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Abstract

The problem of the uniqueness of solutions during the evaluation of primary
energy spectra in the knee region using an extensive air shower (EAS) data set and
the EAS inverse approach is investigated. It is shown that the unfolding of primary
energy spectra in the knee region leads to mutually compensative pseudo solutions.
These solutions may be the reason for the observed disagreements in the elementary
energy spectra of cosmic rays in the 1-100 PeV energy range obtained from different
experiments.
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1 Introduction

The Extensive air shower (EAS) inverse approach to a problem of the pri-
mary energy spectra reconstruction in the region of 1− 100 PeV energies has
been an essential tool in the past decade [1,2,3,4,5,6,7]. Basically, it follows
from the high accuracies of recent experiments [8,9,10,11,12] and the availabil-
ity of the EAS simulation code [13], which was developed in the framework
of contemporary interaction models in order to compute the kernel functions
of a corresponding integral equation set [6,11]. At the same time, the energy
spectra of primary (H,He and Fe) nuclei obtained from the KASCADE ex-
periment [6] using the EAS inverse approach disagree with the same data from
the ongoing GAMMA experiment [11,12], where parameterization of the EAS
inverse problem is used.

Below, a peculiarity of the EAS inverse problem is investigated, and one of
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the possible reasons for the observed disagreements between the energy spectra
in [6] and [11] is considered in the framework of the SIBYLL [14] interaction
model.

The paper is organized as follows: In Section 2 the EAS inverse approach
and the definition of the problem of uniqueness is described. It is shown,
that the abundance of primary nuclear species leads to pseudo solutions for
unfolded primary energy spectra. The existence and significance of the pseudo
solutions are shown in Section 4. The pseudo solutions for primary energy
spectra were obtained on the basis of simulation of KASCADE [6] shower
spectra. The EAS simulation model is presented in Section 3. In Section 5
the peculiarities of the pseudo solutions are discussed in comparison with the
methodical errors of the KASCADE data.

2 Problem of uniqueness

The EAS inverse problem is ill-posed by definition and the unfolding of
the corresponding integral equations does not ensure the uniqueness of the
solutions. The regularized unfolding on the basis of a priori information on
expected solutions (smoothness, monotony and non-negativity) in some cases
can redefine the inverse problem [15] and provide the appropriate solutions.
However, the expected singularities (e.g. knees) in the primary energy spectra
at 1015 − 1016 eV may erroneously be smoothed by regularization algorithms
and vice versa, be imitated by the unavoidable oscillations [15] of the solu-
tions. Furthermore, the EAS inverse problem implies evaluations of at least
two or more unknown primary energy spectra from the integral equation set
of Fredholm kind [6,11,12]. These peculiarities have not been studied in detail
and the problem of the uniqueness of solutions can limit the number of eval-
uated spectra.

Let fA(E) be the energy spectrum of a primary nucleus A over the atmo-
sphere, WA(x|E) be the probability density function describing the transfor-
mation of A and E parameters of the primary nucleus to a measurable vector
x. Then the EAS inverse problem, i.e. the reconstruction of the energy spec-
tra of NA primary nuclei on the basis of the detected spectra Y (x) of EAS
parameters, is defined by the integral equation

Y (x) =

ANA
∑

A=A1

∫

fA(E)WA(x|E)E. . (1)
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Evidently, if fA1,...ANA
(E) are the solutions of eq. (1), the functions fA(E) +

gA(E) should also be the solutions of (1), provided equation

∑

A

∫

gA(E)WA(x|E)E. = 0(±∆Y ) (2)

is satisfied for the given measurement errors ∆Y (x) and for at least one of the
combinations of the primary nuclei

nC =
NA
∑

j=1

(

NA

j

)

. (3)

The number of combinations (3) stems from a possibility of the existence of
a set of functions gA(E) ≡ g1,A(E), . . . , gi,A(E) for each of the primary nuclei
(A), which can independently satisfy eq. (2).

