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1. Introduction

The origin of the large-scale structure is nowadays understood from the gravitational
collapse of initial density perturbations which were produced by amplification of
the quantum fluctuations in the inflaton field [1]. The properties of the large-scale
structure depend both on the initial conditions at the end of inflation and on the
growth of perturbations in a universe filled with non relativistic matter and radiation.
The theory of cosmological perturbations is thus a cornerstone of our understanding
of the large-scale structure. The evolution of radiation (photons and neutrinos) needs
to be described by a Boltzmann equation [2, 3, 4]. Two types of perturbative schemes
have extensively been used in the literature in order to describe the evolution of
the cosmological perturbations. The first is a 1 + 3 covariant splitting of space-time
[5, 6, 7] and the second is a more pedestrian coordinate based approach. In the first
approach, exact equations on the physical space-time are derived and perturbative
solutions around a background solution are then calculated. In the second approach,
an averaging procedure is implicitly assumed and, starting from a background space-
time, perturbation variables satisfying the equations of motion order by order are
constructed. In the 1 + 3 approach, the variables used are readily covariant, but
the absence of background space-time can be a problem to simplify the resolution by
performing a mode expansion, since the Helmholtz function is in general not defined on
the physical space-time. In the coordinate based approach, all perturbation variables
live on the background space-time, and enjoy the advantages of its highly symmetric
properties. However, this extra mathematical structure is at the origin of the gauge
issue through the identification mapping that we needs to be defined between the
background space-time and the physical space-time. Thus, the gauge dependence
needs to be understood. An elegant solution is to construct gauge-invariant variables
à la Bardeen both for the metric perturbation variables [8] and for the distribution
function [9, 10]. Since the Boltzmann and Einstein equations are covariant, they can
be expressed solely in terms of gauge invariant variables provided we have a full set
at hand. A full comparison of these two formalisms has been performed at first order
in Ref. [11], and for gravitational waves at second order in Ref. [12].

In the coordinate based approach, the true degrees of freedom identified from
the Lagrangian formalism, are quantized. They transfer to classical perturbations
which inherit a nearly scale invariant power spectrum and Gaussian statistics, when
their wavelength stretches outside the horizon, thus providing initial conditions for the
standard big-bang model. Conserved quantities [13, 14] enable to ignore the details of
the transition between inflation and the standard big-bang model (see however [15]),
and the evolution details need only to be known when the wavelength reenters the
horizon. A first step to extend this procedure in the 1 + 3 formalism has been taken
in Ref. [16] where conserved quantities were defined. As for the degrees of freedom
which need to be quantized, a first proposal was made in Ref. [17], in order to identify
them, but it has not yet been motivated by a Lagrangian formulation.

The properties of the observed cosmic microwave background (CMB) anisotropies
have confirmed the validity of the linear perturbation theory around a spatially
homogeneous and isotropic universe and have set strong constraints on the origin of
structures, as predicted by inflation. It now becomes necessary, with the forthcoming
increasing precision of data that may allow to detect deviation from Gaussianity
[18], to study the second-order approximation, in order to discuss the accuracy of
these first-order results. These non-Gaussian features are also of first importance,
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since they can help discriminating between different inflation theories. Indeed, one-
field driven inflation leads to very small levels of primordial non-Gaussianity [19],
whereas multifield inflation can present significant non-Gaussian features [20],[21].
However, since non-Gaussian effects also appear through non-linear evolution, that
is from the second-order approximation and beyond of the evolution equations, the
study of second-order evolution equations is necessary in order to distinguish between
primordial and evolutionary non-Gaussianities (see Ref. [22] for a review on non-
Gaussianity). Second-order Einstein and Boltzmann equations have been written in
the 1 + 3 formalism [23, 24], but not integrated numerically, partly because the mode
expansion is not defined on the physical space-time, and this would then require a
four dimensional numerical integration. However, the promising formalism of Ref. [25],
which builds a bridge between the 1+3 formalism and the coordinate based approach,
might shed some light on these issues. Similarly, in the coordinate based approach,
the second-order Einstein equations have been written in terms of gauge-invariant
variables [26], and a first attempt has been made to write the Boltzmann equation in
a given gauge for the different species filling the universe, and to solve them analytically
[27, 28].

The goal of this paper is to provide the full mathematical framework for handling
distribution functions at second order in the coordinate based approach taking into
account the gauge issue. This will clarify the existing literature and point out some
existing mistakes. We first review briefly in section II the gauge transformations and
the procedure to build gauge invariant variables. We then present in section III the
transformation properties of the distribution function, and express them up to second
order. We define in section IV the gauge-invariant distribution function and the gauge
invariant brightness up to second order in the particular case of radiation (but this
is readily extendable to cold dark matter). We then deduce in section V, from the
Boltzmann equation, the evolution of the gauge invariant brightness in its simplest
collisionless form, at first and second orders. To finish, we express in section VI the
fluid limit as a consistency check of our results.

2. Overview on gauge transformations and gauge-invariant variables

2.1. First- and second-order perturbations

We assume that, at lowest order, the universe is well described by a Friedmann-
Lemâıtre space-time (FL) with flat spatial sections. The most general form of the
metric for an almost FL universe is

ds2 = gµνdx
µdxν (1)

= a(η)2
{

− (1 + 2Φ)dη2 + 2ωidx
idη + [(1− 2Ψ)δij + hij ]dx

idxj
}

,

where η is the conformal time and a the scale factor. We perform a scalar-vector-tensor
decomposition as

ωi = ∂iB +Bi , (2)

hij = 2Eij + ∂iEj + ∂jEi + 2∂i∂jE, (3)

where Bi, Ei and Eij are transverse (∂iEi = ∂iBi = ∂iEij = 0), and Eij is traceless
(Ei

i = 0). There are four scalar degrees of freedom (Φ, Ψ, B, E), four vector degrees of
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freedom (Bi, Ei) and two tensor degrees of freedom (Eij). Each of these perturbation
variables can be split in first and second-order parts as

W = W (1) +
1

2
W (2) . (4)

This expansion scheme will refer, as we shall see, to the way gauge transformations
and gauge-invariant (GI) variables are defined. First-order variables are solutions of
first-order equations which have been extensively studied (see Ref. [29] for a review).
Second-order equations will involve purely second-order terms, e.g. W (2) and terms
quadratic in the first-order variables, e.g. [W (1)]2. There will thus never be any
ambiguity about the order of perturbation variables involved as long as the order of
the equation considered is known. Consequently, we will often omit to specify the
order superscript when there is no risk of confusion.

At first order, 4 of the 10 metric perturbations are gauge degrees of freedom and
the 6 remaining degrees of freedom reduce to 2 scalars, 2 vectors and 2 tensors. The
three types of perturbations decouple and can thus be treated separately. As long as
no vector source terms are present, which is generally the case when no magnetic field
or topological defect is taken into account, the vector modes decay as a−2. Thus, we

can safely discard them and set E
(1)
i = B

(1)
i = 0. In the following of this work, we

shall not include vector modes for the sake of clarity. We checked that our arguments
and derivation can trivially (but at the expense of much lengthy expressions) take
them into account.

In the fluid description, we assume that the matter content of the universe can
be described by a mixture of fluids. The four-velocity of each fluid is decomposed as

uµ =
1

a
(δµ0 + vµ). (5)

The perturbation vµ has only three independent degrees of freedom since uµ must
satisfy uµu

µ = −1. The spatial components can be decomposed as

vi = ∂iv + v̄i , (6)

v̄i being the vector degree of freedom, and v the scalar degree of freedom. The stress-
energy tensor of this fluid is of the form

Tµν = ρuµuν + P (gµν + uµuν) , (7)

where the density and pressure are expanded as follows

ρ = ρ̄+ δρ, P = P̄ + δP. (8)

At the background level, the form of the stress-energy tensor is completely fixed by
the symmetry properties of the FL space-time. However, at the perturbation level,
one must consider an anisotropic stress component, πµν with πµ

µ = uµπµν = 0. The
pressure and density of the fluid are related by an equation of state, P = ρ/3, in the
case of radiation.

At first order, the formalism developed by the seminal work of Ref. [8] provides
a full set of gauge-invariant variables (GIV). Thanks to the general covariance of the
equations at hand (Einstein equations, conservation equations, Boltzmann equation),
it was shown that it was possible to get first-order equations involving only these
gauge-invariant variables. In addition, if these gauge invariant variables reduce, in a
particular gauge, to the perturbation variables that we use in this particular gauge,
then the computation of the equation can be simplified. Actually, we only need to
compute the equations in this particular gauge, as long as it is completely fixed, and
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then to promote by identification our perturbation variables to the gauge-invariant
variables. Thus, provided we know this full set of gauge invariant variables, the
apparent loss of generality by fixing the gauge in a calculation, is in fact just a way to
simplify computations. Eventually we will reinterpret the equations as being satisfied
by gauge invariant variables. The full set of first-order gauge-invariant variables is
well known and is reviewed in Ref. [29] and Ref. [30]. As gauge transformations up
to any order were developed, it remained uncertain [31], whether or not a full set of
gauge-invariant variables could be built for second and higher orders. This has been
recently clarified [26], and the autosimilarity of the transformation rules for different
orders can be used as a guide to build the gauge-invariant variables at any order. We
present a summary of the ideas presented in Ref. [31] about gauge transformations
and the construction of gauge-invariant variables [26].

2.2. Points identification on manifolds

When working with perturbations, we consider two manifolds: a background manifold,
M0, with associated metric ḡ, which in our case is the FL space-time, and the physical
space-time M1 with the metric g. Considering the variation of metric boils down to a
comparison between tensor fields on distinct manifolds. Thus, in order to give a sense
to “δg(P ) = g(P ) − ḡ(P̄ )”, we need to identify the points P and P̄ between these
two manifolds and also to set up a procedure for comparing tensors. This will also be
necessary for the comparison of any tensor field.

One solution to this problem [31] is to consider an embedding 4 + 1 dimensional
manifold N = M × [0, 1], endowed with the trivial differential structure induced,
and the projections Pλ on submanifolds with P0(N ) = M × {0} = M0 and
P1(N ) = M × {1} = M1. The collection of Mλ ≡ Pλ(N ) is a foliation of N ,
and each element is diffeomorphic to the physical space-time M1 and the background
space-time M0. The gauge choice on this stack of space-times is defined as a vector
field X on N which satisfies X4 = 1 (the component along the space-time slicing R).
A vector field defines integral curves that are always tangent to the vector field itself,
hence inducing a one parameter group of diffeomorphisms φ(λ, .), also noted φλ(.),
a flow, leading in our case from φ(0, p ∈ P0(N )) = p ∈ P0(N ) along the integral
curves to φ (1, p ∈ P0(N )) = q ∈ P1(N ). Due to the never vanishing last component
of X , the integral curves will always be transverse to the stack of space-times and
the points lying on the same integral curve, belonging to distinct space-times, will be
identified. Additionally the property X4 = 1 ensures that φλ,X(P0(N )) = Pλ(N ), i.e.
the flow carries a space-time slice to another. This points identification is necessary
when comparing tensors, but we already see that the arbitrariness in the choice of a
gauge vector field X should not have physical meaning, and this is the well known
gauge freedom.

