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ABSTRACT

This paper presents a continuation of our efforts to numerically study accretion disks that are

misaligned (tilted) with respect to the rotation axis of a Kerr black hole. Here we present results

of a global numerical simulation which fully incorporates the effects of the black hole spacetime as

well as magnetorotational turbulence that is the primary source of angular momentum transport

in the flow. This simulation shows dramatic differences from comparable simulations of untilted

disks. Accretion onto the hole occurs predominantly through two opposing plunging streams that

start from high latitudes with respect to both the black-hole and disk midplanes. This is due

to the aspherical nature of the gravitational spacetime around the rotating black hole. These

plunging streams start from a larger radius than would be expected for an untilted disk. In this

regard the tilted black hole effectively acts like an untilted black hole of lesser spin. Throughout

the duration of the simulation, the main body of the disk remains tilted with respect to the

symmetry plane of the black hole; thus there is no indication of a Bardeen-Petterson effect in

the disk at large. The torque of the black hole instead principally causes a global precession of

the main disk body. In this simulation the precession has a frequency of 3(M⊙/M) Hz, a value

consistent with many observed low-frequency quasi-periodic oscillations. However, this value is

strongly dependent on the size of the disk, so this frequency may be expected to vary over a large

range.

Subject headings: accretion, accretion disks — black hole physics — galaxies: active — MHD —

relativity — X-rays: stars

1. Introduction

Black-hole accretion has long been postulated to power the energetic emissions seen from quasars,

active galactic nuclei (AGN), and many galactic X-ray sources; there is now ample observational evidence

to support such claims (e.g. Krolik 1999; McClintock & Remillard 2005). Black-hole accretion flows are

also of interest as laboratories to test predictions of general relativity. However, the nature of such flows

http://arxiv.org/abs/0706.4303v1
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is complex, involving time-dependent, multi-dimensional dynamics with generically little symmetry. Hence

numerical simulations play an integral role in advancing our understanding.

Many simulations of black-hole accretion flows have been carried out over the past three decades, both in

the hydrodynamic (e.g. Wilson 1972; Hawley et al. 1984; Hawley 1991) and magnetohydrodynamic (MHD)

(e.g. Koide et al. 1999; Gammie et al. 2003; De Villiers & Hawley 2003b) regimes. A common assumption in

nearly all of the work to date has been that the symmetry plane of the central black hole is aligned with the

midplane of the accretion flow, at least in some averaged sense. However, there is compelling observational

evidence in several black-hole X-ray binaries (BHBs), e.g. GRO J1655-40 (Orosz & Bailyn 1997) and XTE

J1550-564 (Hannikainen et al. 2001; Orosz et al. 2002), and AGN, e.g. NGC 3079 (Kondratko et al. 2005),

NGC 1068 (Caproni et al. 2006), and NGC 4258 (Caproni et al. 2007), suggesting that misaligned (or tilted)

black holes may be common (see also Maccarone 2002). This claim relies on the observation of relativistic

bipolar jets (thought to be aligned with the spin axis of the black hole) that are not perpendicular to the

plane of the accretion disk observed at large scales.

There are also compelling theoretical arguments that many black holes should be tilted. First, the

formation avenues for many black-hole - disk systems favor, or at least allow for, a tilted configuration

(Fragile et al. 2001). In stellar mass binaries, the orientation of the outer disk is fixed by the binary orbit,

whereas the orientation of the black hole is determined by how it became part of the system, whether through

a supernova explosion or multi-body interaction. If the black hole formed from a member of a preexisting

binary through a supernova, then the black hole could be tilted if the explosion were asymmetric. If the

black hole joined the binary through multi-body interactions, such as binary capture or replacement, then

there would have been no preexisting symmetry, so the resulting system would nearly always harbor a tilted

black hole. This same argument can be extended to AGN in which merger events reorient the central black

hole or its fuel supply and result in repeated tilted configurations.

If an accretion disk is misaligned or tilted, it will be subject to Lense-Thirring precession. For an ideal

test particle in a slightly tilted orbit at a radius r around a black hole of mass M and specific angular

momentum a, this precession occurs at an angular frequency ΩLT ≈ 2aM/r3. Close to the black hole, this is

comparable to the orbital angular frequency Ω = (M/r3)1/2/[1 + a(M/r3)1/2] ≈ ΩKep. However, because of

its strong radial dependence, Lense-Thirring precession becomes much weaker far from the hole. Therefore,

a disk will experience a differential precession that will tend to twist and warp it.

A warping disturbance can be communicated through a disk in either a diffusive or wave-like manner.

In the diffusive case, the warping is limited by secular (i.e. “viscous”) responses within the disk. In such a

case, Lense-Thirring precession is expected to dominate out to a unique, nearly constant transition radius

(Bardeen & Petterson 1975; Kumar & Pringle 1985), inside of which the disk is expected to be flat and

aligned with the black-hole midplane, and outside of which the disk is also expected to be flat but in a

plane determined by the angular momentum vector of the gas reservoir. This is what we term a “Bardeen-

Petterson” configuration. Interestingly, data for the two black-hole X-ray binaries previously mentioned

are best fit by disk components with inclinations that differ from their binary measurements. The best-fit

inclinations are more consistent with inclination constraints derived from the radio jets (Davis et al. 2006),

possibly suggesting Bardeen-Petterson configurations. Caproni et al. (2006) also claim that the observations

of NGC 1068 are consistent with the predictions of the Bardeen-Petterson effect. Confirmation could come

through observations of relativistically broadened reflection features (Fragile et al. 2005).

The Bardeen-Petterson result is expected to apply for Keplerian disks whenever the dimensionless stress

parameter α (Shakura & Sunyaev 1973) is larger than the ratio of the disk semi-thicknessH to the radius r at
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all radii. Given that α is usually considered to be significantly less than one, this implies very geometrically

“thin” disks. Unfortunately, current computational limitations prevent us from conducting global simulations

of disks that are this thin. On the other hand, the Bardeen-Petterson regime may not be that common in

real disks. Neglecting relativistic correction factors, the innermost, radiation pressure and electron scattering

dominated portions of radiatively efficient accretion disks satisfy

H

r
∼ ε−1

(

L

LEdd

)(

r

rG

)−1

, (1)

where ε ∼ 0.1 is the radiative efficiency, L/LEdd is the luminosity in units of Eddington, and rG = GM/c2

is the gravitational radius. Note that equation (1) is independent of whether the stress is chosen to be

proportional to gas pressure, radiation pressure, or some combination of the two. We therefore conclude

that the Bardeen-Petterson regime will be relevant in radiatively efficient disks near the black hole only for

very small Eddington ratios L/LEdd . αε << 1. Moreover, radiatively less efficient, geometrically slim and

thick flows will clearly not be in the Bardeen-Petterson regime.