For example, suppose that NA = 3. Let us denote
∫

gi,Ak
(E)WAk

(E)E. by
Ii,Ak

and, for simplicity, set the right-hand side of eq. (2) to 0. Then, following
expression (3), we find nC = 7 independent combinations of eq. (2): I1,Ak

= 0
for k = 1, 2 and 3, I2,A1

+ I2,A2
= 0, I3,A1

+ I2,A3
= 0, I3,A2

+ I3,A3
= 0 and

I4,A1
+ I4,A2

+ I4,A3
= 0 with different gi,Ak

(E) functions. The measurement
errors ±∆Y on the right-hand side of these equations can both increase and
decrease the domains of gi,Ak

(E) functions.
One may call the set of functions gA(E) the pseudo functions with the cor-

responding pseudo solutions (spectra) fA(E)+gA(E). The oscillating gA(E) ≡
g1,A(E) functions at j = 1 are responsible for the firstNA equations

∫

g1,A(E)WA(x|E)E. =
0(±∆Y ), A ≡ A1, . . .ANA

, due to the positive-definite probability density
function WA(E). The pseudo solutions fA(E) + g1,A(E) can be avoided by
using iterative unfolding algorithms [6,15].

Additional sources of the pseudo solutions originate from the mutually
compensative effects at j ≥ 2:

−
∑

k

∫

gAk
(E)WAk

(x|E)E. ≃
∑

m6=k

∫

gAm
(E)WAm

(x|E)E. (4)

inherent to eq. (2) for arbitrary groups of k and m 6= k primary nuclei.
Since there are no limitations on the types of the pseudo functions (except
for fA(E) + gA(E) > 0) that would follow from expression (4), and the num-
ber of possible combinations (3) rapidly increases with the number of evalu-
ated primary spectra (NA), the problem of the uniqueness of solutions may
be insoluble for NA > 3. Moreover, the pseudo functions have to restrict the
efficiency of unfolding energy spectra for NA ≃ 2−3, because the unification of
Z = 1, . . . , 28 primary nuclei spectra into 2− 3 nuclear species (e.g. light and
heavy) inevitably increases the uncertainties of the kernel functions WA(E)
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and thereby also increases the domains of the pseudo functions.
Notice, that the pseudo solutions will always appear in the iterative unfold-

ing algorithms if the initial iterative values are varied within large intervals. At
the same time, it is practically impossible to derive the pseudo functions from
the unfolding of equations (1,2) due to a strong ill-posedness of the inverse
problem. However, for a given set of the measurement errors ∆Y (x) and the
known kernel functions WA(x|E) for A ≡ A1, . . .ANA

primary nuclei, eq. (2)
can be regularized by parametrization of the pseudo functions gA(α, β, . . . |E).
The unknown parameters (α, β, . . .) can be derived from a numerical solution
of parametric eq. (2), and thereby one may also evaluate the parametrized
pseudo functions gA(E).

Below (Section 3), an EAS simulation model for computing the kernel func-
tion WA(E) and replicating the KASCADE [6] EAS spectral errors ∆Y (x) is
considered.

3 EAS simulation model

The primary energy spectra obtained in the KASCADE experiment were
derived on the basis of the detected 2-dimensional EAS size spectra Y (x) ≡
Y (Ne, Nµ) and an iterative unfolding algorithm [15] for NA = 5 primary nu-
clei [6]. Evidently, whether these solutions are unique or not depends on the
significance of the arbitrary pseudo functions |gA(E)| from eq. (2).

We suppose that the convolution of the shower spectra WA(Ne, Nµ|E) at
the observation level and corresponding measurement errors σ(Ne), σ(Nµ)
[1] are described by 2-dimensional log-normal distributions with parameters
ξe = lnNe(A,E), ξµ = lnNµ(A,E), σe(A,E), σµ(A,E) and correlation coef-
ficients ρe,µ(A,E) between the shower size (lnNe) and the muon truncated
size (lnNµ). We tested this hypothesis by the χ2 goodness-of-fit test using
the CORSIKA(NKG) EAS simulation code [13] for the SIBYLL2.1 [14] in-
teraction model, 4 kinds of primary nuclei (A ≡ p,He,O, Fe), 5 energies
(E ≡ 1, 3.16, 10, 31.6, 100 PeV) and simulation samples for each of E and A:
5000, 3000, 2000, 1500, 1000 respectively in 0 − 180 zenith angular interval.
The values of corresponding χ2(Ai, Ej)/nd.f., (i = 1, . . . 4, j = 1, . . . 5) were
distributed randomly in the interval 0.5 − 1.4 for the measurement ranges of
the KASCADE experiment (Ne,min = 6.3 · 104 and Nµ,min = 4 · 103) and the
bin sizes ∆ lnNe,∆ lnNµ = 0.075.