2.3. Tensors comparison and perturbations

The induced transport, along the flow, of tensors living on the tangent bundle, is
determined by the push-forward φ⋆λ and the pull-back φ⋆

λ [32] associated with an
element φλ of the group of diffeomorphisms. These two functions encapsulate the
transformation properties of the tangent and co-tangent spaces at each point and its
image. Indeed, the pull-back can be linked to the local differential properties of the
vector field embedded by the Lie derivatives along the vector field in a Taylor-like
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fashion (see Ref. [32] or Ref. [31])

Φ⋆
X,λ(T ) =

k=∞
∑

k=0

λk

k!
Lk
XT, (9)

for any tensor T .
A remark about coordinates changes is on order here. When the tensor T is a

coordinate xµ (once µ is fixed, it is a scalar field), the previous definition reduces to
the standard finite coordinates transformation.

x′µ ≡ Φ⋆
λ,ξ(x

µ) = xµ + λξµ +
λ2

2
ξµ,νξ

ν + . . . (10)

This is the standard way of defining an active transformation on the manifold,
by transporting a point of coordinates xµ to a point of coordinates x′µ. This
transformation, when performed on the coordinate system - considering the
coordinates as a grid on the manifold that one would displace according to the active
transformation - induces a passive coordinates transformation, if we decide that the
new coordinates of a point q are the coordinates of the point p such that φλ(p) = q.
When considering a transformation induced by a field ξ, we will refer to the passive
coordinates transformation induced by the active transportation of the coordinates
system.

The expansion of Eq. (9) on P0(N ) provides a way to compare a tensor field
on Pλ(N ) to the corresponding one on the background space-time P0(N ). The
background value being T0 ≡ L0

XT |P0(N ), we obtain a natural definition for the tensor
perturbation

∆XTλ ≡
k=∞
∑

k=1

λk

k!
Lk
XT
∣

∣

∣

P0(N )
= Φ⋆

X,λ(T )− T0. (11)

The subscript X reminds the gauge dependence. We can read the n-th order
perturbation as

δ
(n)
X T ≡ Ln

XT
∣

∣

∣

P0(N )
, (12)

which is consistent with the expansion of perturbation variables of the physical metric
in Eq. (4), since the physical space-time is labeled by λ = 1. However, the fact
that the intermediate space-time slices Pλ(N ) are labeled by λ removes the absolute
meaning of order by order perturbations, as it can be seen from Eq. (11). The entire
structure embedded by N is more than just a convenient construction and this will
have important consequences in gauge changes as we will now detail.

2.4. Gauge transformations and gauge invariance

If we consider two gauge choices X and Y , a gauge transformation from X to Y is
defined as the diffeomorphism

φX→Y,λ = (φX,λ)
−1(φY,λ), (13)

and it induces a pull-back which carries the tensor ∆XTλ, which is the perturbation
in the gauge X , to ∆Y Tλ, which is the perturbation in gauge Y since



Gauge-invariant Boltzmann equation and the fluid limit 7

φ⋆
X→Y,λ (∆XTλ + T0) =

[

(φX,λ)
−1(φY,λ)

]⋆
φ⋆
X,λ(T )

= φ⋆
Y,λ(φ

⋆
X,λ)

−1φ⋆
X,λ(T )

= φ⋆
Y,λ(T )

= ∆Y Tλ + T0. (14)

As demonstrated in Ref. [31] this family (indexed by λ) of gauge transformations fails
to be a one parameter group due to the lack of the composition rule. It should be
Taylor expanded using the so called knight-diffeormorphism along a sequence of vector
fields ξi. For the three first orders, the expression of this knight-diffeomorphism is

Φ⋆
Y,λ(T ) = φ⋆

X→Y,λΦ
⋆
X,λ(T ) (15)

= Φ⋆
X,λ(T ) + λLξ1Φ

⋆
X,λ(T ) +

λ2

2!
(Lξ2 + L2

ξ1
)Φ⋆

X,λ(T )

+
λ3

6
(Lξ3 + 3Lξ1Lξ2 + L3

ξ1
)Φ⋆

X,λ(T ).

The vector fields ξ1, ξ2 and ξ3 are related to the gauge vector fields X and Y
by ξ1 = Y − X , ξ2 = [X,Y ] and ξ3 = [2X − Y, [X,Y ]]. By substitution of the
perturbation by its expression in Eq. (11), we identify order by order in λ, and obtain
the transformation rules for perturbations order by order. The first and second order
transformation rules, on which we will focus our attention, are

δ
(1)
Y T − δ

(1)
X T = Lξ1T0,

δ
(2)
Y T − δ

(2)
X T = 2Lξ1δ

(1)
X T + (Lξ2 + L2

ξ1
)T0. (16)

The fact that we had to follow n integral curves of n distinct vector fields for n-th
order perturbations is a characteristic of knight-diffeomorphisms. It arises from the
fact that, for the whole differential structure of N to hold, gauge changes are a more
general type of transformations than simple vector-field induced flows. Consequently,
the Taylor-like expansion must be of a more general type. Indeed, for a given gauge
change between X and Y , the family of gauge changes φX→Y,λ labeled by λ is not
always a group in λ, and this happens for instance if [X,Y ] 6= 0 (See Ref. [31] for a
graphic intuition). Although we could, for a fixed λ = λ0, find ξ such that Eq. (16)
takes a form like Eq. (11) up to a given order, for instance by fixing λ0 = 1, and
choosing

ξ ≡ ξ1 +
1

2
ξ2 +

1

3!

(

ξ3 +
3

2
[ξ1, ξ2]

)

, (17)

this would mean that intermediate space-times are useless, and we would then ask
Einstein equations to hold only for P0(N ) and Pλ0(N ). This would lead to equations
in the perturbation variables that mix different orders. The resulting solution, for
second order and above, would be very difficult to find.
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2.5. Perturbed Einstein equations

Instead, we prefer to use this more complicated but cleaner knight-diffeomorphism
(Eq. 16) to change gauge. It keeps the differential structure built on N and we
additionally demand Einstein equations to be satisfied on each Pλ(N ). This can be
used to differentiate Einstein equations to first order w.r.t λ and take the limit λ → 0
in order to get a set of equations that formally take the form E1[δ(1)g, δ(1)T ] = 0.
Once solved for the solutions of the first-order Einstein equation, we can differentiate
twice the Einstein equation w.r.t λ and get an equation of the type

E2[δ(2)g, δ(2)T ] = S[δ(1)g, δ(1)T ], (18)

where S stands for a source term quadratic in the first-order variables (see [12] for a
concrete example).

We see that the decomposition of perturbation variables in the form given by
Eq. (4) will trigger a similarity between the equations, i.e. E1 and E2 have the same
form. Purely second-order perturbation variables satisfy the same equation as first-
order perturbation variables do, but with a source term. With known sources and
known solutions to the homogenous equation, the Green function method enables us
to solve, at least formally, the second-order equations, and by recursion at any order.
To summarize, the Taylor expansion “taylorizes” the process for solving the equations
by dividing tasks among orders, since Einstein equations are satisfied order by order.

2.6. Gauge-invariant variables

General covariance, i.e. the fact that physics should not depend on a particular choice
of coordinates is an incentive to work with gauge-invariant quantities. As we notice

from Eq. (16), a tensor T is gauge-invariant up to n-th order if it satisfies Lξδ
(r)
X T = 0

for any vector field ξ and any r ≤ n, as can be deduced by recursion. A consequence
of this strong condition is that a tensor is gauge-invariant up to order n if and only
if T0 and all its perturbations of order lower than n either vanish, or are constant
scalars, or are combinations of Kronecker deltas with constant coefficients. Einstein
equation is of the form G − T = 0, and for this reason is totally gauge invariant.
However, we cannot find non-trivial tensorial quantities (that is, different from G−T )
gauge-invariant up to the order we intend to study perturbations, with which we could
express the perturbed set of Einstein equations.

Consequently, we will lower our goal and we will build, by combinations of
perturbed tensorial quantities, gauge-invariant variables. These combinations will
not be the perturbation of an underlying tensor. This method will prove to be very
conclusive since a general procedure exists for perturbations around FL. Eventually
we shall identify observables among these gauge-invariant variables and the fact that
they are not the perturbation of a tensor will not matter. It has to be emphasized
that the transformation rules of these combinations are not intrinsic and cannot
be deduced directly from the knight-diffeomorphism since they are not tensorial
quantities. Instead, we have to form the combination before and after the gauge
change in order to deduce their transformation rules.

We now summarize the standard way to build gauge-invariant variables. For
simplicity we consider only the scalar part of the gauge transformations, since we will
not consider vector modes in the metric and fluid perturbation variables (again, this
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could be done, but would just obfuscate the explanations). In the following, we split
ξµr as

ξ0r = T (r), ξir = ∂iL(r), with r = 1, 2. (19)

2.7. First-order gauge-invariant variables

In the subsequent work we present the transformation rules of perturbed quantities in

a simplified notation. Instead of writing W
(r)
Y = W

(r)
X + f (ξ1, .., ξr), in order to state

that the difference between the expression of the r-th order pertubed variable W in
gauge Y and in gauge X is a function f of the knight-diffeomorphism fields ξ1, ..., ξr,
we prefer to write W (r) → W (r) + f (ξ1, .., ξr). We remind that the expressions of the
fields (ξi)1≤i≤r necessary for the knight-diffeomorphism are expressed in function of
the gauge fields X and Y [see below Eq. (16)]. From the transformation rules (16) we
deduce that the first-order perturbations of the metric tensor (1) transform as

Φ(1) → Φ(1) + T (1)′ +HT (1) (20)

B(1) → B(1) − T (1) + L(1)′ (21)

Ψ(1) → Ψ(1) −HT (1) (22)

E(1) → E(1) + L(1) (23)

E
(1)
ij → E

(1)
ij , (24)

while the scalar quantities related to matter transform as

δ(1)ρ → δ(1)ρ+ ρ̄′T (1)

δ(1)P → δ(1)P + P̄ ′T (1)

v(1) → v(1) − L(1)′ (25)

δ(1)πij → δ(1)πij , (26)

where a prime denotes a derivative w.r.t conformal time η, and where H ≡ a′/a.
From now on, we shall refer to these first-order transformation rules defined by

ξ1 as Tξ1(Φ(1)), Tξ1(B(1)), ... or simply T (Φ(1)), T (B(1)), ... For instance T (Φ(1)) =

Φ(1) + T (1)′ +HT (1).
We first note that the first-order tensorial modes and the first-order anisotropic

stress are automatically gauge invariant. For the other perturbation variables, which
are not automatically gauge invariant, they are two ways to understand the procedure
to build gauge-invariant combinations. The first point of view in building gauge-
invariant variables consists in finding a way to get rid of the undesired transformation
rule. To do so, we remark that the combinations B(1) − E(1)′ and −E(1)′ transform
under a gauge change as B(1) −E(1)′ → B(1) −E(1)′ − T (1), −E(1) → −E(1) − L(1).
We can use these combinations to add ad hoc compensating terms to Φ(1) and Ψ(1)

by defining

Φ̂(1) ≡ Φ(1) +
(

B(1) − E(1)′
)′

+H
(

B(1) − E(1)′
)

(27)

Ψ̂(1) ≡ Ψ(1) −H
(

B(1) − E(1)′
)

. (28)

Φ̂(1) and Ψ̂(1) are now gauge invariant, by construction. This can also be understood,
from a second point of view, as a gauge transformation for Φ(1) and Ψ(1) towards
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the Newtonian gauge (NG) [1] defined by ξ
(1)
→NG decomposed in T

(1)
→NG = B(1) −

E(1)′ , L
(1)
→NG = −E(1), which transforms the perturbation variables as

B(1) → 0 (29)

E(1) → 0 (30)

Φ(1) → Φ̂(1) ≡ Φ
(1)
NG = Φ(1) +H

(

B(1) − E(1)′
)