Global simulations of tilted disks that have H/r > α are computationally feasible. In this regime Lense-

Thirring precession is expected to produce warps that propagate in a wave-like manner (Papaloizou & Lin

1995). In Fragile & Anninos (2005) we presented results from the first fully general relativistic three-

dimensional hydrodynamic numerical studies of tilted thick-disk accretion onto rapidly rotating (Kerr) black

holes. We found that, although Lense-Thirring precession did cause the disk to warp, the warping only

occurred inside a radius in the disk at which the precession time became comparable to other dynamical

timescales, primarily the azimuthal sound-crossing time. After the differential warping ended and the evo-

lution became quasi-static, the disks underwent near solid-body precession at rates consistent with some

low-frequency quasi-periodic oscillations (QPOs).

In this paper we extend the results of Fragile & Anninos (2005) to include magnetic fields. The in-

clusion of magnetic fields is important because it is now widely believed that local stresses within black-

hole accretion disks are generated by turbulence that results from the magnetorotational instability (MRI;

Balbus & Hawley 1991). Here we report on our first global general relativistic MHD (GRMHD) simulation

of a tilted accretion disk around a moderately rapidly rotating black hole (a/M = 0.9). The simulation is

initialized starting from the analytic solution for an axisymmetric torus around a rotating black hole. A

weak poloidal magnetic field is added to the torus to seed the MRI. After the torus is initialized, the black

hole is tilted by an angle β0 = 15◦ relative to the disk through a transformation of the metric. The system is

then allowed to evolve. This paper reports the results as follows: In §2 we describe the numerical procedures

used in this GRMHD simulation. In §3 we present the results of this simulation. In §4 we summarize our

findings and draw conclusions.

2. Numerical Methods

This work is carried out using the Cosmos++ astrophysical magnetohydrodynamics code (Anninos et al.

2005). Similar to our predecessor code Cosmos (Anninos & Fragile 2003), Cosmos++ includes several

schemes for solving the GRMHD equations. The fluid equations can be solved using a traditional artifi-

cial viscosity scheme, non-oscillatory central difference methods, or a new hybrid dual energy (internal and

total) method. For this work, we use the artificial viscosity formulation, mainly because of its speed and

robustness. With the magnetic fields we solve the induction equation in an advection-split form and apply a

hyperbolic divergence cleanser to maintain an approximately divergence-free magnetic field. For clarity and
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notation sake, we present the full evolution equations for mass, internal energy, momentum, and magnetic

induction as solved in this work. Throughout this paper we use units where G = c = 1 and the metric sig-

nature is (−,+,+,+). We use the standard notation in which four- and three-dimensional tensor quantities

are represented by Greek and Latin indices, respectively.

The evolution equations are

∂tD + ∂i(DV
i) = 0 , (2)

∂tE + ∂i(EV
i) = −P∂tW − (P +Q) ∂i(WV i) , (3)

∂tSj + ∂i(SjV
i) =

1

4π
∂t(

√−gBjB
0) +

1

4π
∂i(

√−gBjB
i)

+

(

SµSν

2S0
−

√−g
8π

BµBν

)

∂jgµν −
√−g ∂j (P + PB +Q) , (4)

∂tBj + ∂i(BjV i) = Bi∂iV
j + gij ∂iψ , (5)

∂tψ + c2h∂iBi = −c
2
h

c2p
ψ , (6)

where gµν is the 4-metric, g is the 4-metric determinant, W =
√−gu0 is the relativistic boost factor,

D = Wρ is the generalized fluid density, V i = ui/u0 is the transport velocity, uµ = gµνuν is the fluid

4-velocity, Sµ = W (ρh + 2PB)uµ is the covariant momentum density, E = We = Wρǫ is the generalized

internal energy density, P is the fluid pressure, Q is the artificial viscosity used for shock capturing, and ch
and cp are coefficients to determine the strength of the hyperbolic and parabolic pieces of the divergence

cleanser. There are two representations of the magnetic field in these equations: Bµ is the rest frame

magnetic induction used in defining the stress tensor

T µν = (ρh+ 2PB)u
µuν + (P + PB) g

µν − 1

4π
BµBν (7)

and

Bµ =W (Bµ −B0V µ) (8)

is the divergence-free (∂Bi/∂xi = 0), spatial (B0 = 0) representation of the field. The time component of

the magnetic field B0 is recovered from the orthogonality condition Bµuµ = 0

B0 = −W
g

(

g0iBi + gijBjV i
)

. (9)

The relativistic enthalpy is

h = 1 +
ΓP

(Γ− 1)ρ
+
Q

ρ
, (10)

where we have assumed an equation of state of the form P = (Γ − 1)ρǫ. Finally, PB = ||B||2/8π =

gµνB
µBν/8π is the magnetic pressure. We use the scalar Q from Anninos et al. (2005) with kq = 2.0 and

kl = 0.3. We fix the divergence cleanser coefficients to be ch = ccfl∆xmin/∆t and c
2
p = ch, where ccfl = 0.7

is the Courant coefficient, ∆xmin is the minimum covariant zone length, and ∆t is the evolution timestep.

For simplicity, we hold the timestep fixed at ∆t = ccfl∆xmin throughout the simulation.

These GRMHD equations are evolved in a “tilted” Kerr-Schild polar coordinate system (t, r, ϑ, ϕ). This

coordinate system is related to the usual (untilted) Kerr-Schild coordinates (t, r, θ, φ) through a simple

rotation about the y-axis by an angle β0, such that




sinϑ cosϕ

sinϑ sinϕ

cosϑ



 =





cosβ0 0 − sinβ0
0 1 0

sinβ0 0 cosβ0









sin θ cosφ

sin θ sinφ

cos θ



 . (11)
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The full tilted metric terms are provided in Fragile & Anninos (2005) [see also Fragile & Anninos (2007)].

The computational advantages of the “horizon-adapted” Kerr-Schild form of the Kerr metric were first

described in Papadopoulos & Font (1998) and Font et al. (1998). The primary advantage is that, unlike

Boyer-Lindquist coordinates, there are no singularities in the metric terms at the event horizon, so the

computational mesh can extend into the hole’s interior. In principle, this should keep the inner boundary

causally disconnected from the flow, although numerically there is still some communication.

The simulation is carried out on a spherical polar mesh with nested resolution layers. The base grid

contains 323 mesh zones and covers the full 4π steradians. Varying levels of refinement are added on top of this

base layer; each refinement level doubles the resolution relative to the previous layer. The main simulation,

referenced as Model 915h, has two levels of refinement, thus achieving a peak resolution equivalent to a

1283 simulation. For comparison we also discuss results from an equivalent untilted simulation (Model 90h)

with the same resolution. As an argument that our results are reasonably well converged, we also include

results from two other tilted simulations: one with a single refinement layer and an equivalent resolution

of 643 (Model 915m) and another that starts from a base grid of 24 × 24 × 32 and adds three layers of

refinement for an equivalent resolution of 192 × 192 × 256 (Model 915vh). The evolution times for these

simulations differ as described below. In all cases, the full refinement covers the region rmin ≤ r ≤ rmax,

0.075π = ϑ1 ≤ ϑ ≤ ϑ2 = 0.925π, 0 ≤ ϕ ≤ 2π, where rmin = 0.98rBH = 1.41rG and rmax = 120rG are

the inner and outer boundaries of the grid, respectively, and rBH = 1.43rG is the black-hole horizon radius.

