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Abstract

An epoch of accelerated expansion, or inflation, in the early universe solves
several cosmological problems. While there are many models of inflation only
recently has it become possible to discriminate between some of the models us-
ing observations of the cosmic microwave background radiation and large-scale
structure. In this talk, we discuss inflation and its observational consequences,
and then the status of current cosmological observations and their implications
for different models of inflation.

1 Introduction

Inflation is a period of rapid expansion in the early universe that resolves several cos-
mological problems. While many different models of inflation such as new inflation,
chaotic inflation, natural inflation and hybrid inflation have been proposed over the
past two and a half decades, we are now entering the era where some models can
be ruled out or shown to be consistent with observations. In this talk we shall first
discuss inflation and its observational consequences. We shall then discuss what the
current observations of the cosmic microwave background radiation (CMBR) and
large-scale structure (LSS) in the universe imply for models of inflation.

2 Inflation and its observational consequences

Formally, inflation can be divided into two eras - the inflationary era and the re-
heating era. In the inflationary era the universe undergoes accelerated expansion
because of the dominant potential energy of a slowly moving scalar field φ (the infla-
ton). In the subsequent reheating era, the inflaton decays and reheats the universe.
Inflation provides an explanation as to why the CMBR is (nearly) isotropic (the
horizon problem) and why the universe today is spatially flat (the flatness problem).
Furthermore it dilutes away unwanted relics such as GUT monopoles.
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In addition to the above effects, quantum fluctuations of the inflaton during
inflation give rise to fluctuations in the energy density of particle species after the
inflaton decays. Furthermore, quantum (tensor) fluctuations of the metric during
inflation give rise to a cosmic gravitational wave background.

Fluctuations in the density of non-relativistic particles, or matter, are the seed for
large-scale structure observed in the universe today. If δk is the Fourier transform of
δρm/ρm then the matter power spectrum is given as P (k) = |δk|

2. Inflation predicts
that P (k) = Akn with the spectral index n ∼ 1. [If n = 1, P (k) is called a scale-
invariant or Harrison-Zeldovich spectrum.] A related quantity is the scalar power
spectrum, PS(k) = ASk

n−1, which is associated with the scalar curvature. More
generally, inflation gives

n(k) = n(k0) +
1

2
dn/d(ln k0) ln(k/k0) , (1)

which is referred to as running of the spectral index. Different models of inflation
give slightly different behaviour for n(k). Simulations of large-scale structure for an
inflationary universe in the context of any particular inflation model can be compared
with large-scale structure data from the Sloan Digital Sky Survey (SDSS), 2 Degree
Field Galaxy Redshift Survey (2dFGRS), etc.

Fluctuations in the photon density and interactions of the photons with the fluc-
tuations in the matter at decoupling give the anisotropies in the CMBR temperature
(first detected by the Cosmic Background Explorer (COBE) in 1992). The 2-point
correlation function for photons is

〈T (n̂1)T (n̂2)〉θ − T 2
0

T 2
0

, (2)

where T (n̂) is the temperature in direction n̂, T0 is the mean temperature and 〈..〉θ
indicates averaging over all points in the sky separated by an angle θ. The shape
of the 2-point function depends on P (k) which is provided by inflation. The matter
power spectrum in inflation models imply a flat 2-point temperature correlation
function at large angles and peaks at smaller angles.

In addition to the above form of the 2-point correlation function, inflation pre-
dicts that the fluctuations in the CMBR will be largely Gaussian. The n-point
temperature correlation function 〈T (n̂1)T (n̂2)...T (n̂n)〉 ∝ 〈φ(x1)φ(x2)...φ(xn)〉. The
small value of the 2-point temperature correlation function (∼ O(10−5) at large an-
gles) implies that the inflaton is a very weakly coupled field [1]. Hence the n-point
correlation in φ is approximately 0 for odd n and ∼ 〈φ(x1)φ(x2)〉...〈φ(xn−1)φ(xn)〉
for even n. Thus higher point correlations in the temperature are 0 or powers of the
2-point correlation function, indicating Gaussian fluctuations.