+
(

B(1) − E(1)′
)′

(31)

Ψ(1) → Ψ̂(1) ≡ Ψ
(1)
NG = Ψ(1) −H

(

B(1) − E(1)′
)

. (32)

Similarly the gauge-invariant variables that would reduce to δρ, δP and v are

δ(1)ρ̂ ≡ δ
(1)
NGρ = δ(1)ρ+ ρ̄′

(

B(1) − E(1)
)′

δ(1)P̂ ≡ δ
(1)
NGP = δ(1)P + P̄ ′

(

B(1) − E(1)′
)

v̂(1) ≡ v
(1)
NG = v(1) + E(1)′

π̂ij(1) ≡ δ
(1)
NGπ

ij = δ(1)πij . (33)

Since we have ignored the vector gauge degrees of freedom, B(1) and E(1) are
the two gauge variant variables of the metric perturbation while Φ̂(1) and Ψ̂(1) are
the gauge-invariant part. As mentionned before, we then force the gauge-invariant

variables in the perturbed metric by replacing Φ(1) with Φ̂(1) − H
(

B(1) − E(1)′
)

+
(

B(1) − E(1)′
)′

and applying similar procedures for Ψ(1), δ(1)ρ and δ(1)P . When

developping Einstein equations, we know that general covariance will eventually keep
only gauge-invariant terms. Thus, we can either do a full calculation and witness
the terms involving the degrees of freedom B(1) and E(1) disappear, or perform the
calculations with B(1) and E(1) set to zero and obtain the perturbed Einstein equations
only in function of gauge-invariant variables. The latter simplifies the computation,
which is useful when going to higher orders. The advantage of the second point of view,
is that the addition of the compensating terms of the first point of view can be seen

as a first-order gauge change towards the Newtonian gauge with ξ
(1)
→NG (decomposed

as T
(1)
→NG and L

(1)
→NG). These enables us to decompose the perturbed metric in a

gauge-invariant part and a gauge variant part as

δ(1)g ≡ δ(1)g̃ + L
−ξ

(1)
→NG

ḡ, (34)

as it can be seen from the transformation rules under a gauge change characterised
by ξ1

δ(1)g̃ → δ(1)g̃,

−ξ
(1)
→NG → − ξ

(1)
→NG + ξ1. (35)

This property which is not general but happens to hold in the case of cosmological
perturbation (i.e. around FL metric) is the key to extend this construction to second
order.

It should be noted that this procedure, although achieved by defining gauge
invariant variables which reduce to the perturbation variables in the Newtonian
gauge, can be extended to other types of gauge-invariant variables which reduce to
perturbation variables in another gauge. For instance, we can use the transformation



Gauge-invariant Boltzmann equation and the fluid limit 11

properties of Ψ(1) and E(1) to add the compensating terms to Φ(1), B(1) and other
variables. The transformation rules Ψ(1)/H → Ψ(1)/H−T (1), −E(1) → −E(1)−L(1)

make it straightforward to build these compensating terms. We need to define ξ
(1)
→FG

decomposed with T
(1)
→FG = Ψ(1)/H, L

(1)
→FG = −E(1). The gauge-invariant variables

defined with this procedure reduce to the perturbation variables in the flat gauge
(E(1) = 0, Ψ(1) = 0) and are

B̃ ≡ BFG = B(1)−Ψ(1)

H −E(1)′ , Φ̃(1) ≡ Φ
(1)
FG = Φ(1)+Ψ(1)+

(

Ψ(1)

H

)′

.(36)

2.8. Second-order gauge-invariant variables

For second-order perturbations, Eq. (16) gives the following transformation rules

Φ(2) → Φ(2) + T ′(2) +HT (2) + SΦ

B(2) → B(2) − T (2) + L′(2) + SB

Ψ(2) → Ψ(2) −HT (2) + SΨ

E(2) → E(2) + L(2) + SE

E
(2)
ij → E

(2)
ij + SEij

δ(2)ρ → δ(2)ρ+ ρ̄′T (2) + Sρ

δ(2)P → δ(2)P + P̄ ′T (2) + SP

v(2) → v(2) − L(2)′ + Sv

πij(2) → πij(2) + 2T (1)
(

πij(1)
)′

+ 2∂kL(1)∂kπ
ij(1)

− 2πik(1)∂k∂
jL(1) − 2πjk(1)∂k∂

iL(1), (37)

where the source terms are quadratic in the first-order variables T (1), L(1),Φ(1),Ψ(1).
We collect the expressions of these terms in Appendix A. In the rest of this paper, we
shall refer to these second-order transformation rules associated with (ξ) ≡ (ξ1, ξ2) as
T(ξ)(Φ(2)), T(ξ)(B(2)), ... or simply T (Φ(2)), T (B(2)), .... These transformation rules are
much more complicated than their first-order counterparts. However, the combination
defined by F ≡ δ(2)g + 2L

ξ
(1)
→NG

δ(1)g + L2

ξ
(1)
→NG

ḡ enjoys the simple transformation rule

F → F + L
ξ2+[ξ

(1)
→NG

,ξ1]
ḡ under a gauge change defined by ξ2 and ξ1 (see Ref. [26]).

As a result, its transformation rule mimics the one of first-order pertubations under
a gauge change. This means that if we decompose F in the same way as we did for
the metric the metric with

ΦF ≡ Φ(2) + SΦ(ξ
(1)
→NG)

ΨF ≡ Ψ(2) + SΨ(ξ
(1)
→NG)

BF ≡ B(2) + SB(ξ
(1)
→NG)

EF ≡ E(2) + SE(ξ
(1)
→NG)

EFij ≡ E
(2)
ij + SEij(ξ

(1)
→NG), (38)

then the transformation rules for these quantities will be similar to those of Eq. (29),
but with the vector ξ2+[ξ→NG, ξ1] instead of ξ1. Consequently, we shall use the same
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combinations in order to construct gauge-invariant variables which are

Φ̂(2) ≡ ΦF + (BF − E′
F )

′
+H (BF − E′

F )

Ψ̂(2) ≡ ΨF −H (BF − E′
F )

Ê
(2)
ij ≡ EFij . (39)

As for the first order, this addition of compensating terms can be understood,
from the second point of view, as a defining the gauge-invariant variables as the
perturbation variables in a given gauge. In our case it is the Newtonian gauge since it

transforms B and E into a null value. This transformation is defined by ξ
(2)
→NG that

we decompose in

T
(2)
→NG = B(2) − E

′(2) + S
(2)
B

(

ξ
(1)
→NG

)

− S
′(2)
E

(

ξ
(1)
→NG

)

L
(2)
→NG = − E(2) − S

(2)
E

(

ξ
(1)
→NG

)

. (40)

The second-order gauge-invariant variables can be seen as

Φ̂(2) ≡ δ
(2)
NGΦ

Ψ̂(2) ≡ δ
(2)
NGΨ

Ê
(2)
ij ≡ δ

(2)
NGEij (41)

δ(2)ρ̂ ≡ δ
(2)
NGρ

δ(2)P̂ ≡ δ
(2)
NGP

v̂(2) ≡ v
(2)
NG

π̂ij(2) ≡ δ
(2)
NGπ

ij . (42)

where the index NG indicates that we transformed the quantity with the formula (16),

with the vector fields ξ
(1)
→NG and ξ

(2)
→NG defined above. This means that we have split

the second-order metric according to

δ(2)g = δ(2)g̃ + L
−ξ

(2)
→NG

ḡ + 2L
−ξ

(1)
→NG

δ(1)g − L2

−ξ
(1)
→NG

ḡ (43)

where δ(2)g̃ is the gauge-invariant part and −ξ
(2)
→NG the gauge variant part, as it can

be seen from the transformation rules under a gauge change characterised by (ξ1, ξ2)

δ(2)g̃ → δ(2)g̃,

−ξ
(2)
→NG → − ξ

(2)
→NG + ξ2 + [ξ

(1)
→NG, ξ1]. (44)

As for the first order, we can choose other types of combinations, for instance
those which are equivalent to setting the gauge as being flat, by using this procedure.

In this case, the vector field ξ
(2)
→FG is decomposed in

T
(2)
→FG =

Ψ(2)

H +
1

HS
(2)
Ψ

(

ξ
(1)
→FG

)

, L
(2)
→FG = −E(2)−S

(2)
E

(

ξ
(1)
→FG

)

.(45)

It should also be mentioned that the existence of an inverse Laplacian ∆−1 of the
background space-time, i.e. a corresponding Green function with boundary conditions,
is required for all this procedure. In other words, when working in Fourier space, all
our conclusions will be valid only for modes which do not belong to the Kernel of ∆.
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3. Gauge transformation of the distribution function

3.1. pre-Riemannian distribution function

So far, we have set up the mathematical framework to identify points between the
background space-time and the perturbed space-times through a gauge field X . This
enabled us to define the perturbation of tensors and to calculate their transformation
properties under a gauge transformation. However this only allows to perform a
fluid treatment of the radiation. In the statistical description for a set of particles,
we assume that each particle has a given impulsion pµ and is located at a given
position [33]. The equations then have to describe the phase space distribution of
the particles. If the number of particles is high enough, we can define a probability
density, the distribution function, of finding a particle in an infinitesimal volume of
the phase space. Now, let us focus our attention on this distribution function. The
distribution function is a function of the point considered (i.e. its coordinates xµ),
and also a function of the tangent space at this point whose coordinate we label by
pν∂ν . There is no special reason for this function to be linear in pν∂ν , but we can
expand it, without any loss of generality, in power series of tensors according to

f (xν , pν) =
∑

k

Fµ1..µk
(xν)pµ1 ...pµk . (46)

The distribution function is then decomposed as the sum of all the multipoles Fµ1..µk

evaluated in a particular point of the tangent space. From the previous section we know
the transformation rules for these tensorial quantities, thus f transforms according to

T(ξ) [f (xν , pν)] ≡
∑

k

T(ξ) [Fµ1..µk
(xν)] pµ1 ...pµk , (47)

where T(ξ) refers to the knight-diffeomorphism with the set of vectors (ξ1, ξ2, ...).
As we do not necessarily want to refer explicitly to the decomposition in

multipoles, we use the fact that for any vector ξ = ξµ∂µ, which defines a flow on the
background space-time P0(N ), we can define an induced flow (a natural lift) on the

vector tangent bundle TP0(N ) directed by the vector field Tξ =
[

ξµ∂µ, p
ν(∂νξ

µ) ∂
∂pµ

]

.

This implies the useful property

Lξ

(

Fµ1..µp

)

pµ1 ..pµp = LTξ

(

Fµ1..µp
pµ1 ..pµp

)

. (48)

With this definition, we can rewrite the transformation rule for f as

T(ξ) [f (xν , pν)] = T(Tξ) [f (xν , pν)] , (49)

where now T(Tξ) refers to the knight-diffeomorphism with the set of vectors
(Tξ1, T ξ2, ...).

The evolution of the distribution function is dictated by the Boltzmann equation
df
dη = C[f ], where the r.h.s is the collision term which encodes the local physics.
This collision term can be easily expressed in the local Minkowskian frame defined
by a tetrad fields ea, from known particles physics. For this reason, the framework
developed to define gauge transformations for a general manifold has to be extended to
the case of Riemannian manifold. Instead of using the coordinates basis ∂µ to express
a vector of tangent space as V = pµ∂µ, we prefer to use the tetrads basis ea and
write V = πaea. In terms of coordinates, this means that the distribution function
is a function of xµ and πa. When expressing the physics with the tetrad fields, the
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metric is not just one of the many tensors of the theory whose properties under a
gauge transformation we need to know, but rather a central feature of the manifold,
since it determinates the tetrads (up to a Lorentz tranformation) required to express
the distribution function. As the metric is a tensor, and as the tetrads are defined
according to the metric, the extension is inherited from the previous section.