The primary motivation for using a nested grid is to allow us to maintain a reasonable Courant-limited

timestep without sacrificing any spatial resolution within the disk nor completely excluding the region near

the pole. The gain in computational efficiency is significant since, for a polar mesh, the timestep scales as

∆t ∼ rmin sinϑmin∆ϕ. By underresolving the polar region, we gain by increasing both ϑmin and ∆ϕ. With

2 levels of refinement, we are able to use a timestep that is a factor of 11.8 larger than what we could use if

our most refined layer extended all the way to the pole. The main drawback of this approach is that we are

unable to resolve the region in which jets are expected to form.

In the radial direction we use a logarithmic coordinate of the form η ≡ 1.0 + ln(r/rBH). The spatial

resolution near the black-hole horizon is ∆r ≈ 0.05rG; near the initial pressure maximum of the torus, the

resolution is ∆r ≈ 0.5rG. Both are considerably smaller than the initial characteristic MRI wavelength

λMRI ≡ 2πvA/Ω ≈ 2.5rG. This also gives us a large number of zones inside the plunging region. In the

angular direction, in addition to the nested grids, we use a concentrated latitude coordinate x2 of the form

ϑ = x2 +
1
2 (1− h) sin(2x2) with h = 0.5, which concentrates resolution toward the midplane of the disk. As

a result rcenter∆ϑ = 0.3rG near the midplane while it is a factor of ∼ 3 larger for the fully refined zones near

the pole. The grid used in Models 915h and 90h is shown in Figure 1.

Since we cover the full 4π steradians, the only “external” boundaries are the inner and outer radial

boundaries, where we apply outflow conditions: Fluid variables are set the same in the external boundary

zone as in the neighboring internal zone, except for velocity, which is chosen to satisfy

V r
ext =

{

V r
int when V r points off the grid ,

−V r
int when V r points onto the grid .

(12)

In the azimuthal direction we apply periodic boundaries at ϕ = 0 and 2π. Since Cosmos++ is a zone-centered

code, we do not have to treat the pole (ϑ = 0 or π) directly. Instead unboosted scalar quantities, such as the

gas pressure P , in the “ghost” zones across the pole are filled with real data from the corresponding zone

located 180◦ away in azimuth. Unboosted vector quantities, such as velocity V i, are similarly filled with

data from appropriate real zones, albeit with the signs reversed for the ϑ and ϕ components to maintain a

consistent sense of coordinate direction across the pole. Boosted quantities, since they contain the metric
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Fig. 1.— Plot of the grid geometry used for the main simulation (Model 915h). The initial torus is aligned

in the symmetry plane of the grid, while the black hole is not.



– 7 –

determinant
√−g, are reflected across the pole so they extrapolate to zero there. This treatment differs

from the pure reflecting boundaries used in other works (e.g. De Villiers et al. 2003; McKinney 2006) in its

treatment of the unboosted variables. For untilted black holes the difference is relatively minor. However,

for tilted black holes, our approach makes the pole more transparent to the fluid.

We initialize these simulations starting from the analytic solution for an axisymmetric torus around a

rotating black hole (Chakrabarti 1985). To provide a link with an untilted model already in the literature,

we start with identical torus conditions as model KDP of De Villiers et al. (2003), which is the relativistic

analog of model GT4 of Hawley (2000). In our initialization, the torus is defined by: the black-hole spacetime,

specifically the spin of the black hole; the inner radius of the torus rin; the radius of the pressure maximum of

the torus rcenter; and the power-law exponent q used in defining the specific angular momentum distribution,

ℓ = −uφ/ut = kΛ2−q . (13)

As in model KDP, a/M = 0.9, rin = 15rG, rcenter = 25rG, and q = 1.68. Knowledge of rcenter leads directly

to a determination of ℓcenter by setting it equal to the geodesic value at that radius. The numerical value of

k comes directly from the choice of q and the determination of Λcenter, where

1

Λ2
= − gtφ + ℓgtt

ℓgφφ + ℓ2gtφ
. (14)

Finally, having chosen rin we can obtain uin = ut(rin), the surface binding energy of the torus, from

u−2
t = gtt − 2ℓgtφ + ℓ2gφφ.

The solution of the torus variables can now be specified. The internal energy of the torus is (De Villiers et al.

2003)

ǫ(r, θ) =
1

Γ

[

uinf(ℓin)

ut(r, θ)f(ℓ(r, θ))

]

, (15)

where ℓin = ℓ(rin) is the specific angular momentum of the fluid at the surface and

f(ℓ) =
∣

∣

∣1− k2/nℓα
∣

∣

∣

1/α

, (16)

where n = 2 − q and α = (2n − 2)/n. Assuming an isentropic equation of state P = ρǫ(Γ − 1) = κρΓ, the

density is given by ρ = [ǫ(Γ− 1)/κ]
1/(Γ−1)

. As in model KDP, we take Γ = 5/3 and κ = 0.01 (arbitrary

units). Finally, the angular velocity of the fluid is specified by

Ω = V φ = − gtφ + ℓgtt
gφφ + ℓgtφ

. (17)

The dependence of Λ on ℓ in equation (14) for Kerr black holes means that the solution requires an

iterative procedure. However, we can get an approximate solution by taking the Schwarzschild form (i.e.

ignoring gtφ)

Λ2 = −gφφ
gtt

. (18)

The error introduced by doing so is small and only affects the initial torus configuration, which will already

be unstable to the MRI due to the seed magnetic fields being added. Thus, this slightly simplified treatment

has no real consequence for the evolution. We note that the same procedure is followed in De Villiers et al.

(2003).
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Once the torus is constructed, it is seeded with a weak magnetic field in the form of poloidal loops along

the isobaric contours within the torus. The initial magnetic field vector potential is (De Villiers & Hawley

2003a)

Aϕ =

{

b(ρ− ρcut) for ρ ≥ ρcut ,

0 for ρ < ρcut .
(19)

The non-zero spatial magnetic field components are then Br = −∂ϑAϕ and Bϑ = ∂rAϕ. The parameter

ρcut = 0.5 ∗ ρmax,0 is used to keep the field a suitable distance inside the surface of the torus, where ρmax,0 is

the initial density maximum within the torus. Using the constant b in equation (19), the field is normalized

such that initially βmag = P/PB ≥ βmag,0 = 10 throughout the torus. This initialization is slightly different

than De Villiers & Hawley (2003b), who use a volume integrated βmag to set the field strength; the difference

is such that βmag,0 = 100 in their work is roughly comparable to βmag,0 = 10 here.