Notice, that the combined 2-dimensional log-normal distributions with pa-
rameters σe,1(A,E) at lnNe < ξe, σe,2(A,E) at lnNe > ξe, σµ,1(A,E) at
lnNµ < ξµ and σµ,2(A,E) at lnNµ > ξµ, more precisely (χ2/nd.f. ≤ 1.2) de-
scribe the shower spectra WA(Ne, Nµ|E) in the tail regions.

We performed an additional test of the log-normal fit of the WA spectra
using multiple correlation analysis for the shower parameters simulated by the
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log-normal WA(Ne, Nµ|E) probability density functions and shower parame-
ters obtained from the CORSIKA EAS simulations at power-law primary en-
ergy spectra (γ = −1.5) and equivalent abundances of primary nuclei. The cor-
responding correlation coefficients were equal to ρ(lnE| lnNe, lnNµ) = 0.97,
ρ(lnA| lnNe, lnNµ) = 0.71, ρ(lnA, lnNe) = −0.14 ± 0.01, ρ(lnA, lnNµ) =
0.18 ± 0.01, and were in close agreement for both methods of Ne and Nµ

generations.

We replicated the KASCADE 2-dimensional EAS size spectrum Y (Ne, Nµ)
(and corresponding ∆Y ) by picking out Ne and Nµ randomly from the 2-
dimensional shower spectra WA(Ne, Nµ|E) after randomly picking A and E
parameters of a primary particle from the power-law energy spectra

fA(E) ∝ E−2.7
(

1 +
( E

Ek

)ǫ)−0.5/ǫ
(5)

with a rigidity-dependent knee Ek = Z · 2000TV , the sharpness parameter
ǫ = 3 and normalization of the all-particle spectrum

∫
∑

A fA(E)E. = 1. The
relative abundance of nuclei was arbitrarily chosen to be 0.3, 0.45, 0.15 and
0.1 for primary H,He,O and Fe nuclei respectively, which approximately
conforms with the expected abundance from balloon and satellite data [16].
The mediate values of the parameters of the probability density function
WA(Ne, Nm|E) were estimated by the corresponding log-parabolic splines.

The total number of simulated EAS events was set to 7 · 105 in order to
replicate the corresponding statistical errors ∆Y (Ne, Nµ) of the KASCADE
data.

4 Pseudo solutions

On the basis of the obtained estimations of ∆Y (Ne, Nµ) (Section 3) for
the KASCADE experiment, we examined the uniqueness of unfolding (1) by
χ2-the minimization:

χ2 =
I
∑

i=1

J
∑

j=1

(

G(Ne,i, Nµ,j)

∆Y (Ne,i, Nµ,j)

)2

, (6)

where G(Ne,i, Nµ,j) represents the left-hand side of eq. (2) for 2 kinds of the
empirical pseudo functions

gA(E) = αA

( E

Em

)−γA
, (7)
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gA(E) = αA((lnE − βA)
3 + ηA)

( E

Em

)−3

, (8)

while gA(E)+fA(E) > 0, otherwise gA(E) = −fA(E). The unknown αA, βA, γA
and ηA parameters in expressions (7,8) were derived from χ2 minimization (6).
The numbers of bins were I = 60 and J = 45 with the bin size ∆ lnNe,∆ lnNµ ≃
0.1.