3.2. Tetrads

3.2.1. Definitions On each slice Pλ(N ), we should have four vector fields‡ (and
their associated 1-form fields) labeled by a = 0, 1, 2, 3, which satisfy the normalization
conditions

eµae
ν
bgµν = ηab, eaµe

b
νg

µν = ηab. (50)

With these notations, indices a, b, c.. are raised and lowered with ηab.
With the formalism developed for tensors, we carry this tetrad field onto the

background space-time using a gauge field X with

eµa,X ≡ φ⋆
λ,X(ea) =

k=∞
∑

k=0

λk

k!
Lk
Xea

δ
(n)
X ea ≡ Ln

Xea

∣

∣

∣

P0(N )
, ēa ≡ δ

(0)
X ea, (51)

and similar formulas for ea.
As ēa is a basis of the tangent space on the background space-time (and ēa a

basis of its dual space), eµa,X and eaµ,X can be expressed in the generic form

ea,X = R b
a,X ēb, ebX = ēaS b

a,X , R c
a,XS b

c,X = S c
a,XR b

c,X = δba, (52)

where,

Rab,X ≡
∑

k

λk

k!
R

(k)
ab,X

Sab,X ≡
∑

k

λk

k!
S
(k)
ab,X . (53)

Order by order, this reads

δ
(n)
X ea = R

(n)b
a,X ēb, δ

(n)
X eb = ēaS

(n)b
a,X . (54)

3.2.2. Normalization condition Tetrads are four vector fields which satisfy Eq. (50)
and are thus related to the metric. Consequently, the perturbations of the tetrad
defined above are partly related to the perturbations of the metric. When pulled back
to the background space-time, Eq. (50) implies

φ⋆
λ,X(ηab) = ηab = φ⋆

λ,X(eµae
ν
bgµν)

= φ⋆
λ,X(eµa)φ

⋆
λ,X(eνb )φ

⋆
λ,X(gµν). (55)

‡ The fifth direction which arises from the extension of the manifold from M to N is ignored as the
component of any tensor is required to vanish in this direction. We thus consider the tangent space
at each point of N as being four-dimensional.
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Identifying order by order (in terms of λ) we get in particular for the first and second
orders

ēb.δ
(1)
X ea + ēa.δ

(1)
X eb + δ

(1)
X g(ēa, ēb) = 0

ēb.δ
(2)
X ea + ēa.δ

(2)
X eb + δ

(2)
X g(ēa, ēb) (56)

+δ
(1)
X eb.δ

(1)
X ea + δ

(1)
X g

(

δ
(1)
X ea, ēb

)

+ δ
(1)
X g

(

ēa, δ
(1)
X eb

)

= 0,

where a dot product stands for ḡ ( , ). From the constraints (56), we can determine

the symmetric part of R
(n)
ab as

R
(1)
(ab),X = − 1

2
δ
(1)
X g(ēa, ēb) (57)

R
(2)
(ab),X = − 1

2
δ
(2)
X g(ēa, ēb)− δ

(1)
X g

(

R
(1)
ac,X ēc, ēb

)

− δ
(1)
X g

(

ēa, R
(1)
bc,X ēc

)

−R
(1)c
a,XR

(1)
bc,X , (58)

which are related to the components of the inverse by

S
(1)
ab,X = −R

(1)
ab,X (59)

S
(2)
ab,X = −R

(2)
ab,X + 2R

(1)c
a,XR

(1)
cb,X . (60)

The antisymmetric part, R[ab],X , still remains to be chosen as it corresponds to
the Lorentz transformation freedom (boost and rotation), which is allowed by the

definition (50). A first and easy choice would be R
(n)
[ab],X = 0 for any n. However, as

mentioned above, we eventually want to decompose a vector pµ∂µ on tangent space
as

pµ∂µ = πaea = πaeµa∂µ, (61)

and identify π0 with the energy and πi with the momentum (although conserved
quantities are generally ill-defined in general relativity, energy and momentum can be
defined when performing perturbations around a maximally symmetric background
[35] as it is the case here). When working with coordinates, we want to express
physical quantities, as measured by comoving observers, i.e. observers of constant
spatial coordinates, whose motion is defined by the 1-form (dη)µ [36]. We thus

require (e0)µ ∼ (dη)µ, which is equivalent to choose S
(n)
ai0,X

= 0 for any n, where

ai = 1, 2, 3. This choice allows us to fix the boost in S(n) by imposing the condition

S
(n)
[ai0],X

= −S
(n)
[0ai],X

= −S
(n)
(ai0),X

. As Eq. (52) implies that for any n

S(n)
ac +R(n)

ac +
∏

{ p+ q = n,
p ≥ 1, q ≥ 1}

S(p)b
a R

(q)
bc

n!

p!q!
= 0, (62)

it can be checked by recursion that this implies

R
(n)
[ai0],X

= −R
(n)
[0ai],X

= −R
(n)
(ai0),X

. (63)

We also fix the rotation by requiring S
(n)
[aiaj ],X

= 0, and it can be checked similarly, by

recursion on Eq. (62), that this implies R
(n)
[aiaj ],X

= 0.
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3.3. Gauge transformation of tetrads

Under a gauge transformation, we can deduce the transformation properties of the
tetrad from those of the perturbed metric. For simplicity, we restricted to scalar and
tensor perturbations, but this is completely general and can be easily extended to
include vectors. In the FL case, we use a natural background tetrad associated to
Cartesian coordinates ē0 = (∂η) /a, ēbi = (∂i) /a, in order to evaluate Eq. (57). The
notation bi refers to Lorentz (SO(1,3)) indices running from 1 to 3, whereas i is a
coordinate index running from 1 to 3. When uselessly obfuscating the explanation, we
will not make the distinction and change bi for i. We report the detailed expressions
for the transformation of the tetrads for the first and second orders in Appendix B.

4. Distribution function

Now that the transformation properties of the tetrads are known, we turn to the
general transformation of a distribution function f(xµ, πa).

4.1. Multipolar expansion

Any function f(xµ, πa) can be expanded in symmetric trace free multipoles as [37]

f(xµ, πa) =
∑

p

Fp(x
µ, πa) (64)

with

Fp(x
ν , πa) ≡ Fµ1..µp

(xν)pµ1 ..pµp

=
[

Fµ1..µp
(xν )eµ1

a1
..eµp

ap

]

πa1 ..πap

≡ Fa1..ap
(xν)πa1 ..πap . (65)

We do not need any additional identification procedure for the tangent spaces
through a gauge field, in order to identify points of the tangent space of the slices
TPλ(N ). Indeed, once the metric and a gauge fieldX are chosen, there exists a natural
identification with the tetrad fields. First, and as mentioned before, we identify the
points of N which lie on the same integral curves of X , that is, we identify a point
P ∈ P0(N ) and Φλ,X(P ) ∈ Pλ(N ). Then, we identify vectors of their respective
tangent spaces, if the coordinates of these vectors in their respective local tetrad
frames ēa and ea, are the same. To be short, we identify πaea and πaēa. As a
consequence, for any given set {a1, ..., ap}, the function Fa1..ap

(xν) is a scalar field.
Fa1..ap

(xν) is then pulled back on the background space-time using the gauge field X ,
and we define in this way perturbations

Φ⋆
λ,X

[

Fa1..ap
(xν)

]

≡ FX,a1..ap
(xν) ≡

∑

λ

λn

n!
δ
(n)
X Fa1..ap

(xν), (66)

and

Fp,X(xν , πa) ≡ FX,a1...ap
(xν)πa1 ...πap . (67)

This perturbation scheme induces a perturbation procedure for the distribution
function f as
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fX(xν , πa) ≡
∑

n

λn

n!
δ
(n)
X f(xν , πa),

δ
(n)
X f(xµ, πa) ≡

∑

p

δ
(n)
X Fa1...ap

(xν)πa1 ...πap . (68)

It is essential to stress that πa is not a perturbed quantity, it is a coordinate of the
locally Minkowskian tangent space. However, the tetrad field allows us to see pµ as
a perturbed vector since pµ(πa) = eµaπ

a. In other words, for a given πa, there is an
associated vector whose order by order perturbation in a given gauge X is given by

p
µ(n)
X ≡ e

µ(n)
a,X πa.

4.2. Gauge transformation: general case

We can deduce the transformation rule under a gauge change directly on the form (65),
pulled back to the background space-time,

T [fX(xν , πa)] ≡
∑

p

T
[

FX,µ1...µp
(xν)

]

T
(

eµ1

a1,X

)

...T
(

e
µp

ap,X

)

πa1 ...πap .(69)

The first factor in this expression is tensorial. Exactly as for the pre-Riemannian
case, its transformation rule is dictated by the knight-diffeomorphism, whereas we
get the transformation rules of the tetrads from Eqs. (B.2) and Eqs. (B.4). As we
do not necessarily want to refer explicitly to the multipole expansion, the first factor
is rewritten by considering f as a function of pµ using πa = eaν,Xpν , and applying
Eq. (49). We then have to consider the resulting distribution function as a function of
πa, knowing that the inversion is now given by pµ(πa) = T (eµa)π

a. This will account

for T
(

eµ1

a1,X

)

in Eq. (69). In a compact form it reads

T [fX(xν , πa)] = T(Tξ)

{

fX
[

xν , eaµp
µ
]}

∣

∣

∣

pµ=T (eµ
b
)πb

. (70)

To obtain an order by order formula, we explicit these three steps using a Taylor
expansion. First, we use that

fX(xν , πa) =

[

exp

(

ēbµp
µS a

b,X

∂

∂πa

)

fX

]

(xν , ēbµp
µ) ≡ gX(xν , pµ), (71)

in order to consider f as a function of pµ. We then Taylor expand back the result of
the knight-diffeomorphism in order to read the result as a function of πa,

T [fX(xν , πa)] =

[

exp

(

ēµb π
aT
(

R b
a,X

) ∂

∂pµ

)

T(Tξ) (gX)

]

(xν , ēµaπ
a).(72)

The derivatives in the previous expressions have to be ordered on the right in each
term of the expansion in power series of the exponential. When identifying order by
order, we need to take into account the expansion in Rab and Sab, in the exponentials
and also in the knight-diffeomorphism.

We have provided the general transformation rules for the distribution function
and we will specify now the transformation properties of the first- and second-order
distribution function.
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4.3. The mass shell

The transformation properties of δ
(n)
X eµa have been chosen so that, in the special

case of f ≡ gµνp
µpν = gµνe

µ
ae

ν
bπ

aπb = πaπ
a, it remains unchanged under a gauge

transformation, i.e. T (πaπa) = πaπa. Since the tetrads must satisfy Eq. (50), then

δ
(n)
X f = 0 for n ≥ 1, and it implies this property trivially. As a consequence, any
function of the form δ(πaπ

a −m2)f(xµ, πa) transforms as δ(πaπ
a −m2)T [f(xµ, πa)],

where m2 is the mass of the particles described by the distribution function. In other
words, the transformation of the distribution function remains on the mass shell, as
it has been already mentionned in Ref. [9]. We will make use of this property when
computing the transformation rules of the distribution function.