In the background region not specified by the torus solution, we set up a rarefied non-magnetic plasma

accreting into the black hole (Komissarov 2006). The density and pressure have the form

ρ = 10−3ρmax,0 exp

( −3r

rcenter

)

, P = κρΓ . (20)

The radial velocity has the form

V r =
gtr

gtt

[

1−
(rG
r

)4
]

. (21)

This introduces inflow through the horizon without creating large velocity jumps at the torus surface. This

background is initially more dense than the static background used by De Villiers et al. (2003). However,

since this background reservoir is not replenished at the outer boundary, it is rapidly depleted and has virtu-

ally no long-term dynamical impact on the problem. Numerical floors are placed on ρ and e at approximately

10−10 and 10−16 of their initial maxima, respectively. These floors are very seldom applied once the initial

background is replaced by evolved disk material.

The final step of the initialization is to tilt the black hole by an angle β0 = 15◦ relative to the disk (and

the grid) by transforming the Kerr metric. The full transformation is provided in Fragile & Anninos (2005)

[see also Fragile & Anninos (2007)]. Thus, while the torus is responding to the action of the MRI, it will

also experience a gravitomagnetic torque from the tilted black hole.

3. Results

In the main simulation (915h) the torus is evolved for a total of 10 orbital periods (10torb) as measured

at r = rcenter, which corresponds to ∼ 350 orbits near rISCO = 2.32rG, the coordinate radius of the innermost

stable circular orbit (for prograde orbits in the symmetry plane of the black hole). The very high resolution

simulation (915vh) is only run for half as long (5torb), while the lower resolution simulation (915m) is run

for twice as long (20torb). Figure 2 shows snapshots of the disk from Model 915h at times t = 0, 1, 2, 4, 7,

and 10torb. The first orbit is dominated by winding of the magnetic field lines and nonlinear growth of the

MRI. Both of these cause rapid redistributions of disk material and angular momentum. The initial torus

is stretched radially and material begins to accrete onto the hole and is also carried out to large radii. A

strong current sheet forms in the initial symmetry plane of the disk through differential winding.

From orbits 1-2, MRI driven turbulence begins to grow in the inner parts of the disk. At the same time,

some bending of the disk due to the differential precession from the hole becomes apparent. The MRI is

fully developed through most of the disk around orbit 2.
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Fig. 2.— Volume visualization of the logarithm of density (scaled from 0.008ρmax,0 to 0.8ρmax,0) at (a) t = 0,

(b) 1, (c) 2, (d) 4, (e) 7, and (f) 10torb. Half of the disk has been cut away to reveal the cross section. The

black hole spin axis is oriented vertically in each frame so that the initial torus is tilted 15◦ to the right.
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By about orbit 7-8, the disk has reached a quasi-steady state. In the remainder of this section we detail

the properties of the resultant structure. We follow an “inside-out” track, starting from key features of the

flow near the hole and working toward larger radii. Where practical, we draw attention to similarities and

differences between the quasi-steady structure that results in this simulation and the untilted simulations

of De Villiers et al. (2003). In particular, we draw attention to the fact that some features, such as the

inner torus and plunging region, are significantly altered, while others, such as the main body and coronal

envelope, show very similar properties. Again, because of the varying levels of refinement along the poles,

we do not discuss the evacuated funnel or funnel-wall jet in this paper.

3.1. Global Structure

3.1.1. Plunging Streams

Perhaps the most striking feature in the tilted disk at late times are the two opposing streams that start

from high latitudes both with respect to the black-hole symmetry plane and the disk midplane (Fragile et al.

2007). Figure 3 shows a zoomed-in view of the region around the black hole including these streams. Note

that stream 1 remains entirely above the black-hole symmetry plane, while stream 2 remains below. Clearly

the material in each stream is in a plunging orbit into the black hole. Hence, we refer to these features as

the “plunging streams.”

Figure 4 captures the plunging streams from a different perspective. This image is a view looking down

the angular momentum axis of the black hole onto a single isodensity surface. The two opposing streams

are clearly visible in the interior region of the disk as well as two relatively evacuated lobes.

As material passes through the plunging streams it undergoes strong differential precession. As we show

below, the precession totals approximately 180◦, accounting for how the material in the plunging streams is

able to enter the black hole from the opposite azimuth from which it began its plunge without ever passing

through the symmetry plane of the hole.

Two very important points to make about these streams is that they appear to be stable and stationary.

They begin forming as early as t = 7torb and last until the end of the simulation. During this time their

azimuthal location does not change appreciably. The interesting questions are why do these opposing plunging

streams form and why do they start from such high latitude with respect to the black-hole symmetry plane

and disk midplane? The answers, of course, are related and the fundamental cause is the aspherical nature

of the gravitational spacetime around the rotating black hole. This is best illustrated by considering the

dependence of rISCO on inclination for orbits that are circular in the sense that they have constant coordinate

radius. Briefly, rISCO is the radius at which the quantity

R ≡ A2

(

dr

dτ

)2

=
[

E(r2 + a2)− aLz

]2 −∆
[

r2 + (Lz − aE)2 +Q
]

(22)

and its first two derivatives equal zero, i.e. R = R′ = R′′ = 0, where E, Lz, and Q are the energy, angular

momentum, and Carter constant, respectively, describing orbits around Kerr black holes (Hughes 2001) and

A = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. Following Hughes (2001), we can eliminate Q in favor of the

inclination i defined as

cos i =
Lz

(Lz +Q)1/2
. (23)

Figure 5 illustrates this dependence for a few selected cases of a. The key point of the formula and the plot
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Fig. 3.— Zoomed in view of the inner 10rG of the accretion flow revealing two opposing, high-latitude

streams of material connecting the disk to the horizon (indicated by arrows). Data is taken from the last

frame of the simulation (t = 10torb). To emphasize the plunging streams, the scaling in this figure is adjusted

from that used in Fig. 2 by adding a density isosurface at ρ = 0.024ρmax,0. The figure is oriented as in Fig. 2

with the black-hole spin axis vertical. The black-hole symmetry plane (black line) and initial disk midplane

(blue line) are marked for reference. Note that stream 1 remains entirely above both planes while stream 2

remains below.
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Fig. 4.— Isodensity contour at ρ = 0.1ρmax,0 from the same time slice as Fig. 3 (t = 10torb) viewed down

the angular momentum axis of the black hole. The initial disk angular momentum axis (and polar axis of the

grid) is tilted 15◦ to the right in this image. One plunging stream (indicated by solid arrow) starts near the

left edge of the figure and connects to the hole on the right. This stream lies entirely above the black-hole

symmetry plane and corresponds to stream 1 in Fig. 3. The opposing stream (stream 2) remains below the

black-hole symmetry plane and is seen connecting with the horizon on the left.
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is that orbital stability around a rotating black hole is strongly dependent on the inclination of the orbit.