Tensor fluctuations of the metric generated during inflation are associated with
the gravitational wave background. The tensor power spectrum is given by PT (k) =
AT k

nT . The ratio of the tensor and scalar power spectra is denoted as r. Now
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the scale of inflation is equal to (r/0.07)1/4 1.8 × 1016 GeV, and so a detection of
gravitational waves can give the scale of inflation.

The gravitational wave background affects the CMBR and contributes to the
2-point correlation function. Furthermore, the interaction of gravitational waves
with photons gives a quadrupole anisotropy in the photon distribution which leads
to polarisation in the CMBR after Thomson scattering off electrons at decoupling.

The current observations of the CMBR and LSS broadly imply the following in
relation to inflation:

• The matter density fluctuations are nearly scale-invariant with P (k) = Akn

with n ∼ 1

• The presence of peaks in the CMBR fluctuations are consistent with inflation
and not with other mechanisms of producing primordial fluctuations such as
cosmic strings, etc.

• There is no evidence for non-Gaussianity in the temperature fluctuations [2]

• There are correlations on super-horizon scales, i.e., on scales larger than the
horizon at decoupling, in the polarisation spectrum indicating the presence of
fluctuations on scales larger than the horizon size at decoupling. The presence
of such seemingly acausal fluctuations is a prediction of inflation. (Correlations
on super-horizon scales are also seen in the temperature spectrum. However
these can be generated causally after decoupling from sub-horizon scale fluc-
tautions via the integrated Sachs-Wolfe effect.)

Thus the inflationary paradigm is consistent with current observations. With
regards to gravitational waves generated during inflation, there has been no direct
detection yet. Furthermore, there are other sources of the quadrupole anisotropy
at decoupling and the polarisation detected so far does not provide the value of
the gravitational wave contribution. We now look at specific values of cosmological
parameters inferred from the CMBR and LSS data to discriminate between different
models of inflation.

3 Distinguishing between different inflation models

Inflation models can be parametrised by the following slow roll parameters,

ǫV =
M2

Pl

16π

(

V ′(φ)

V (φ)

)2

ηV =
M2

Pl

8π

(

V ′′(φ)

V (φ)

)

ξV =

(

M2

Pl

8π

)2 (

V ′V ′′′

V 2

)

(3)

and higher derivatives. Above V (φ) is the inflaton potential and ′ refers to a deriva-
tive with respect to φ. Note that different authors use different definitions of the
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slow roll parameters; ours are taken from Ref. [3]. The assumption that the inflaton
rolls slowly during the inflationary epoch is equivalent to ǫV , ηV , ξV ≪ 1. Now,
n = 1 − 6ǫV + 2ηV , r = 16ǫV and dn/d(ln k) = 16ǫV ηV − 24ǫ2V − 2ξV . Therefore
constraints on n, dn/d(ln k) and r from CMBR and LSS data give limits on ǫV , ηV
and ξV . Below we first present constraints on n, dn/d(ln k) and r.

WMAP3 alone is consistent with [4]

0.94 < n < 1.04 dn/d(ln k) = 0 and r < 0.60 (4)

For a running spectral index [4]

1.02 < n < 1.38 − 0.17 < dn/d(ln k) < −0.02 and r < 1.09 (5)

The parameters are estimated at a pivot scale k∗ = 0.002Mpc−1 in Ref. [4]. Note
that dn/d(ln k) < −0.02 rules out all single field slow roll models as it leads to an
insufficient duration of inflation [5].

Combining results from WMAP3 and SDSS gives [4]

0.93 < n < 1.01 dn/d(ln k) = 0 and r < 0.31 (6)

or
0.97 < n < 1.21 − 0.13 < dn/d(ln k) < 0.007 and r < 0.38 (7)

Note that the upper limit on r has decreased. This is because as r increases, the
scalar amplitude decreases and for r ≥ 0.3 this then adversely affects the LSS.

Including small angle CMBR data from CBI, ACBAR, VSA and B2K with
WMAP3 and 2dFGRS LSS data gives [6]

0.95 < n < 0.98 dn/d(ln k) = 0 (8)

or

0.94 < n < 1.09 −0.14 < dn/d(ln k) < −0.013 (9)

The corresponding upper limit on r of 0.26 gives an upper limit on the scale of
inflation of 2× 1016 GeV. In Ref. [6] the pivot scale k∗ = 0.01Mpc−1.