5. Application to the perturbation of the Boltzmann equation for

radiation

The formalism developed in the previous section is general. We will now apply it to
the particular FL case, and from now on we will also focus on the radiation case,
that is the case where m2 = 0. For the first and the second order, we will present
the transformation rules of the distribution function for radiation, and build a gauge-
invariant distribution function as well as a gauge-invariant brightness. We will then
write the evolution equation of this gauge-invariant brightness in the case where the
photon travels freely through space-time without being affected by diffusion processes.
This is obtained using the collisionless Boltzmann equation

df

dη
=

∂f

∂η
+

∂f

∂xi

∂xi

∂η
+

∂f

∂π0

∂π0

∂η
+

∂f

∂ni

∂ni

∂η
= 0, (73)

where ni ≡ πi/π0, from which we will extract the background, the first- and the
second-order equations after having pulled it back to the background space-time. In

order to do so, we need to know ∂π0

∂η
and ∂πi

∂η
. By considering pµ as a perturbed vector,

as mentionned in § (4.1), theses can be expressed from the geodesic equation

p0
dpµ

dη
= −Γµ

νσp
νpσ (74)

that we pull back to the background space-time in order to extract order by order

equations. Similarly, ∂xi

∂η
is given by the order by order expressions of p0 ∂xi

∂η
= pi,

when pulled back to the background space-time.
At the background level, space is homogeneous and isotropic. Consequently,

the distribution function depends neither on the direction ni of the photon nor on

the position in space xi. It only depends on π0 and η, which implies that ∂f̄
∂ni =

∂f̄
∂xi = 0. Since the background geodesic deviation equation implies ∂π0

∂η
= −Hπ0, the

collisionless Boltzmann equation reads at the background level

∂f̄

∂η

∣

∣

∣

π
−Hπ0 ∂f̄

∂π0
= 0. (75)

5.1. Gauge transformation at first order

In order to better understand the seemingly heavy but powerful formalism of § 4.2, let
us apply it to the first-order gauge transformation of the photon distribution function
f in the Boltzmann equation. In this case, Eq. (70) for ξ1 = (T, L) leads to
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T
[

δ(πcπ
c)δ

(1)
X f

]

=

δ(πcπ
c)
{

LTξ1

[

f̄(xν , apµ)
]

+
[

T
(

R
(1)b
a,X

)

+ S
(1)b
a,X

]

πa ∂f̄

∂πb

}

. (76)

The expressions of R b
a,X and S b

a,X , and their transformation rules for the FL case,

are given in Appendix B. Using the fact that f̄ is only a function of π0 due to the
term δ(πcπ

c),

LTξ1

[

f̄(xν , apµ)
]

= T
∂

∂η

∣

∣

∣

p
f̄(xν , apµ) +

∂f̄

∂π0
π0(T ′ + ni∂iT ) (77)

[

T
(

R
(1)0
0,X

)

+ S
(1)0
0,X

]

π0 ∂f̄

∂π0
= − ∂f̄

∂π0
π0(T ′ +HT ). (78)

Note that there is no term involving
[

T
(

R
(1)0
i,X

)

+ S
(1)0
i,X

]

πi ∂f̄
∂π0 thanks to the

prescription in the choice of the tetrad in § 3.2.2.
We then express the derivatives as

∂f̄(xν , apµ)

∂η

∣

∣

∣

p
=

∂f̄

∂η

∣

∣

∣

π
+

∂f̄

∂π0
Hπ0. (79)

Putting all the pieces together, we finally get that

T
[

δ(πcπ
c)δ

(1)
X f

]

= δ(πcπc)

(

∂f̄

∂π0
π0ni∂iT + T

∂f̄

∂η

∣

∣

∣

π

)

= δ(πcπc)
∂f̄

∂π0
π0(HT + ni∂iT ), (80)

where in the last step we have made use of the background Boltzmann equation (75).
It can be checked that by considering f as a function of

√
πiπi instead of π0, as

allowed by the factor δ(πcπc), we recover the same result as performed in Ref. [9].
However this is slightly more intricate, as it now apparently depends on the three
variables πi which are in fact not independent at the background level.

Although the mathematical framework can seem to be heavy, we did not need
to define an extension of the distribution function outside the mass shell nor a gauge
transformation field parallel to the mass shell as in Ref. [9]. We first have built the
distribution function using the tetrad field (it is a function of πa and not an express
function of pµ). Then, as explained in §4.3, the normalization condition (50), when
expressed at each order in Eqs. (56), ensures that it remains on the mass shell during
a gauge transformation that we perform using the rules derived for tensors.

5.2. First-order gauge-invariant distribution function for radiation

Now that transformation properties of the first-order distribution function are known,
we can use the results of § 2 to define a gauge-invariant distribution function by

f̂ (1) ≡ δ
(1)
NGf = δ

(1)
X f + T

ξ
(1)
→NG

(

δ
(1)
X f

)

= δ
(1)
X f +

∂f̄

∂π0
π0
[

H
(

B(1) − E(1)′
)

+ ni∂i

(

B(1) − E(1)′
)]

. (81)
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As for tensorial quantities, we can choose for instance ξ
(1)
→FG in the above

expression, in order to define an other gauge-invariant distribution function. Its
expression is given by

f̃ (1) ≡ δ
(1)
FGf = δ

(1)
X f + T

ξ
(1)
→FG

(

δ
(1)
X f

)

= δ
(1)
X f +

∂f̄

∂π0
π0

[

Ψ(1) +
ni∂iΨ

(1)

H

]

. (82)

These two first-order gauge-invariant distribution functions are related by

f̃ (1) − f̂ (1) =
∂f̄

∂π0
π0

[

Ψ̂(1) +
ni∂iΨ̂

(1)

H

]

. (83)

It is worth remarking that in the previous literature [9], another gauge-invariant
distribution is defined, namely

F (1) ≡ δ
(1)
X f +

∂f̄

∂π0
π0
[

Ψ(1) + ni∂i

(

B(1) − E(1)′
)]

= f̂ (1) +
∂f̄

∂π0
π0Ψ̂(1) (84)

Though it cannot be interpreted as the perturbation of the distribution function in a
given gauge since it mixes ξ→NG and ξ→FG, this is a better variable to highlight the
conformal invariance of the photons propagation and to compare with the null cone
integration method [34].

This first-order analysis illustrates the power of this formalism which can be
generalized to higher orders in perturbations.

5.3. First-order collisionless Boltzmann equation for radiation

Integrating the gauge-invariant distribution function of radiation over π0, we define
the gauge-invariant brightness, which is the energy perturbation per unit solid angle
in a given direction

Î(1)(xµ, ni) ≡ 4π

∫

f̂ (1)(xµ, π0, ni)(π0)3dπ0. (85)

We choose the normalization of the background distribution function such that
the background brightness reduces to the energy density (see § 6 for the fluid
approximation)

Ī(η) ≡ 4π

∫

f̄(η, π0)(π0)3dπ0 = ρ̄. (86)

We can associate gauge-invariant symmetric trace-free moments, F̂i1...in , to this
brightness by using the decomposition

Î(1)(xµ, ni) ≡
∑

p

F̂ (1)
i1..ip

(xµ)ni1 ..nip . (87)

With these definitions, the integral
∫ (

π0
)3

dπ0 on the first-order Boltzmann equation

leads to the evolution equation for Î(1) [38]
(

∂

∂η
+ ni∂i

) Î(1)

4
+HÎ(1) +

(

ni∂iΦ̂
(1) − Ψ̂(1)′

)

Ī = 0, (88)
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where we have ignored the tensor terms for simplicity. Similarly, a gauge-invariant
brightness Ĩ(1) associated with f̃ (1), and a gauge-invariant brightness M (1) [9]
associated with F (1) can be defined. They are related to Î(1) by

Ĩ(1) = Î(1) − 4Ī
(

Ψ̂(1) +
ni∂iΨ̂

(1)

H

)

M (1) = Î(1) − 4ĪΨ̂(1). (89)

5.4. Gauge transformation at second order

At second order, the general gauge transformation of the distribution function (70)
for (ξ) = (ξ1, ξ2), (Tξ) = (Tξ1, T ξ2) is given in details in Appendix C. After
simplifications, it reads

T
(

δ
(2)
X f

)

=
∂f̄

∂η
(T (2) + TT ′ + ∂iT∂

iL)

+
∂f̄

∂π0
π0
{

ni∂iT
(2) − 2nj

[

(∂i∂jE + Eij + ∂i∂jL)∂
iT −Ψ∂jT

]

+ ∂iT∂
iT + (Tni∂iT )

′ + ni∂i
(

∂jL∂jT
)

+ 2Φni∂iT
}

+
∂2f̄

∂ (π0)
2

(

π0
)2 (

ni∂iTn
j∂jT

)

+ 2
∂2f̄

∂η∂π0
Tni∂iT +

∂2f̄

∂η2
T 2

+ 2
∂δ

(1)
X f

∂π0
π0nj∂jT + 2

∂δ
(1)
X f

∂πi
π0∂iT + 2∂iL∂iδ

(1)
X f + 2T

∂δ
(1)
X f

∂η
. (90)

This is a cornerstone expression in our study of the second-order distribution
function. As for the fluid quantities, knowing the transformation rules under a second-
order gauge change is enough to define a second-order gauge invariant distribution
function which is required to write the second-order Boltzmann equation only in
terms of gauge-invariant variables. As for tensors, several gauge-invariant distribution
function can be defined, and this relation is also required to express how the different
gauge-invariant distribution functions are related.

5.5. Second-order gauge-invariant distribution function for radiation

Again, we can use the results of § 2.8 to define a gauge-invariant distribution function
as

f̂ (2) ≡ δ
(2)
NGf = δ

(2)
X f + T“

ξ
(1)
→NG, ξ

(2)
→NG

”

[

δ
(2)
X f

]

. (91)

As for tensorial quantities, we can choose for instance
(

ξ
(1)
→FG, ξ

(2)
→FG

)

, in order

to build another second-order gauge-invariant distribution function.

f̃ (2) ≡ δ
(2)
FGf = δ

(2)
X f + T“

ξ
(1)
→FG, ξ

(2)
→FG

”

[

δ
(2)
X f

]

. (92)

The difference between these two gauge-invariant distribution functions is also
gauge-invariant and is consequently expressed only in terms of gauge invariant
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quantities. For the sake of completeness, we give the form of the relation between
these two gauge-invariant distribution functions,

f̃ (2) − f̂ (2) =

1

H2

∂f̄

∂π0
π0

{

nk∂k

[

HΨ̂(2) + Ψ̂(1)Ψ̂(1)′ + 2HΨ̂(1)2
]

+ ∂iΨ̂
(1)∂iΨ̂(1)

+ nk∂k

[

−∆−1

2H
(

∆Ψ̂(1)
)2

+
∆−1

2H
(

∂i∂jΨ̂
(1)∂j∂iΨ̂

(1)
)

]

− 2HnjEij∂
iΨ̂(1) +

(

Ψ̂(1)ni∂iΨ̂
(1)
)′

+ 2H
(

Φ̂(1) + Ψ̂(1)
)

ni∂iΨ̂
(1)

}

+
1

H2

∂2f̄

∂ (π0)
2

(

π0
)2
[

ni∂iΨ̂
(1)nj∂jΨ̂

(1)
]

+
2

H2

∂2f̄

∂η∂π0
Ψ̂(1)ni∂iΨ̂

(1)

+
1

H2

∂f̄

∂η

[

HΨ̂(2) + Ψ̂(1)Ψ̂(1)′ + 2HΨ̂(1)2 +HΨ̂(1)

(

Ψ̂(1)

H

)′

− ∆−1

2H
(

∆Ψ̂(1)
)2

+
∆−1

2H
(

∂i∂jΨ̂
(1)∂j∂iΨ̂

(1)
) ]

+
2

H
∂f̂ (1)

∂π0
π0nj∂jΨ̂

(1) +
2

H
∂f̂ (1)

∂πi
π0∂iΨ̂(1) + 2

Ψ̂(1)

H
∂f̂ (1)

∂η
+

1

H2

∂2f̄

∂η2

(

Ψ̂(1)
)2

.(93)

This clearly demonstrates the power of our formalism since, contrary to the first
order, this relation cannot be guessed intuitively. Note also that this is non-local as
it is generally the case for second-order gauge-invariant quantities.