Notice that the unstable region increases monotonically for increasing inclination.

We can make better use of the information in Figure 5 by converting it to a polar plot (using only the

prograde orbits) and overlaying it onto a plot of data from the simulation, as is done in Figure 6. Such a

polar plot creates a representation of the prograde “ISCO surface” (symmetric about the spin axis of the

black hole), which gives a clear indication of where the most unstable regions of the spacetime are. Note

that the plunging orbits highlighted previously start near where the disk first encounters the ISCO surface.

More precisely, the streams start near the largest cylindrical radius (r cosϑ) of the ISCO surface, measured

with respect to the angular momentum axis of the disk. This explains why the plunging streams start at

such high inclinations relative to the black-hole symmetry plane and the disk midplane and why there are

only two streams. The plunging region is no longer azimuthally symmetric from the perspective of the disk.

Another point to take away from Figures 5 and 6 is that rISCO is larger for larger inclinations. Thus,

for a given black-hole spin, plunging orbits will always start further away from the hole for more tilted disks.

The tilted black hole effectively acts like an untilted black hole of lower spin, which would likewise have a

larger rISCO.

3.1.2. Inner Torus

In our tilted simulation, the plunging streams appear to connect directly to the main disk body without a

clearly identifiable intermediate “inner torus”. This appears to be a particular result of the tilted simulation

and not, for instance, due to the differences in the coordinates used in our simulation (Kerr-Schild) versus

those used in De Villiers et al. (2003) (Boyer-Lindquist) or numerical techniques. We base this statement

on the fact that our own untilted simulation in Kerr-Schild coordinates shows an inner torus very similar

to the one described in De Villiers et al. (2003). For instance, Figure 7 shows the shell-averaged density

and pressure as a function of radius for our tilted and untilted simulations. Shell averaged quantities are

computed over the most refined grid as follows:

〈Q〉A(r, t) =
1

A

∫ 2π

0

∫ ϑ2

ϑ1

Q√−gdϑdϕ , (24)

where A =
∫ 2π

0

∫ ϑ2

ϑ1

√−gdϑdϕ is the surface area of the shell. The data in Figure 7 has also been time-

averaged over the final orbit, 9torb = tmin ≤ t ≤ tmax = 10torb, where time averages are defined as

〈Q〉t =
1

tmax − tmin

∫ tmax

tmin

Qdt . (25)

In the untilted simulation, both the density and the pressure show local maxima near 4.5rG, indicating an

inner torus. The tilted simulation, on the other hand, shows only marginal evidence for local maxima near

10rG.

Another check of the presence of an inner torus is to look at the distribution of specific angular mo-

mentum in the disk. Because the inner torus is partially supported by pressure gradients, some portion

of the flow must be locally super-geodesic. In Figure 8 we plot the density-weighted shell average of the

specific angular momentum 〈ℓ〉A = 〈ρℓ〉A/〈ρ〉A as a function of radius, again time-averaged over the interval

t = 9 to 10torb. We compare this against the specific angular momentum distribution of circular orbits with
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Fig. 5.— Plot of the inclination dependence of rISCO for black-hole spins a = 0, 0.5, 0.9, and 0.998.

Inclinations 0 ≤ i ≤ 90◦ represent prograde orbits, whereas inclinations 90◦ ≤ i ≤ 180◦ represent retrograde

orbits.
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2

1

1

2

Fig. 6.—Meridional plot (ϕ = 0) through the final dump (t = 10torb) of the simulation showing a pseudocolor

representation of the logarithm of density (scaled from 0.008ρmax,0 to 0.8ρmax,0 as in previous figures) and

an isocontour of density at ρ = 0.024ρmax,0 (red curve). Unlike previous figures, this one is shown oriented

in the sense of the grid, so that the black hole is tilted 15◦ to the left. The plot is overlaid with a polar

plot of the “ISCO surface” for prograde orbits about an a = 0.9 black hole (white curve). This surface

is symmetric about the spin axis of the hole. Notice that the plunging streams from Figs. 3 and 4 start

near the largest cylindrical radius (r cosϑ) of this surface (indicated by white arrows) and connect with the

horizon approximately 180◦ away in azimuth (indicated by black arrows).
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inclinations of 15◦ and 0◦. These are calculated from the following expression

ℓ =
N1 +∆(Mr)1/2N

1/2
2 cos i

D
, (26)

where

N1 = −aMr
(

3r2 + a2 − 4Mr
)

cos2 i , (27)

N2 = r4 + a2 sin2 i
(

a2 + 2r2 − 4Mr
)

, (28)

and

D = a2
(

2r2 + a2 − 3Mr
)

sin2 i+ r4 + 4M2r2 − 4r3M −Mra2 , (29)

which comes from noting that for circular orbits R = R′ = 0 from equation (22) and from the definition

ℓ = Lz/E. Both simulations show a nearly geodesic angular momentum distribution through most of the

disk with a small region of super-geodesic flow inside 10rG. This region clearly corresponds to the inner

torus in the untilted simulation. It also suggests that there should be an inner torus in the tilted simulation,

though, again, this is not as evident in the plots of density and pressure.

Another indication that the inner torus is less prominent in the tilted simulation than the untilted one

comes from comparing the total rest mass in the near-hole region (r < rcut = 10rG). This is done in Figure

9, where we plot the time histories of the total (volume-integrated) rest mass

〈

ρu0
〉

V
=

∫ 2π

0

∫ π

0

∫ rcut

rmin

Ddrdϑdϕ . (30)

At t = 10torb, the inner torus is 42% less massive in Model 915h.

When present, the inner torus usually performs two functions: regulating the accretion of matter into

the black hole and serving as the launching point for the funnel-wall jet. Therefore, we may expect a weaker

funnel-wall jet (to be discussed in future work) and a higher mass accretion rate in our tilted-disk simulation

relative to the untilted simulation due to the less prominent inner torus in the former. We compute the mass

accretion rate

Ṁ(r) =

∫ 2π

0

∫ π

0

DV rdϑdϕ (31)

100 times per torb (about every 8M) at each of the external grid boundaries. Figure 10a shows a plot

comparing Ṁ(rmin) for our equivalent tilted and untilted simulations. When averaged over the quasi-steady

state of each simulation (from t = 7 to 10torb), 〈Ṁ〉t into the hole for the tilted simulation (915h) is

7.2× 10−6, while for the untilted one (90h), it is 4.9× 10−6. There is a clear tendancy toward a higher Ṁ

in the tilted-disk simulation.

Figure 10b compares Ṁ of the tilted disk simulation at three different resolutions. Due to the chaotic

nature of the mass accretion we do not expect the individual peaks to match; yet we are encouraged that

the overall shape and magnitude of the two high-resolution models (915h and 915vh) are very consistent,

suggesting we are reasonably well converged. The medium resolution simulation (Model 915m), on the other

hand, is clearly underresolved.

