥ 0, such that for all partial
sums of the series (1.4)

k∑

n=1

an

ns
= Pk(s) (1.7)

the inclusion Pk(Πσ′) ⊂ G is valid, where Πσ′ = {s ∈ C : σ > σ′}.

2. The main results

Theorem 2.1. Let G be a be a bounded domain in C. Then the isomet-
ric Bohr abscissa b(G) is not larger then the isometric Bohr abscissa
b(U1). If ∂G contains at least one regular point of convexity, then
b(G) = b(U1).

Proof: We are going to exploit the connection between classical
Dirichlet series and the power series in the infinite dimensional polydisc
found by H.Bohr in [18]. Consider the series (1.4). Every natural
number n is product of its prime factors

n = pα1
1 . . . pαm

m .

We set z = (p−s
1 , p−s

2 , . . . ). Then

f(s) =
∞∑

n=1

an(p
−s
1 )α1 . . . (p−s

m )αm =
∞∑

n=1

anz
α1
1 . . . zαm

m , (2.1)
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where m = m(n). If the power series (1.4) converges absolutely for
σ = σ0, then the set of values of f(s) on the vertical line {s ∈ C :
ℜs = σ0} is everywhere dense in the set of the values of the series (2.1)
on the set {z : |z1| =

1
p
σ0
1
, . . . , |zm| =

1
p
σ0
m
}, [18]. We will be using this

result in the particular case when the series (1.4) is just a Dirichlet
polynomial. The same conclusion is easily deduced from a theorem of
Kronecker, [13]. Denote by σu the abscissa of uniform convergence of
the series (1.4), that is, the infimum of those σ, so that the series (1.4)
converges uniformly in the half-plane Πσ = {s ∈ C : ℜs > σ}. Let
σb be infimum of those σ for which the series (1.4) is bounded (and
naturally holomorphic) in the half-plane Πσ. A non-trivial result of
Bohr states that σu = σb, [17],[13]. Therefore, if f(Π) ⊂ G, where G is
a bounded domain in C, then in every half-plane Πσ, σ > 0 the series
(1.4) converges uniformly. Hence, for σ-fixed, we can find for every
ǫ > 0 an index k ∈ N so that |f(s)− Pk(s)| < ǫ, where the polynomial
Pk(s) is taken from (1.7).We remark that Pk(Πσ) ⊂ Gǫ, where Gǫ is an
ǫ-neighborhood of G. Therefore the polynomial

P̃k(z) =

k∑

n=1

anz
α1
1 . . . zαm

m

in the corresponding polydisc D is such that P̃k(D) ⊂ Gǫ. From Theo-
rem 1.2 then follows that R(D, Gǫ) ≥ R(D, U1) and therefore the claim

k∑

n=2

|an|
1

pσ1
. . .

1

pσm
< dist(a1, ∂G̃ǫ) (2.2)

for σ ≤ b(U1) is valid. Taking the limit in (2.2) for k −→ ∞ (this
means ǫ −→ 0), we obtain that for such a σ the relation (1.6) holds,
but instead of the proper inequality <, the inequality ≤ is now possible.
But if we had equality there, then by taking smaller σ we would have
had obtained the converse inequality, which is impossible. Therefore
b(G) ≤ b(U1).
Let us assume now that on the boundary ∂G there exists at least

one regular point of convexity. Denote it by p0. Then there exists a

disk U ⊂ G so that p0 ∈ ∂U ∩ ∂G ∩ ∂G̃. Remark that homothety
and parallel translation for the disk U1 (that is all an are replaced by
ran and after this ra1 is replaced by ra1 + c, and therefore the new
disc U is rU1 + c) do not alter the condition (1.6) for the disc. Hence
b(U) = b(U1). From here, it follows that b(G) ≥ b(U1) = b(U) since
the corresponding set of holomorphic functions, which are represented
by Dirichlet series in Π and are satisfying f(Π) ⊂ G, is larger than
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the set of functions satisfying f(Π) ⊂ U . Thus, in this case we obtain
b(G) = b(U1).♦.