5.6. The second-order gauge-invariant collisionless Boltzmann equation for radiation

Similarly to the first order case, we define the second-order brightness as

Î(2)(xµ, ni) ≡ 4π

∫

f̂ (2)(xµ, π0, ni)(π0)3dπ0. (94)

We also define the second-order gauge-invariant moments associated to this gauge
invariant brightness by the second-order version of Eq. (87). The derivation of the
collisionless Boltzmann equation in the Newtonian gauge is detailed in Ref. [27, 28].

Once the integral
∫ (

π0
)3

dπ0 performed, it leads to an evolution equation for the
brightness. As this is a scalar equation, it is gauge invariant and it can be expressed
only in terms of the gauge invariant quantities that we have defined and which reduce
to the perturbation variables in the Newtonian gauge. Explicitly, it reads

(

∂

∂η
+ ni∂i

) Î(2)

4
+HÎ(2) + Īni∂iΦ̂

(2) + 2Ī
(

Ψ(1) − Φ(1)
)

ni∂iΦ
(1)

+
1

2

[

∂j

(

Φ̂(1) + Ψ̂(1)
)

ninj − ∂i
(

Φ̂(1) + Ψ̂(1)
)] ∂Î(1)

∂ni

− 2Î(1)
(

Ψ̂(1)′ − nj∂jΦ̂
(1)
)

− Ī
(

Ψ̂(2)′ + 4Ψ̂(1)Ψ̂(1)′
)

+
1

2

(

Φ̂(1) + Ψ̂(1)
)

ni∂iÎ(1) = 0. (95)

Up to this stage, we agree with the expressions of Ref. [27, 28].
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6. Fluid approximation

If we want to recover the transformation rule and the gauge-invariant variables for
the energy density, the pressure and the velocity of radiation, we need to define a
stress-energy tensor from the distribution function of radiation. We already know
from special relativity how to define such a tensor. We generalize it by using the local
Minkowskian frame

T ab(xµ) =

∫

dπ0d3πiδ(πcπc)f(x
µ, πd)πaπb

=

∫

(π0)3f(xµ, πd)nanbdπ0d2ni, (96)

where na ≡ ni = πi/π0, if a = 1, 2, 3 and na = 1 if a = 0. In order to evaluate the
stress energy tensor, we have performed one of the integrals which removes the Dirac
contribution δ(πaπa)

∫

δ(πaπa)G(x, πa)dπ0d3πi =

∫

G(x, π0, ni)π0dπ0d2ni. (97)

Several useful relations for handling integrals of the background distribution function
are reported in Appendix D. If we are dealing with several species, we can still define
a stress-energy tensor for each component, as long as we are dealing with weakly
interacting gases. This is the standard kinetic approach in which the interaction
between two species is encoded in the collision term of the Boltzmann equation [2].

We define ρ, P , the velocity Ua and the anisotropic stress Πab,

T ab = ρUaU b + P ⊥ab +Πab, (98)

with ⊥ab≡ ηab + UaU b, and the properties UaUa = −1, Πab ⊥ab= 0, UaΠ
ab = 0.

However, fluid quantities are usually expressed using the canonical basis associated
with coordinates ∂µ and not the tetrad field. We thus define uµ = Uaeµa as
the coordinates of the velocity in this canonical basis, and we decompose it as in
Eq. (5). Similarly, we define the anisotropic stress expressed in the canonical basis
by πµν = eµae

ν
bΠ

ab. Some confusion can arise from the fact that physicists often
design a vector by its coordinates. With this symbolic convention, Ua and uµ are
mathematically the same vector, but expressed in different basis since Uaea = uµ∂µ.
The relations between Ua and uµ up to second order are

Ū0 = aū0 = 1

Ū i = aūi = 0, (99)

and

δ
(1)
X U0 = 0

δ
(1)
X U i = ∂i

(

v(1) +B(1)
)

, (100)

δ
(2)
X U0 = ∂i(v +B)∂i(v +B)

δ
(2)
X U i = ∂i(v(2) +B(2))− 2Φ∂iB + 2Ψ∂i (B − v)

+ 2∂j (v −B)
(

∂i∂jE + Ei
j

)

. (101)
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Similarly the relations between the spatial components of πµν and Πab are

δ
(1)
X πij =

1

a2
δ
(1)
X Πij

δ
(2)
X πij =

1

a2

[

δ
(2)
X Πij + 2δ

(1)
X Πik

(

Ψ(1)δjk − ∂k∂
jE(1) − E

(1)j
k

)

+ 2δ
(1)
X Πjk

(

Ψ(1)δik − ∂k∂
iE(1) − E

(1)i
k

) ]

. (102)

The fluid quantities can be extracted from Eq. (98) as follows

ρ = T abUaUb, (103)

3P = T ab ⊥ab, (104)

Πab = T cd

(

⊥ca⊥db −
1

3
⊥cd⊥ab

)

, (105)

(ρ+ P )U0U i = T 0i. (106)

It is easy to see that the factor δ (πaπ
a) in the integral of the definition (96) of the

stress energy tensor implies that P = ρ/3.
The system of definitions (103-106) determines the fluid quantities. Indeed, these

quantities can now be calculated iteratively at any order once Eq. (96) is pulled back
to the background space-time. Since Ū0 = 1 and Ū i = 0, ρ̄ P̄ and Π̄ab are given by

ρ̄ = 3P̄ = T̄ 00Ū0Ū0, Π̄ab = 0, (107)

as expected from the background symmetries for a fluid of radiation. Then, since
U0 =

√
U iUi + 1, and using Eq. (106), we can determine the first-order expression of

the velocity

δ
(1)
X U0 = 0

δ
(1)
X U i =

3

4ρ̄
δ
(1)
X T 0i. (108)

Repeating this procedure, we obtain from Eqs. (103-106)

δ
(1)
X ρ = 3δ

(1)
X P = δ

(1)
X T 00Ū0Ū0

δ
(1)
X Πij = δ

(1)
X T ij − δij

3
δ
(1)
X T k

k , (109)

and the condition UaΠ
ab = 0 implies

δ
(1)
X Πi0 = δ

(1)
X Π00 = 0

δ
(2)
X Π00 = 0

δ
(2)
X Π0i = 2δ

(1)
X Πijδ

(1)
X Uj . (110)

Again, using Eq. (106), we determine the second-order perturbation of the velocity

δ
(2)
X U0 = δ

(1)
X U i δ

(1)
X Ui (111)

δ
(2)
X U i =

3

4ρ̄

(

δ
(2)
X T 0i − δ

(2)
X Π0j

)

− 2
δ
(1)
X ρ

ρ̄
δ
(1)
X U i. (112)
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Iterating, we obtain from Eqs (103-106)

δ
(2)
X ρ = 3δ

(2)
X P = δ

(2)
X T 00Ū0Ū0 + 2T̄ 00Ū0δ

(2)
X U0 (113)

δ
(2)
X Πij = δ

(2)
X T ij − δij

3
δ
(2)
X T k

k

− 8

3
ρ̄

(

δ
(1)
X U iδ

(1)
X U j − δij

3
δ
(1)
X Uk δ

(1)
X Uk

)

.

This shows that, by iterating this procedure, the fluid quantities can be
determined up to order n if f , that is T ab, is known up to order n. This means
that, by knowing the transformation rule of f under a gauge transformation, we can
deduce the transformation rules of the fluid quantities built out of it (ρ, P, Ua, Πab).
Eventually, we are interested in their expressions in the canonical basis in order to
compare with the results of § 2, and we need to use Eqs. (99-101) and Eqs. (102).

6.1. First-order fluid quantities transformation

At first order, from the relations (109) and (100), and the transformation rule for f ,

Eq. (80), we deduce after some algebra, that δ
(1)
X ρ transforms as in Eq. (25). Similarly,

from Eq. (108), the relation (100), and the transformation rule for f , Eq. (80), we
deduce that v(1) transforms as in Eq. (25). By the same method, we recover easily
that δ(1)πij is gauge invariant.

6.2. First-order fluid equations

In order to recover the gauge-invariant conservation equation and the Euler equation
of the fluid approximation at first order, we define the first-order gauge invariant
stress-energy tensor by

T̂ ab(1)(xµ) ≡
∫

(π0)3f̂ (1)(xµ, πc)nanbdπ0d2Ω =

∫

Î(1)nanb d
2Ω

4π
, (114)

and its associated first-order gauge-invariant fluid quantities, ρ̂(1), P̂ (1), v̂(1) and π̂ij(1),
built from the same types of relation as in the set of Eqs. (103-106) and expressed in
the canonical basis with Eqs (100) and (102). Because of the comparison performed
in the previous section, these quantities match those defined in Eq. (33), and this
justifies the fact that we use the same notation. We need the useful relations between
the first moments and the fluid quantities

F̂ (1) =

∫

Î(1) dΩ

4π
= δ(1)ρ̂, (115)

F̂ i(1) =

∫

Î(1)nidΩ

4π
=

4

3
ρ̄∂iv̂(1), (116)

F̂ ij(1) =

∫

Î(1)

(

ninj − δij

3

)

dΩ

4π
= Π̂ij(1). (117)

Performing
∫

dΩ on the brightness evolution equation (88), we recover the first-order
conservation equation. However, performing

∫

nidΩ, we recover the first order Euler
equation as expressed in Appendix E, only if we neglect the first-order anisotropic
pressure. This comes from the fact that the statistical description of radiation leads
to an infinite hierarchy of equations coupling moments of order p− 1, p and p+1 [39],
whereas the fluid description keeps only the equations involving the monopole and the
dipole.
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6.3. Second-order fluid quantities transformation

In order to establish the second-order comparison with the fluid description, we need

to know how to perform an integral involving δ
(1)
X f , for instance on 2

∂δ
(1)
X

f

∂π0 π0nj∂jT +

2
∂δ

(1)
X

f

∂πi π0∂iT . We will thus make use of the multipolar expansion

δ
(1)
X f = f̄

δ
(1)
X ρ

ρ̄
+ 4f̄∂i

(

v(1) +B(1)
)

ni +
15f̄

2ρ̄
δ
(1)
X Πijn

inj + ... (118)

from which it can be checked that we recover the correct fluid quantities when used

to compute δ
(1)
X T ab in Eq. (96).

Using the same method as for the first order, with the relations (113) and (101),
and the transformation rule for the second-order distribution function, Eq. (90), we
deduce that δ(2)ρ transforms as in Eq. (37). Additionally, from the relations (111),
(112), (101) and (110), we deduce that v(2) transforms as in Eq. (37).

We also notice that from the definition (113), the relations (111) (112), and the
transformation rule for f , Eq. (90), we deduce that δ(2)Πij transforms according to

δ(2)Πij → δ(2)Πij + 2T
(

δ(1)Πij
)′

+ 2∂kL∂k

(

δ(1)Πij
)

. (119)

When expressed in the canonical basis (πµν ≡ eµae
ν
bΠ

ab), we recover exactly the
transformation rule of the anisotropic stress given in Eq. (37).