3.1.3. Main Disk Body & Coronal Envelope

The main disk body does not differ substantially between the tilted and untilted simulations, except in

the notable fact that the tilted disk precesses (as discussed in §3.2.2 below). Likewise, the coronal envelope,
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Fig. 7.— Plot of 〈〈ρ〉A〉t (solid line) and 〈〈P 〉A〉t (dashed line) as a function of radius for equivalent (a)

tilted β0 = 15◦ (915h) and (b) untilted β0 = 0◦ (90h) simulations. For both simulations, the data has been

time-averaged over the interval t = 9 to 10torb. The density and pressure have been normalized by their

respective maxima at t = 0, which are the same in both simulations.

Fig. 8.— Plot of the density-weighted time- and shell-averaged specific angular momentum 〈〈ℓ〉A〉t (thick

line) as a function of radius for equivalent (a) tilted β0 = 15◦ (915h) and (b) untilted β0 = 0◦ (90h)

simulations. For both simulations, the data has been time-averaged over the interval t = 9 to 10torb. In each

plot a comparison is provided with the specific angular momentum of circular orbits with inclinations of 15◦

and 0◦, respectively (dashed line). For reference we also include the initial angular momentum distribution

in the midplane of the torus (thin line).
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Fig. 9.— Total rest mass in the near-hole region (r < 10rG) as a function of time for the tilted (915h &

915vh) and untilted (90h) simulations. The mass and time are normalized by the initial mass and orbital

period of the torus, respectively.
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which extends above and below the disk, shows very similar properties in all our simulations. The material

in the coronal envelope is characterized by low density and rough magnetic equipartition (βmag ≈ 1). By

contrast the main body of the disk is generally gas-pressure dominated (βmag ≪ 1). Therefore, a plot

of βmag and ρ, such as Figure 11, provides a convenient means to identify these two regions. As found

in De Villiers et al. (2003), the material in the coronal envelope moves mostly radially outward, yet has

(−hut < 1). This suggests that the material may be gravitationally bound, in which case it must circulate

back to the disk at large radii. However, we point out that this definition of binding energy ignores the

contribution of the magnetic fields, so some of this material may in fact escape the system. We plan to

examine outflows from tilted disks more thoroughly in future work.

Because the disk is precessing, its angular momentum axis does not remain aligned with the grid.

Therefore, an azimuthal slice through the disk at late times, such as Figure 11, may give the impression that

the disk has aligned with the symmetry plane of the black hole when indeed this is not the case. We now

turn to the question of disk alignment and precession.

3.2. Results Specific to A Tilted Disk

3.2.1. Tilt

One key diagnostic for describing the global response of a tilted disk subject to Lense-Thirring precession

is the tilt between the angular momenta of the black hole and disk as a function of radius and time. For

example, in the Bardeen-Petterson solution, no time variability is observed, and the tilt transitions from

nearly zero close to the black hole to a non-zero asymptote at large radii.

As in Fragile & Anninos (2005), we recover the tilt from the simulation data using the definition

β(r) = arccos

[

JBH · JDisk(r)

|JBH||JDisk(r)|

]

, (32)

where

JBH = (−aM sinβ0x̂, 0, aM cosβ0ẑ) (33)

is the angular momentum vector of the black hole and

JDisk(r) = [(JDisk)1x̂, (JDisk)2ŷ, (JDisk)3ẑ] (34)

is the angular momentum vector of the disk in an asymptotically flat space. This is given by

(JDisk)ρ =
ǫµνσρL

µνSσ

2
√
−SαSα

, (35)

where

Lµν =

∫

(

xµT ν0 − xνT µ0
)

d3x, (36)

and Sσ =
∫

T σ0d3x. The equations for Lµν and Sσ are integrated over concentric radial shells of the

most-refined grid layer, e.g.

Sσ(r) =

∫ 2π

0

∫ ϑ2

ϑ1

T σ0√−g∆rdϑdϕ . (37)

The unit vector ŷ points along the axis about which the black hole is initially tilted and ẑ points along the

initial angular momentum axis of the disk.
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In Figure 12, we show the radial profile of β time averaged over the interval 9torb ≤ t ≤ 10torb. Recall

β0 = 15◦ for this simulation. This profile remains fairly consistent over many orbital times once the quasi-

steady state is reached, so the time-averaged data gives a good representation for all t & 7torb. The variability

from this time-averaged profile is generally . 20% and is generally carried by moderate amplitude waves

traveling through the disk. The increase in tilt at r . 10rG is attributable to the high latitude plunging

streams described in §3.1.1.

One very obvious characteristic of the profile in Figure 12 is that β does not approach zero except perhaps

very close to the hole. Thus we do not see evidence for the Bardeen-Petterson effect in this simulation. This

is not surprising since the Bardeen-Petterson solution is only expected for thin disks (H/r < α). This is not

the applicable regime for this simulation, as we illustrate in Figure 13, which shows H/r and α plotted as

functions of r. The scale height H(r) is defined in each radial shell as one-half the distance (0.5r∆ϑ) between

the two points where ρ = ρmax/e, where we use the time-averaged density along the ϕ = 0 azimuthal slice.

The dimensionless stress parameter α in the disk is taken to be

α =

〈 |uruϕ||B||2 −BrBϕ|
4πP

〉

A

. (38)

We restrict the calculation of α to only bound material (−hut < 1). Using these definitions we find H/r ∼ 0.2

and α . 0.01 through most of the disk.

Since warps in slim disks are expected to propagate as bending waves, it may seem unusual at first that

we see little evidence for such waves in Figure 12. For instance, Lubow et al. (2002) provides an analysis of

the theory of bending waves in nearly Keplerian, weakly inclined disks and predicts that the tilt β should

be a time-independent, oscillatory function of radius (see also Marković & Lamb 1998). However, using

equation (16) of Lubow et al. (2002), we estimate the wavelength of such oscillations for our simulation to

be

λ ≈ πr9/4

(6a)1/2

(

H

r

)

∼ 50M (39)

at r = 10rG. This is strongly radially dependent (λ ∝ r9/4 with H/r ∼ constant), so oscillations of β are

essentially absent outside r = 10rG, consistent with what is shown in Figure 12.

The same conclusion, that β is not expected to oscillate outside r = 10rG for this simulation, is also

reached by considering equation (22) of Lubow et al. (2002). That equation defines a dimensionless variable

x =

(

24a

ǫ2

)1/2
r−(h+1/4)

h+ 1/4
, (40)

which is used to identify the transition radius between oscillatory behavior and asymptotic behavior, where

h and ǫ are used to parameterize the radial dependence of the disk scale height H/r = ǫrh−1. Whenever

x >> 1 (small r), oscillations should be prominent, whereas whenever x << 1 (large r), β tends to the

outer boundary value. For our simulation, with ǫ ≈ 0.2 and h ≈ 1, x = 1 at r ≈ 10rG. Thus, from both

approaches, it is clear that our simulation does not satisfy the criteria to develop large oscillations in β

within the main body of the disk.