Implications for inflation models

Different models of inflation are distinguished by the form of the inflaton poten-
tial and therefore correspond to different ranges of values for the slow roll parameters
[4]. Thus the above constraints on spectral parameters provide constraints on infla-
tion models.

New inflation: In new inflation the inflaton potential has the form

V = V0

[

1−

(

φ

µ

)p]

(10)
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with the initial position of the inflaton at small values of φ. An example of such
a potential is the Coleman-Weinberg potential which is approximately given by
V = V0 − λφ4 in the small φ region. New inflation models with p ≥ 3 are consistent
with current observations [7].

Chaotic inflation: Chaotic inflation models have a potential of the form ∼ Aφp

with the inflaton field initially displaced far from the minimum of its potential. The
initial value of the field is greater than MPl (though V (φ) < M4

Pl
). The field rolls

slowly till φ ∼ 0.1MPl during the inflationary era, and then oscillates in its potential
and decays. Models with V (φ) ∼ m2φ2 are consistent with the data while models
with V (φ) ∼ λφ4 are ruled out by WMAP3 and LSS data [4]. However, recently
it has been pointed out that chaotic inflation models with V (φ) ∼ λφ4 are still
allowed if the neutrino fraction fν ≡ Ων/Ωc = 0.03− 0.05. This further implies that
∑

i mνi = 0.3 − 0.5 eV, as in quasi-degenerate nuetrino mass models [8]. This is an
interesting consistency relation between a model of inflation and a model of neutrino
masses.

Natural inflation: In natural inflation models the inflaton is a pseudo-Nambu-
Goldstone boson associated with spontaneous symmetry breaking at a scale f and
small explicit (dynamical) symmetry breaking of order Λ. In these models the flat
potential of a Nambu-Goldstone boson φ is tilted because of explicit symmetry
breaking and

V (φ) = Λ4[1 + cos(φ/f)] . (11)

The tilt of the potential ∼ height/width ∼ (Λ/f)4 and for Λ ∼ 1015 GeV and f ∼
1019 GeV the potential is flat enough to satisfy constraints on the inflaton potential.
Because the flatness of the potential is associated with a naturally flat Nambu-
Goldstone boson potential and small dynamical symmetry breaking, rather than an
unnaturally small coupling, this scenario is called natural inflation. Natural inflation
is consistent with the WMAP3 data [9].

Hybrid inflation: These models involve a potential with 2 fields φ and χ. The
potential has the form

V (φ, χ) = λ(χ2 − χ2

0) +
1

2
m2φ2 +

1

2
λ′χ2φ2 . (12)

φ is initially displaced from the minimum of its potential and rolls slowly in its
potential. For φ > φ1, χ is localised near the origin and inflation is driven by the
energy density of φ or the false vacuum energy of χ (in the latter stages). When
φ crosses the threshhold value φ1 the potential for χ turns over and now χ rolls
down towards the new minimum χ0. This ends the inflationary era and φ and χ
then oscillate in their potential and decay. The original non-SUSY version of this
model implies that n ≥ 1 [10] and is ruled out if indeed n < 1. However hybrid
inflation models in the context of SUSY and SUGRA, referred to as D-term and
F-term inflation, can give n < 1 and there does exist a region of parameter space
consistent with the data [11].
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4 Conclusion

In summary, the inflationary paradigm is consistent with the CMBR and LSS data.
However, while current data on CMBR and LSS provide information on the scalar
and tensor power spectra making it possible to discriminate between some models
of inflation, it is still not possible to rule out many specific models of inflation. In
the future, the European Space Agency’s Planck mission will give better data on
the spectral index and its running which will help in constraining inflation models.
For example, a detection of large negative running of the spectral index will rule out
single field slow roll inflation models. Furthermore, Planck and the ground-based
Clover experiment will measure r upto 10−2. This will help to constrain the scale
of inflation.
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