This is one of the major results of this paper. We recover the perfect fluid
transformation rules for the energy density, the pressure, the velocity and the
anisotropic stress given in Ref. [40] up to second order, when starting from the
statistical description.

6.4. Second-order fluid equations

In order to recover the gauge-invariant conservation equation and the Euler equation
of the fluid approximation at the second order, we follow the same procedure as for
the first order case. We thus define the second-order gauge invariant stress-energy
tensor by

T̂ ab(2)(xµ) ≡
∫

(π0)3f̂ (2)(xµ, π)nanbdπ0d2Ω =

∫

Î(2)nanb d
2Ω

4π
, (120)

and its associated second-order gauge-invariant fluid quantities, ρ̂(2) P̂ (2) v̂(2) and
π̂ij(2), built from the same types of relations as in the set of Eqs. (103-106) and
expressed in the canonical basis with Eqs (101) and (102). Because of the comparison
performed in the previous section, these quantities match those defined in Eq. (42),
thus justifying the fact that we use the same notation.

In order to recover the conservation and Euler equations of the fluid
approximation we perform the integral

∫

dΩ
4π and

∫

dΩ
4π n

i on this equation. However, at
the second order this has to be done with care since the link between the second-order
gauge-invariant brightness and the second-order fluid quantities is given by

F̂ (2) =

∫

Î(2) dΩ

4π
= δ(2)ρ̂+

8

3
ρ̄∂iv̂

(1)∂iv̂(1), (121)

F̂ i(2) =

∫

Î(2)nidΩ

4π
=

4

3
ρ̄
(

∂iv̂(2) − 2Ψ̂(1)∂iv̂(1)
)

+
8

3
δ(1)ρ̂∂iv̂(1), (122)
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F̂ ij(2) =

∫

Î(2)

(

ninj − δij

3

)

dΩ

4π

= Π̂ij(2) +
8

3
ρ̄

[

∂iv̂
(1)∂j v̂

(1) − δij
3

(

∂kv̂
(1)∂kv̂(1)

)

]

. (123)

This clearly differs from the expressions (5.10) and (6.33) of Ref. [27] where the term
quadratic in v in F̂ (2), the term quadratic in Ψ and v in F̂ i(2) are not there. The
difference in the energy density perturbation as extracted from F̂ (2), comes from the
fact that the fractional energy density ∆(2) for the radiation is defined as seen by the
observer of velocity e0µ ∼ (dη)µ whereas we define it in the fluid frame. The fractional

energy density that they define is related to our quantities by ρ̄∆(2) = δ
(2)
NGT

00Ū0Ū0.
The difference in the expressions for the fractional energy density can be traced
using Eqs.(113) with Eq.(111). However, this is only a matter of definition and it
is consistent with Eq.(7.2) of Ref. [27]. Implicitly the authors of Ref. [27] do also
use a tetrad basis in their section 3 in order to identify coordinates of the tangent
space between the background and the perturbed space-time, in the same way as
explained below Eq.(65). Their p is equal to our π0 and the unit vectors ni match
when restricting to the Newtonian gauge. The equations (3.6) and (3.7) of Ref. [27] are
equivalent to Eq.(61) when expressed in the newtonian gauge with the use of Eqs.(52),
Eqs.(B.1) and Eqs.(B.3). As for the difference in the velocity perturbation as defined

from F̂ i(2), it comes from the fact that their definition for v
i(2)
γ has to be interpreted in

the tetrad basis, and therefore it matches δ
(2)
NGU

i. However, the difference between the
tetrad basis and the canonical basis is not computed as in Eq.(112), and it explains
the discrepancy. This can also be checked on the second-order extraction of Eq.(7.3)
in Ref. [27]. Indeed, there is an the extra term quadratic in Ψ and vi when compared
to Eq.(2.15) of Ref. [41], as a trace of the difference between our perturbed velocity,
which matches the definition in the canonical basis usually given by Eq.(5) and Eq.(4),

and their perturbed velocity. However, the equations involving v
i(2)
γ in Refs. [27, 28]

such as Eq.(4.6) are consistent with this difference, though the physical interpretation

v
i(2)
γ as being the perturbed velocity of photons in the canonical basis is not correct.

The computation of a term like∂f̂(1)

∂ni , is easily performed using the multipolar
expansion

f̂ (1) = f̄
δ(1)ρ̂

ρ̄
+ 4f̄∂iv̂

(1)ni +
15f̄

2ρ̄
Π̂

(1)
ij ninj + ... (124)

Applying this method, we recover the second-order conservation equation detailed
in Appendix E. As for the Euler equation, we recover it at second order only if we
neglect the anisotropic stress up to second order (beware that the anisotropic stress is
different from the second moment of the distribution as it can be seen on Eq. (123)),
and use the first-order Euler equation.

This is also a major result of this paper. We recover the fluid gauge invariant
equations up to second order, only if we can neglect the anisotropic stress up to second
order. It remains to be shown that this is extended up to any order, as we expect.

Let us also stress that in Ref. [28], the term ∂f̂(1)

∂ni is evaluated using ∂f̂(1)

∂ni =
∂f̂
∂xj

∂xj

∂ni , in order to derive Eq.(4.1) and Eq.(4.6). However, this is not correct since f̂
is a function of the independent variables η, xi, π0, ni. Even though they are related on
a photon geodesic, they are independent in the analytic expression of f̂ . Additionally



Gauge-invariant Boltzmann equation and the fluid limit 28

this method is not fruitful because ∂xj

∂ni 6= δji (η − ηi), since n
i does not parameterize a

photon geodesic. Consequently, the subsequent analytic expressions of this reference
solving the conservation and Euler equation are not correct (for both radiation and cold
dark matter) though the Boltzmann equation is correct. This can also be seen directly
from the fact that these equations do not match fluid approximation equations of
Appendix E. Once corrected for this mistake. and taking into account the differences
mentioned before we can check that the collisionless part of the conservation and Euler
equations (4.1) and (4.6) of Ref. [27] match our equations.

6.5. Validity of the fluid approximation in the literature

In this paper, we have considered so far the fluid approximation as a theoretical
framework in which we restrict the description of a species to its energy density and
its velocity. The computations involved for the distribution function at second order
were rather long, and it was used as a consistency check for the gauge transformation
rules and the collisionless Boltzmann equation. Since the fluid approximation is built
out of the kinetic theory, it was indeed expected that all the conclusions made in this
statistical description could find their fluid approximation counterpart.

It is now necessary to determine under which conditions this can be done, that
is when the anisotropic stress can be neglected. This requires to work on the physics
of coupled species, baryons and photons, in the cosmological context. The collision
term as well as its physical implications have been studied in Ref. [28] and it is very
likely that the extraction of its quadrupole in Eq.(4.18) is not affected by the previous
considerations. Indeed, in the tight coupling limit (which requires only the collision
term) for a system of photons and electrons highly coupled through the Compton
diffusion, the authors of Ref. [28] find that the quadrupole satisfies

F̂ ij(2) ≃ 8

3
ρ̄

[

∂iv̂(1)∂j v̂(1) − δij

3

(

∂kv̂
(1)∂kv̂(1)

)

]

. (125)

This result is necessary to determine in which case the fluid approximation can be used.
Comparing it with Eq. (123), we immediately see that the physical interpretation of
this result is that the second-order anisotropic stress of radiation Π̂ij(2) is suppressed
in the tight coupling limit. As a consequence, the fluid approximation can be used in
the tight coupling limit also at second order in perturbations.

7. Conclusion

In this article, we have performed a general investigation of the gauge invariance of the
distribution function. This allows us to recover very easily the standard results at the
first order and to extend them at the second order. We derived the fluid approximation
at first and second orders. This required to carefully define the stress-energy tensor
in the local Minkowskian frame. At the second order, our results differ from the
ones previously derived in the literature [27, 28]. We have tackled down the origin of
the differences and shown that it was lying in an incorrect identification between the
tetrad and the canonical basis. Our analysis, restricted to the collisionless case, puts
the second order Boltzmann equation, needed if we intend to study non-Gaussianities
in the CMB, on firm ground.
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Appendix A. Sources terms in second order transformations

The perturbation variables in the decomposition (1) are extracted as follows

Φ = − 1

2a2
δg00, (A.1)

Ψ = − 1

4a2
(

δij −∆−1∂i∂j
)

δgij ,

B =
1

a2
∆−1∂iδg0i,

E =
1

4a2
(∆∆)

−1 (
3∂i∂j −∆δij

)

δgij ,

Epq =
1

2a2
(

δrp −∆−1∂p∂
r
) (

δsq −∆−1∂q∂
s
)

(

δirδ
j
s −

1

3
δrsδ

ij

)

δgij .

Using this method we can read the source terms defined in Eq. (37), which
are quadratic in the gauge change variables T, L and the perturbation variables
Φ,Ψ, B,E,Eij , in Eq. (16)

SΦ = T
(

T ′′ + 5HT ′ + (H′ + 2H2)T + 4HΦ+ 2Φ′
)

+ T ′ (2T ′ + 4Φ) + ∂iL∂
i (T ′ +HT + 2Φ)

+ ∂iL
′∂i (T − 2B − L′) , (A.2)

SΨ = − T
(

HT ′ + (H′ + 2H2)T − 2Ψ′ − 4HΨ
)

− ∂i (HT − 2Ψ) ∂iL

− 1

2

(

δij −∆−1∂i∂j
)

[

∂j (2B + L′ − T )∂iT

+ ∂i∂
kL (2∂k∂jL+ 4∂k∂jE + 4Ekj + (2HT − 4Ψ)δkj)

+ T∂i∂j (L
′ + 2HL)

+ T
(

2E′
ij + 2∂i∂jE

′ + 4HEij + 4H∂i∂jE
)

+ ∂kL∂k (∂i∂jL+ 2Eij + 2∂i∂jE)

]

. (A.3)

SΨ is slightly different from Ref. [44] and Ref. [13] since, in these works, the extraction
of metric perturbation variables is not performed according to Eq. (A.1). However,
this mistake does not matter for their study that focused on the long wavelength limit.

SB = ∆−1∂i
{

T ′∂i(2B + L′ − T )
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+ ∂jL′ [2∂i∂jL+ 2 (HT − 2Ψ) δij + 4 (Eij + ∂i∂jE)]

+ ∂j∂iL∂j (2B + L′ − T ) + ∂jL∂j∂i (2B + L′ − T )

+ ∂iT (−4Φ− 2T ′ − 2HT ) + T∂i(2B
′ + L′′ − T ′)

+ 2HT∂i(2B + L′ − T )
}

, (A.4)

SE = (∆∆)−1

(

3

2
∂i∂j − 1

2
∆δij

)

{

∂j (2B + L′ − T )∂iT

+ ∂i∂
kL [2∂k∂jL+ 4∂k∂jE + 4Ekj + (2HT − 4Ψ)δkj ]

+ T∂i∂j(L
′ + 2HL)

+ T
(

2E′
ij + 2∂i∂jE

′ + 4HEij + 4H∂i∂jE
)

+ ∂kL∂k (∂i∂jL+ 2Eij + 2∂i∂jE)
}

, (A.5)

SEpq =
(

δrp −∆−1∂p∂
r
) (

δsq −∆−1∂q∂
s
)

(

δirδ
j
s −

δrs
3
δij
)

{

∂i∂
kL [2∂k∂jL+ 4∂k∂jE + 4Ekj + (2HT − 4Ψ)δkj ]

+ T∂i∂j(L
′ + 2HL) + ∂j (2B + L′ − T )∂iT

+ T
(

2E′
ij + 2∂i∂jE

′ + 4HEij + 4H∂i∂jE
)

+ ∂kL∂k (∂i∂jL+ 2Eij + 2∂i∂jE)
}

, (A.6)

Sρ = T (ρ̄′′T + ρ̄′T ′ + 2δρ′) + ∂iL∂i(2δρ+ ρ̄′T ), (A.7)

SP = T (P̄ ′′T + P̄ ′T ′ + 2δP ′) + ∂iL∂i(2δP + P̄ ′T ), (A.8)

Sv = ∆−1∂i

[

HT∂i(L′ − 2v) + T∂i(2v′ − L′′)

+ Lj∂j∂
i(2v − L′) + ∂iL′ (HT + T ′ + 2Φ)

+ ∂j(L′ − 2v)∂j∂
iL
]

. (A.9)

Appendix B. Transformation rules of the tetrad fields

Rab and Sab are defined in Eq. (52). The perturbation variables of the metric are
defined in Eq. (1).