Corollary 2.1. If G is a bounded, convex domain in C then the isomet-
ric Bohr abscissa b(G) does not depend from the choice of the domain
G.

We point out that in the proof of the Theorem 2.1, we used the
boundedness of the domain G only to be able to approximate the
Dirichlet series by a Dirichlet polynomial, in order to use the later’s uni-
form convergence in the corresponding half-plane and thus to be able to
apply Bohr result about the everywhere density of its values. Instead,
one could demand that the series (1.4) converges absolutely in the half
plane Π. Thus, one is able to formulate the following statement, where
instead of isometric Bohr abscissa b(G) one considers ba(G), defined in
the same manner as b(G), but only for absolutely converging Dirichlet
series in the half plane Π.

Theorem 2.2. Let G be a domain in C, G̃ 6= C. Then the isometric
Bohr abscissa ba(G) is not greater b(U1). If ∂G contain at least one
regular point of convexity, then ba(G) = b(U1).

Theorem 2.3. Let G be a bounded convex domain in C. Then the
following Rogosinski abscissas are equal: r(G) = r(U1).

Proof: The proof repeats the steps of the proof of the Theorem
2.1, but instead of Theorem 1.2 one uses the Theorem 1.4 and the
following remark: the Dirichlet polynomial (1.7) can be described via
the inequality

α1 log 2 + α2 log 3 + · · ·+ αm logm ≤ log k, (2.3)

where the prime numbers are all prime numbers that appear in the
prime decomposition of the integers 2, 3, 4, . . . , k. Approximating the
logarithms in (2.3) with fractions so that no new integers appear and
the existing ones remain, one can obtain the lattice

α1d+ α2d2 + · · ·+ αmdm ≤ d, (2.4)

instead of the lattice (2.3), where d, di ∈ Q, i = 1, . . . , m. Crucial
fact here is that the new lattice is described by the same m-tuples
(α1, . . . , αm) as in (2.3). For the final step it is enough to obtain a
common denominator for the rational numbers d, di, i = 1, . . . , m and
get the lattice A from the Theorem 1.4.♦
We remark that defining the Rogosinski abscissa ra(G) in the same

manner as r(G), but only for absolutely convergent Dirichlet series in
the half-plane, one obtains
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Theorem 2.4. If the domain G is convex then ra(G) = r(U1).

It is a well know fact that the Rogosinski radius is not smaller than
the Bohr radius for power series in one and several complex variables
(that is, the Rogosinski condition is satisfied in a disc (ball) of larger
radius than the Bohr condition). Therefore, one might expect that the
Rogosinski abscissa is not greater that the isometric Bohr abscissa for
ordinary Dirichlet series. This is the content of the next result.

Theorem 2.5. Let G be a convex bounded domain in C. Then r(G) ≤
b(G). If the domain G 6= C is just convex, then ra(G) ≤ ba(G).

Proof: Actually, if the domain G is bounded and σ > b(G), then

|Pk(s)− a1| = |

k∑

n=2

an

ns
| ≤

k∑

n=2

|
an

ns
| ≤

∞∑

n=2

|
an

ns
| < dist(a1, ∂G).

But the obtained inequality

|Pk(s)− a1| ≤ dist(a1, ∂G)

means geometrically that Pk(Πσ) ⊂ G. Thus, if σ > b(G), then σ >

r(G) also. Therefore r(G) ≤ b(G). The case when the boundedness of
the convex domain G is not required is considered analogously. ♦.

Remark 2.1. We point out the following open problems:
1. Is it possible to remove the condition on the boundedness of the
domain G in the statements of the Theorems 2.1, 2.4 and the Corollary
2.2?
2) Can one prove the second parts of the Theorems 2.1, 2.3 without the
assumption on the existence of at least one regular point of convexity?