In fact, the minimization of χ2 (6) for different representations (7,8) of the
pseudo functions gA(E) provides a solution of the corresponding parametric
eq. (2) with a zero right-hand side. To avoid the trivial solutions gA(E) ≡ 0
and reveal the domains of the pseudo functions, the values of some of the
parameters were arbitrarily fixed during the minimization of χ2 (6). The mag-
nitudes of the fixed parameters were empirically determined via optimization
of conditions χ2

min
/nd.f. ≃ 1 and |gA(E)| ∼ fA(E) for the pseudo spectra with

the fixed parameters.
The true primary energy spectra fA(E) for A ≡ H,He,O, Fe nuclei (5)

and the all-particle energy spectrum
∑

fA(E) (lines) along with the corre-
sponding distorted (pseudo) spectra fA(E) + gA(E) (symbols) are presented
in Fig. 1 respectively. The parameters of the pseudo functions (7) derived for
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Fig. 1. Primary energy spectra fA(E) and the all-particle spectrum
∑

fA(E)
for A ≡ H,He,O, Fe nuclei (lines) and the corresponding pseudo solutions
fA(E) + gA(E) for the pseudo function (7) (symbols).

χ2

min
/nd.f. = 1.08 (nd.f. = 717) are presented in Table 1.
The effect of the pseudo functions (8) on the resulting primary energy

spectra is shown in Fig. 2. Evaluations of the corresponding parameters are
presented in Table 2 for χ2

min
/nd.f. = 1.1. The variations of the cubic power
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Table 1
Parameters αA (TeV−1) and γA of the pseudo function (7) for different primary
nuclei A and Em = 1000 TeV.

A αA · 104 γA

p 1.10 ± 0.06 2.71 ± 0.04

He −1.80 (fixed) 2.60 (fixed)

O 0.97 ± 0.05 2.65 ± 0.04

Fe −0.50 (fixed) 2.90 (fixed)
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Fig. 2. The same as Fig. 1 for the pseudo function (8).

indices in expression (8) in the range of 2− 5 lead to different types of pseudo
solutions as well.

It is clear from Figs. 1,2, that the contribution of the pseudo functions
gA(E) can be comparable and even significantly larger than the values of the
true spectra fA(E). Moreover, the pseudo solutions lose both the slopes and
the intensities of the spectra. At the same time, the all-particle spectra slightly
depend on the contribution of the pseudo functions.

The same results (Tables 1,2) were obtained using both the combined 2-
dimensional log-normal representation of the shower spectra WA(Ne, Nµ|E)
(Section 3) and the 3-dimensional (lnE, lnNe, lnNµ) parabolic interpolations
of corresponding probability density functions obtained by the CORSIKA
code.
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Table 2
Parameters αA (TeV−1), γA and η of the pseudo function (8) for different primary
nuclei A and Em = 1000 TeV.

A αA · 104 βA ηA

p −9.00 (fixed) 7.76± 0.01 0 (fixed)

He 0.044 ± 0.02 13.2± 1.08 169± 98

O −0.80 (fixed) 8.47± 0.05 0.94± 0.16

Fe 0.010 ± 0.002 11.4± 0.14 50 (fixed)

Table 3
Parameters αA (TeV−1) and εA (TeV) of the pseudo function (9) for different pri-
mary nuclei A and εH = 3000 TeV.

A αA · 100 εA/εH

p −3.0 (fixed) 1 (fixed)

He 3.05 ± 0.07 1.03± 0.01

O −0.84± 0.06 1.08± 0.03

Fe 0.15 ± 0.02 1.29± 0.10

Evidently, the range of relatively large measurement errors ∆Y (x) expands
the domain of the pseudo functions. Contributions of the mutually compen-
sative effects (eqs. 2,4) of the pseudo functions to the domain of the pseudo so-
lutions were tested using a 10 times larger EAS simulation sample (n = 7 ·106)
and the pseudo functions with evident singularity:

gA(E) = αAε
−1

A

( E

εA

)δ
, (9)

where δ = −1 at E ≤ εA and δ = −7 at E > εA. The singularity of the pseudo
function (9) for A ≡ H was fixed at εH = 3000 TeV and the scale factor αH =
−0.03. The remaining parameters for primary nuclei A ≡ He,O, Fe were es-
timated by χ2-minimization (6) and presented in Table 3 for χ2

min
/nd.f. = 2.01

and nd.f. = 857. The accuracies of integrations (2) were about 0.1%. The cor-
responding pseudo solutions are shown in Fig. 3.