Inside r = 10rG, the density of the disk drops off rapidly and the dynamics are dominated by the

plunging streams, which are not accounted for in the model of Lubow et al. (2002). Nevertheless, we appear

to capture one-half of one wavelength of a bending wave oscillation inside r = 10rG, based on Figure 12.

Thus, overall our results seem to be generally consistent with the predictions of Lubow et al. (2002).
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3.2.2. Precession

A second useful diagnostic for tilted disks is the twist γ of the disk as a function of radius and time.

We define the precession angle (twist) as

γ(r) = arccos

[

JBH × JDisk(r)

|JBH × JDisk(r)|
· ŷ

]

, (41)

From this definition, γ(r) = 0 throughout the disk at t = 0. In order to capture twists larger than 180◦,

we also track the projection of JBH × JDisk(r) onto x̂, allowing us to break the degeneracy in arccos. A

time-averaged plot of γ is provided in Figure 14.

As described in our previous work (Fragile & Anninos 2005), we expect differential Lense-Thirring pre-

cession to dominate whenever the precession timescale tLT = Ω−1
LT = gtt/gtφ is shorter than local dynamical

timescales in the disk (Bardeen & Petterson 1975; Kumar & Pringle 1985). We consider three possible limit-

ing timescales: the mass accretion timescale tacc = r/V
r
, where V

r
= 〈〈ρV r〉A/〈ρ〉A〉t is the density-weighted

average inflow velocity; the sound-crossing time tcs = r/cs, where cs = 〈〈ρcs〉A/〈ρ〉A〉t is a density-weighted

average of the local sound speed; and the Alfvén crossing time tA = r/V A, where V A is a density-weighted

average of the local Alfvén speed. The local sound speed is recovered from the fluid state through the relation

c2s = Γ(Γ− 1)P/[(Γ− 1)ρ+ ΓP ]. The Alfvén speed is

vA =

√

||B||2
4πρh+ ||B||2 . (42)

Since cs and vA are defined in the frame of the fluid, it is not strictly accurate to compare tcs and tA to

quantities defined using the coordinate time (such as tLT and Ω−1). However, we are mostly concerned with

the timescales in the main body of the disk where such discrepancies are small. From Figure 15, we can see

that the Lense-Thirring precession timescale is longer than the sound-crossing time at virtually all radii.

Since the sound-crossing time is short compared to the precession timescale throughout the bulk of the

disk, pressure waves strongly couple the disk material. The disk, thus, responds as a single entity to the

torque of the black-hole and precesses as a global structure. Such global precession has been noted before in

low Mach number hydrodynamic disks (Nelson & Papaloizou 2000; Fragile & Anninos 2005). To estimate

the precession period, we have plotted γ, averaged over the bulk of the disk (20 ≤ r/rG ≤ 50), as a function

of time in Figure 16. A linear fit to this plot yields a precession period of Tprec ≈ 0.3(M/M⊙) s, which

corresponds to about 80torb. This is longer than the evolution time of all of our models, so we have had

to extrapolate the full precession period. However, Model 915m is run to 20torb and shows a nearly linear

growth of precession over the full simulation.

Classically, we expect the precession period for a solid-body rotator with angular momentum J subject

to a torque τ to be Tprec = 2π(sinβ)(J/τ) (Liu & Melia 2002). Assuming a radial dependence to the

surface density of the form Σ = Σi(r/ri)
−ζ and ignoring higher order general relativistic corrections, we have

J = 2πM1/2Σir
ζ
i r

5/2−ζ
0 [1−(ri/ro)

5/2−ζ ]/(5/2−ζ) and τ = 4π(sinβ)aM3/2Σi[1−(ri/ro)
1/2+ζ ]/[r

1/2
i (1/2+ζ)],

where ri and ro are the inner and outer radii of the evolved disk, respectively. Therefore,

Tprec =
π(1 + 2ζ)

(5− 2ζ)

r
5/2−ζ
o r

1/2+ζ
i

[

1− (ri/ro)
5/2−ζ

]

aM
[

1− (ri/ro)1/2+ζ
] . (43)

For ri = 10rG, ro = 50rG, and ζ = 0 (the value we find in our simulation), equation (43) predicts Tprec =

0.3(M/M⊙) s, which is the same as the observed value in the simulation. Note that equation (43) differs
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from the test particle Lense-Thirring precession period because Tprec depends on the total torque integrated

over the entire disk.

4. Discussion

In this paper we studied the evolution of an MRI turbulent disk that was tilted with respect to the

spin axis of a modestly fast rotating black hole. Although this prescription can lead to a Bardeen-Petterson

configuration for some disk parameters, we did not see evidence for this in this simulation, as alignment of

the disk with the equatorial plane of the black hole did not occur. This is not surprising since this simulation

was carried out in the thick-disk regime where H/r > α and warps produced in the disk propagate as

waves (Papaloizou & Lin 1995), rather than diffusively as in the Bardeen-Petterson case. Since the expected

bending wavelength (Lubow et al. 2002) turned out to be longer than the radial extent of the disk in the

simulation, little warping of the disk was observed. Instead the unwarped disk precessed uniformly. The

extrapolated precession period Tprec ≈ 0.3(M/M⊙) s equates to periods of ≈ 3 s and ≈ 3 d for black holes of

massM = 10M⊙ andM = 106M⊙, respectively. Such global disk precession could explain certain variability

features observed from accreting black holes, such as low-frequency QPOs (LFQPOs) (Stella et al. 1999;

Liu & Melia 2002; Schnittman et al. 2006), since the observer’s viewing angle of the inner, X-ray emitting

region of the disk would vary periodically.

If the inner disk is optically thick enough to produce relativistically-broadened reflection features, such

as an iron Kα line, then such precession should also be observable through periodic changes in both the

shape and strength of the lines (Fragile et al. 2005). These changes should be correlated with the phase of

the corresponding LFQPO. Such a correlation has been observed in GRS 1915+105 (Miller & Homan 2005),

although only between line strength and QPO phase; those data were not sufficiently resolved to determine

the line shape.

Generally, we expect the precession period to be given by equation (43), which has a strong dependence

on the radial distribution of the disk (∝ r
5/2−ζ
o r

1/2+ζ
i ). One idea to consider is that the outer radius

may correspond to the truncation radius proposed to explain the hard state of black hole X-ray binaries

(e.g. Esin et al. (1997), but see also Rykoff et al. (2007)). In this case our simulated disk would represent

the hot, geometrically thick flow that fills the region inside the truncation radius. The LFQPO would

then correspond to the precession frequency of this inner flow, in which case it should scale as r
−5/2+ζ
o .