3. Estimates for the Bohr and Rogosinski abscissas

Theorem 3.1. Let G be a convex bounded domain in C. Then the
isometric Bohr abscissa satisfies

b(G) ≤ 1.7267. (3.1)

If G is a domain in C, G̃ 6= C, then the isometric Bohr abscissa ba(G)
satisfies the same estimate.

Proof: Denote by Ω(n) the number of the prime divisors (counted
with their multiplicity ) of the natural number n. Pivotal for us is the
following result ([12], Prop.2.1): let f be like in (1.4) and ‖f‖ = 1,
then for k ≥ 1 one has

(
∑

Ω(n)=k,n≥2

|an|
2)

1
2 ≤ 1− |a1|

2. (3.2)
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Furthermore
∞∑

k=1

|ak|

nσ
≤ |a1|+

∞∑

k=1

(
∑

Ω(n)=k,

n≥2

|an|
2)

1
2 (

∑

Ω(n)=k,

n≥2

1

n2σ
)
1
2

≤ |a1|+ (1− |a1|
2)

∞∑

k=1

(
∑

Ω(n)=k,

n≥2

1

n2σ
)
1
2

Consider now the equation
∞∑

k=1

(
∑

Ω(n)=k,

n≥2

1

n2σ
)
1
2 =

1

2
. (3.3)

If σ0 is the unique solution of the equation (3.3), then
∞∑

k=1

|ak|

nσ0
≤ |a1|+ (1− |a1|

2)
1

2
≤ 1,

since |a1| ≤ 1. Therefore b(U1) ≤ σ0. The solution of the equation (3.3)
was obtained numerically, using Maple. Thus the estimate σ0 < 1.7267
was obtained. ♦

Corollary 3.1. Let G be a bounded domain in C. Assume also that
∂G contains at least one regular point of convexity. Then

1.5850 · · · =
log 3

log 2
≤ b(G) < 1.7267.

If one does not require the boundedness of the domain G 6= C, then
ba(G) satisfies the same estimates.

Theorem 3.2. Let G be a convex bounded domain in C. Then, if the
function f is from (1.5) and ‖f‖ = 1, then for every such f

|a1|
2 +

∞∑

k=2

|ak|

nσ
≤ 1, (3.4)

where 1 ≤ σ < 1.2061.

Proof: From (3.2), we obtain as before, that the left hand-side in
(3.4) is not larger than

|a1|
2 + (1− |a1|

2)

∞∑

k=1

(
∑

Ω(n)=k,

n≥2

1

n2σ
)
1
2 .
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Consider the equation
∞∑

k=1

(
∑

Ω(n)=k,

n≥2

1

n2σ
)
1
2 = 1. (3.5)

If σ0 is the root of the equation (3.5), then for σ = σ0 the relation (3.4)
holds. The equation (3.5) was solved numerically by using Maple to
obtain the estimate σ0 < 1.2061.
On the other hand, a particular case of the Dirichlet series (1.4) is the
series

f(s) =
∞∑

n=0

an

2ns
, (3.6)

which is a power series relatively to the variable 1
2s
. It is known ([27])

that the best value for the radius r, for which the relation

|c0|
2 +

∞∑

k=1

|ck|r
k ≤ 1

is valid for every power series (1.1) satisfying |f(z1)| < 1 in the unit
disk U1, is

1
2
. Then for the Dirichlet series (3.6) we obtain

1

2σ0
=

1

2
,

that is σ0 = 1. Since the series (3.6) is a particular case of the series
(1.4), we deduce that σ from Theorem 3.3 is greater or equal to 1.♦
Analogously one can prove the following

Theorem 3.3. Let G be a convex bounded domain in C. Then the
Rogosinski abscissa r(G) ≥ 1. If the domain G 6= C is not bounded
then the Rogosinski abscissa ra(G) satisfies the same inequality.

Remark 3.1. We conclude the present paper by by stating the follow-
ing hypothesis: for every convex bounded domain G ⊂ C the equality
r(G) = 1 is true. If the domain G 6= C is convex, but not necessarily
bounded then also ra(G) = 1.
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