Since the measurement errors are negligibly small, the significance of the
mutually compensative effects is well seen. The singularity of the proton spec-
trum was approximately compensated by the He and O spectra. This is due to
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Fig. 3. The same as Fig. 1 for the pseudo function (9) and n = 7 · 106 simulated
showers.

both the large number (nC = 15) of possible mutually compensative combina-
tions (3) and the peculiarities of EAS development in the atmosphere (kernel
functions WA(E), Section 3), which are expressed by the approximately log-
linear dependences of the statistical parameters < lnNe >, < lnNµ >, σe

and σµ of shower spectra WA(E) on energy (lnE) and nucleon number (lnA)
of primary nuclei [20,21]. The value of χ2

min
/nd.f. for a 10 times smaller EAS

sample (n = 7 · 105) was equal to 0.25.

5 Discussion

The results from Figs. 1–3 show that the pseudo functions with mutually
compensative effects exist and belong practically to all families - linear (7),
non-liner (8) and even singular (9) in a logarithmic scale.

The all-particle energy spectra in Figs. 1–3 are practically indifferent to the
pseudo solutions of elemental spectra. This fact directly follows from eq. (2) for
pseudo solutions and is well confirmed by the identity of the GAMMA [11,12]
and KASCADE [6] all-particle energy spectra in spite of disagreements of the
elemental (p,He, Fe) primary energy spectra (see [11,12]).

The χ2 minimization (6) uses mainly the nearest pseudo energy spectra with
free parameters for compensation of the pseudo spectra with fixed parameters.
The significance of the pseudo functions |gA(E)| in most cases exceeds the sig-
nificance of the evaluated primary energy spectra fA(E) and unfolding of (1)
can not be effective for NA = 4.
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Fig. 4. Domains of the pseudo solutions for He and Fe primary nuclei (light shaded
areas) and corresponding ”methodical errors” of the KASCADE unfolding spectra
(dark shaded areas) taken from [6]. The solid and dotted lines resulted from pseudo
functions (7) and the dashed lines stemmed from (8).

The unfolding of the primary energy spectra for NA = 5 will increase the
number of possible combinations (3) of the pseudo solutions and the corre-
sponding pseudo functions by a factor of two. Taking into account the large
values of applied χ2

min
/nd.f. ≃ 2 − 3 [6] one may conclude that the contribu-

tions of the pseudo functions in the unfolded energy spectra of [6] have to be
dominant.

The ”methodical errors” obtained in [6] for NA = 5 define the uncertainties
of the solutions intrinsic only to the given unfolding algorithms. The existence
and significance of the mutually compensative pseudo solutions follow from
eqs. (1,2) and from the peculiarities of the shower spectra WA(x|E) regardless
of the unfolding algorithms.

Comparison of the methodical errors (fA(E)+∆fA(E))/fA(E) for A ≡ He
and A ≡ Fe from [6] with corresponding errors (fA(E) + gA(E))/fA(E) due
to the pseudo solutions from expressions (7,8) are shown in Fig. 4. The mag-
nitudes of the fixed parameters were empirically determined by maximizing
|gHe(E)| (left panel) and |gFe(E)| (right panel) for a given goodness-of-fit test
χ2

min
/nd.f ≃ 2.5 from [6].

It is seen that the methodical errors (dark shaded areas) from [6] signif-
icantly underestimate the contribution of the pseudo solutions (light shaded
areas) from expressions(7,8). Moreover, the methodical errors from [6] slightly
depend on the primary energy (or statistical errors), whereas the domains of
the pseudo solutions strongly correlate with the statistical errors according to
definition (2).
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6 Conclusion

The results show that the reconstruction of primary energy spectra using
unfolding algorithms [6,15] can not be effective and the disagreement between
the KASCADE [6] and GAMMA [11,12] data is insignificant in comparison
with the large domains of the mutually compensative pseudo solutions (Fig 4)
of the unfolded spectra [6].

Even though the oscillating pseudo solutions g1,A(E) (Section 2) are possi-
ble to avoid using regularization algorithms [15], the mutually compensative
effect (4) of the arbitrary pseudo functions gA(E) intrinsic to the expression
(2) is practically impossible to avoid at NA > 1.

The uncertainties of solutions due to the mutually compensative pseudo
functions can be obtained by varying the initial values of iterations within a
wide range in the frameworks of a given unfolding algorithm.