Sobczak et al. (2000) explored the dependence of the LFQPO frequency on spectral fitting parameters,

including what would be the truncation radius in the context of the suggested hard state model. They

studied two sources, XTE J1550-564 and GRO J1655-40, and found opposite trends between frequency and

radius. For XTE J1550-564 the observed frequency was νLFQPO ∼ 5 Hz, and the observed truncation radius

was ro/rG = 2.7(10M⊙/M)(D/6 kpc)(cos θ)−1/2. From equation (43) we would expect

ro
rG

=

[

5− 2ζ

π(1 + 2ζ)

]2/(5−ζ)
( a

M

)2/(5−ζ)
(

ri
rG

)−(1+2ζ)/(5−2ζ)

(νM)
−2/(5−ζ)

. (44)

In our simulation we found ζ ≈ 0, which gives ro ≈ 33rG for M = 10M⊙ and ν = 5 Hz. This is considerably

larger than the observed value. However, some of the discrepancy may be attributable to the large uncer-

tainties in the parameters used to describe this source, including its distance, mass, and inclination. Also, if

the surface density in XTE J1550-564 depends strongly on radius, which was not the case for our simulated

disk, then our prediction would change significantly. Further observational studies along this line are needed

to test this prediction more thoroughly.
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Although the main body of the disk was not significantly altered by the tilt, we did find significant

differences in the inner regions of the flow when compared with untilted simulations. First, a tilted disk

encounters the generalized ISCO surface at a larger radius than an untilted disk. This causes the plunging

region to start further out. The binding energy of the innermost material in the disk is therefore less than

it would be for an aligned disk, and the overall radiative efficiency should then be reduced.

On the other hand, tilting the disk appears to produce a higher overall mass accretion rate (shown

here in Figure 10a; also discussed in Lodato & Pringle 2006). A tilted accretion disk will therefore have

a lower surface density than an untilted disk with the same accretion rate. This may affect the emergent

spectrum, especially for hot, optically thin flows. On the other hand for flows that are effectively optically

thick, Davis et al. (2005) found that the emergent spectra are remarkably independent of the overall stress

and surface density.

We also found that the plunging region is not axially symmetric. Instead, accretion onto the hole in the

tilted-disk case occurs through two discrete streams of material that leave the disk at high latitudes with

respect to the black-hole and disk symmetry planes. This may affect the magnitude of magnetic torques

exerted by the plunging region on the disk. An interesting question for future work is how these streams vary

on the timescale of the precession of the disk. We intend to explore the detailed properties of the plunging

region and innermost disk in a future paper.

The tilted disk also seems not to have formed a clearly identifiable inner torus. This could be significant

because the inner torus serves as a launching point for the matter-dominated, funnel-wall jet. The absence

of a prominent inner torus may lead to a weaker matter jet. However, the present simulation is not suited

to addressing this issue because of the poor and varying resolution used near the pole. Instead, we plan to

explore jets and outflows from tilted disks in future work.

In many respects the tilted disk simulation exhibited properties consistent with an untilted disk around

a black hole of lower spin. These included the larger plunging radius, higher mass accretion rate, and

less prominent inner torus. Thus black-hole tilt could hamper efforts to estimate black-hole spin based on

such properties. Indeed, it is commonly stated that astrophysical black hole spacetimes depend on just

two parameters: mass and spin. But it should be remembered that the observed properties of black hole

accretion disks also depend on their inclinations with respect to the spin axes of their central black holes.

This inclination should be a target of future observational programs that use accretion disks as surrogates

to study properties of black holes.
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Font, J. A., Ibáñez, J. M. ., & Papadopoulos, P. 1998, ApJ, 507, L67

Fragile, P. C., & Anninos, P. 2005, ApJ, 623, 347

Fragile, P. C., & Anninos, P. 2007, ApJ, 666, xxx

Fragile, P. C., Anninos, P., Blaes, O. M., & Salmonson, J. D. 2007, in proceedings of the 11th Marcel

Grossmann Meeting on General Relativity (astro-ph/0701272)

Fragile, P. C., Mathews, G. J., & Wilson, J. R. 2001, ApJ, 553, 955

Fragile, P. C., Miller, W. A., & Vandernoot, E. 2005, ApJ, 635, 157

Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, ApJ, 589, 444
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Fig. 10.— (a) Plot of the mass accretion history from Model 915h with β0 = 15◦ (thick line) and Model 90h

with β0 = 0◦ (thin line). The accretion rate and time are normalized by the initial mass and orbital period

of the torus, respectively. (b) Plot of mass accretion rate, comparing our medium (915m), high (915h), and

very high (915vh) resolution tilted disk simulations. The very high resolution simulation was only run to

t = 5torb.
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Fig. 11.— Azimuthal slice through the simulation along ϕ = 0 taken from the final dump (t = 10torb).

The ratio of magnetic pressure to gas pressure (β−1
mag) is represented as a pseudocolor plot. The colors are

scaled logarithmically and cover the range 10−2 ≤ βmag ≤ 102. The gas density is given by isocontours at

ρ = 10−2, 10−1.5, 10−1, and 10−0.5ρmax,0. As with Fig. 6, this figure is oriented in the sense of the grid,

so that the black hole is tilted 15◦ to the left. The apparent tilt of the disk is actually due its precession

about the black-hole spin axis, such that the angular momentum axis of the disk is no longer in the plane

of this image; the disk has not actually realigned with the hole. We remind the reader that the region near

the poles is not sufficiently resolved, so caution should be used when interpreting results there.
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Fig. 12.— Plot of the tilt 〈β〉t as a function of radius through the disk. The data for this plot has been time

averaged from t = 9 to 10torb. The initial tilt was β0 = 15◦.
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Fig. 13.— Plot of the scale height 〈H〉t/r and magnetic stress parameter 〈α〉t, time averaged over the interval

7torb ≤ t ≤ 10torb. This plot shows that this simulation falls into the thick-disk limit H/r > α.
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Fig. 14.— Plot of the twist 〈γ〉t as a function of radius through the disk. The data for this plot has been

time averaged from t = 9 to 10torb. Initially the twist was zero throughout the disk. The disk matter has

precessed roughly ∼ 180◦ by the time it reaches the hole. The shape of this twist profile remains fairly

constant throughout the simulation.
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Fig. 15.— Plot comparing various timescales within the disk, including the Lense-Thirring precession

timescale tLT, the accretion timescale tacc, the sound-crossing time tcs, and the Alfvén crossing time tA.

All timescales are normalized by the local orbital period in the midplane of the black hole, Ω−1. The data

for this plot has been time averaged from t = 9torb to t = 10torb.
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Fig. 16.— Plot of the twist γ, averaged over the bulk of the disk (20 ≤ r/rG ≤ 50), as a function of time. The

slope of this plot can be used to estimate the precession period of the disk as a whole, which is 0.3(M/M⊙)

s.
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