To decrease the contributions of the mutually compensative pseudo solu-
tions one may apply a parameterization of the integral equations (1) [1,2,4,11,12]
using a priori (expected from theories [17,18,19]) known primary energy spec-
tra with a set of free spectral parameters. This transforms the EAS inverse
problem into a set of equations with unknown spectral parameters, and thereby
the EAS inverse problem is transmuted into a test of the given primary energy
spectra using detected EAS data [4]. The reliability of the solutions can be
determined by their stability depending on the number of spectral parame-
ters, the agreement between the expected and detected EAS data sets, and
the conformity of the spectral parameters with theoretic predictions.

The all-particle energy spectra (Fig. 1–3) are practically indifferent toward
the pseudo solutions for elemental spectra.
The obtained results depend slightly on the spectral representations of the
shower spectra WA(E) and the primary energy spectra fA(E).

Acknowledgments

I thank my colleagues from the GAMMA experiment for stimulating this
work and the anonymous referee for suggestions which considerably improved
the paper.

References

[1] R. Glasstetter et al., Proc. 26th ICRC, Salt Lake City, 1 (1999) 222.

[2] S.V. Ter-Antonyan, L.S. Haroyan, Preprint hep-ex/0003006 (2000).

11

http://arxiv.org/abs/hep-ex/0003006


[3] H. Ulrich et al., Proc. 27th ICRC, Hamburg, 1 (2001) 97.

[4] S.V. Ter-Antonyan and P.L. Biermann, Proc. 27th ICRC, Hamburg, HE054
(2001) 1051 (astro-ph/0106091).

[5] Samvel Ter-Antonyan and Peter Biermann, Proc. 28th ICRC, Tsukuba, HE1,
(2003) 235 (astro-ph/0302201).

[6] T. Antoni et al., Astropart. Phys. 24 (2005) 1 (astro-ph/0505413).

[7] R.M. Martirosov et al., 29th ICRC, Pune, HE1.5, 8 (2005) 9 (astro-ph/0506588).

[8] M. Aglietta et al., Astropart. Phys. 10 (1999) 1.

[9] M.A.K. Glasmacher et al., Astropart. Phys. 10 (1999) 291.

[10] T. Antoni et al., Nucl. Instr. & Meth. A513 (2003) 490.

[11] S.V. Ter-Antonyan et al., 29th ICRC, Pune, HE1.2, 6 (2005) 105
(astro-ph/0506588).

[12] A.P. Garyka et al., Astropart. Phys. (2007), doi: 10.1016/j.astropartphys.
2007.04.004 (arXiv:0704.3200v1 [astro-ph]).

[13] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, T. Thouw, Forschungszentrum
Karlsruhe Report, FZKA 6019 (1998).

[14] R.S. Fletcher, T.K. Gaisser, P. Lipari, T. Stanev, Phys.Rev. D50 (1994) 5710.

[15] R. Gold, ANL-6984 Report, Argonne (1964).

[16] B. Wiebel-Sooth, P.L. Bierman and H. Meyer, Astron. Astrophys. 330 (1998)
330.

[17] A.M. Hillas, Journal of Physics G31 (2005) R95.

[18] J.R. Hörandel, Astropart. Phys. 21 (2004) 241.

[19] T. Stanev, P.L. Biermann, T.K. Gaisser, Astron. Astrophys. 274, (1993) 902.

[20] S.V. Ter-Antonyan, 28th ICRC, Tsukuba, HE2 (2003) 239 (astro-ph/0303658).

[21] J.R.Hörandel, astro-ph/0611387 (2006).

12

http://arxiv.org/abs/astro-ph/0106091
http://arxiv.org/abs/astro-ph/0302201
http://arxiv.org/abs/astro-ph/0505413
http://arxiv.org/abs/astro-ph/0506588
http://arxiv.org/abs/astro-ph/0506588
http://arxiv.org/abs/0704.3200
http://arxiv.org/abs/astro-ph/0303658
http://arxiv.org/abs/astro-ph/0611387

	Introduction
	Problem of uniqueness
	EAS simulation model
	Pseudo solutions
	Discussion
	Conclusion
	References