Appendix B.0.1. First order

R
(1)
00,X = − S

(1)
00,X = Φ(1) (B.1)

R
(1)
0ai,X

= − S
(1)
0ai,X

= −∂ai
B(1)

R
(1)
ai0,X

= − S
(1)
ai0,X

= 0

R
(1)
aiak,X

= − S
(1)
aiak,X

= Ψ(1)δaiak
− ∂ak

∂ai
E(1) − E(1)

aiak

We can read directly from these expressions the transformation rules for the tetrad

δ
(1)
Y eµ0 = T

(

δ
(1)
X eµ0

)

= − T (Φ(1))ēµ0 − ēµai
∂aiT (B(1)) (B.2)

δ
(1)
Y eµai

= T
(

δ
(1)
X eµai

)

= T (Ψ(1))ēµai
− ēµak

∂ak∂ai
T (E(1)).
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Appendix B.0.2. Second order

R
(2)
00,X = Φ(2) − 3Φ2 + ∂iB∂iB (B.3)

R
(2)
0ai,X

= − ∂ai
B(2) + (2Φ− 4Ψ)∂ai

B + 4∂ajB
(

∂ai
∂aj

E + Eaiaj

)

R
(2)
ai0,X

= − S
(2)
ai0,X

= 0

R
(2)
aiak,X

= − S
(2)
aiak,X

= Ψ(2)δaiak
−
(

∂ak
∂ai

E(2) + E(2)
akai

)

+ 3Ψ2δaiak

+ 3
(

∂ai
∂alE + Eal

ai

)

(∂al
∂ak

E + Ealak
)

− 6Ψ (∂ai
∂ak

E + Eaiak
)

−S
(2)
00,X = Φ(2) − Φ2 + ∂iB∂iB

−S
(2)
0ai,X

= − ∂ai
B(2) − 2Ψ∂ai

B + 2∂ajB
(

∂ai
∂aj

E + Eaiaj

)

In these formulas, we have omitted the first order superscript as there is no possible
confusion. In the following, we will also omit the first order superscript. The
transformations rules for the tetrads can be read, as we did for the first order case:

T
(

δ
(2)
X eµ0

)

= −
[

T (Φ(2))− 3T (Φ)2 + ∂iT (B)∂iT (B)
]

ēµ0 (B.4)

+
{

− ∂aiT (B(2)) + [2T (Φ)− 4T (Ψ)] ∂aiT (B)

+ 4∂ajT (B)
[

∂ai∂aj
T (E) + Eai

aj

]}

ēµai

T
(

δ
(2)
X eµai

)

=
[

T (Ψ(2)) + 3T (Ψ)2
]

ēµai

+
{

− ∂ak∂ai
T (E(2)) + 3

[

∂ai
∂ajT (E) + Eaj

ai

]

[

∂ak∂aj
T (E) + Eak

aj

]

− 6T (Ψ)
[

∂ak∂ai
T (E) + Eak

ai

]

}

ēµak
.

Appendix C. Transformation of δ(2)f

T
(

δ
(2)
X f

)

= (C.1)
{

(

LTξ2 + L2
Tξ1

) [

f̄(xν , apµ)
]

+ 2LTξ1

[

δ
(1)
X f(xν , apµ)

]

+
[

T
(

R
(2)c
a,X

)

+ S
(2)c
a,X + 2S

(1)d
a,X T

(

R
(1)c
d,X

)]

πa ∂f̄

∂πc

+
[

T
(

R
(1)b
a,X

)

T
(

R
(1)d
c,X

)

+ S
(1)b
a,XS

(1)d
c,X + 2S

(1)b
a,XT

(

R
(1)d
c,X

)]

πaπc ∂2f̄

∂πb∂πd

+ 2T
(

R
(1)b
a,X

)

πa ∂

∂πb
LTξ1

[

f̄(xν , apµ)
]

+ 2LTξ1

[

S
(1)b
a,Xπa ∂

∂πb
f̄(xν , apµ)

]

+ 2
[

T
(

R
(1)b
a,X

)

+ S
(1)b
a,X

]

πa ∂

∂πb
δ
(1)
X f(xν , apµ)

}

.

These individual terms are explicitly given by
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[

T
(

R
(2)0
0,X

)

+ S
(2)0
0,X + 2S

(1)0
0,X T

(

R
(1)0
0,X

)]

π0 ∂f̄

∂π0
= (C.2)

[

−
(

T (2)′ +HT (2) + SΦ(T, L)
)

+ 4Φ(T ′ +HT ) + 3(T ′ +HT )2

− 2∂iB∂i(−T + L′)− ∂i(−T + L′)∂i(−T + L′)
]

π0 ∂f̄

∂π0
,

[

T
(

R
(1)0
0,X

)

T
(

R
(1)0
0,X

)

+ S
(1)0
0,X S

(1)0
0,X + 2S

(1)0
0,X T

(

R
(1)0
0,X

)]

π0π0 ∂2f̄

∂π0∂π0
=

∂2f̄

∂ (π0)
2 (π

0)2 (T ′ +HT )
2
, (C.3)

2
[

T
(

R
(1)b
a,X

)

+ S
(1)b
a,X

]

πa ∂

∂πb
δ
(1)
X f(xν , apµ) = (C.4)

− 2
∂δ

(1)
X f

∂π0
π0(T ′ +HT )− 2

∂δ
(1)
X f

∂πi
π0(−∂iT + ∂iL′)

− 2
∂δ

(1)
X f

∂πi
(πj∂i∂jL+HπiT ),

2T
(

R
(1)b
a,X

)

πa ∂

∂πb
LTξ1

[

f̄(xν , apµ)
]

= (C.5)

− 2

[

∂2f̄

∂ (π0)
2 (π

0)2 +
∂f̄

∂π0
π0

]

(T ′ +HT ) (Φ + T ′ +HT )

− 2
∂2f̄

∂ (π0)2
(π0)2

(

ni∂iT
)

(Φ + T ′ +HT )− 2T
∂2f̄

∂η∂π0
(Φ + T ′ +HT )

− 2
∂f̄

∂π0
π0(Bi − ∂iT + ∂iL′)∂iT

− 2
∂f̄

∂π0
π0
[

nj∂i∂j(E + L) + njEi
j + ni(−Ψ+HT )

]

∂iT,

2LTξ1

[

S
(1)b
c,X aπc ∂

∂πb
f̄(xν , apµ)

]

= (C.6)

2
∂2f̄

∂η∂π0
π0ΦT + 2

∂f̄

∂π0
π0
(

Φ′T + ∂iΦ∂
iL
)

+ 2

[

∂2f̄

∂ (π0)
2 (π

0)2 +
∂f̄

∂π0
π0

]

Φ
(

T ′ +HT + ni∂iT
)

,

(

LTξ2 + L2
Tξ1

) [

f̄(xν , apµ)
]

= (C.7)

T (2)∂f̄

∂η
+

∂f̄

∂π0
π0(T (2)′ +HT (2) + ni∂iT

(2))

+
∂2f̄

∂η2
T 2 +

∂f̄

∂η
(TT ′ + ∂iT∂

iL) +
∂2f̄

∂π0∂η
π02T (T ′ +HT + ni∂iT )
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+
∂2f̄

∂ (π0)
2 (π

0)2
[

2ni∂iT (HT + T ′) + (ni∂iT )(n
j∂jT ) +H2T 2 + 2HTT ′ + (T ′)2

]

+
∂f̄

∂π0
π0
[

TT ′′ +H′T 2 + 3HTT ′ + Tni∂iT
′ + T ′ni∂iT +H2T 2 + 2HTni∂iT

+ ∂jT
′∂jL+ ∂jT∂

jL′ +H∂jT∂
jL+ ∂jLni∂i∂jT + ∂jTni∂i∂jL+ (T ′)2

]

,

2LTξ1

[

δ
(1)
X f(xν , apµ)

]

= (C.8)

2
(

π0T ′ + πj∂jT
) ∂δ

(1)
X f

∂π0
+ 2

(

π0∂iL′ + πj∂i∂jL
) ∂δ

(1)
X f

∂πi

+ 2∂iL
∂δ

(1)
X f

∂xi
+ 2T

(

∂δ
(1)
X f

∂η
+

∂δ
(1)
X f

∂π0
Hπ0 +

∂δ
(1)
X f

∂πi
Hπi

)

.

In the above formulas, we have omitted to write the fact that the derivatives with
respect to η or xi are taken at fixed πa.

Appendix D. Integral relations necessary to derive the fluid limit

The integrations on angular directions can be handled with the general formulas (see
Ref. [43])

∫

ni1 ...nik
d2Ω

4π
= 0 if k = 2p+ 1 (D.1)

∫

ni1 ...nik
d2Ω

4π
=

1

k + 1

(

δ(i1i2 ...δi(k−1)ik)
)

if k = 2p. (D.2)

By successive integration by parts, we also obtain the following useful results

∫

f̄(xµ, π0)(π0)3dπ0d2Ω = ρ̄(xµ),

∫

∂f̄(xµ, π0)

∂π0
(π0)4dπ0d2Ω = − 4ρ̄(xµ),

∫

∂2f̄(xµ, π0)

∂2π0
(π0)5dπ0d2Ω = 20ρ̄(xµ). (D.3)

Appendix E. The fluid limit for radiation

As explained in section 2.1, second order quantities involve either purely second order
perturbation variables or terms quadratic in first order perturbation variables. As
long as the order of the quantity is known we can omit the order superscript in order
to simplify notations.

Appendix E.1. Geometric quantities

In the Newtonian gauge, ignoring vector perturbations for simplicity, the non-
vanishing Christoffel symbols associated with the metric (1) are for the background

(0)Γ0
00 = H, (0)Γ0

jk = Hδjk,
(0)Γi

0j = Hδij . (E.1)



Gauge-invariant Boltzmann equation and the fluid limit 34

At first order, we get
(1)Γ0

00 = Φ′, (1)Γ0
0j = ∂jΦ,

(1)Γi
00 = ∂iΦ, (E.2)

(1)Γ0
jk = 2HEjk + E′

jk − (2HΦ+Ψ′ + 2HΨ) δjk, (E.3)

(1)Γi
0j = E′i

j −Ψ′δij, (E.4)

(1)Γi
jk = 2∂(k[E

i
j) −Ψδij)]− ∂i(Ejk −Ψδjk), (E.5)

where A(ij) ≡ (Aij +Aji)/2. At second order, we obtain

(2)Γ0
00 = Φ′ − 4ΦΦ′, (2)Γ0

0j = ∂jΦ− 4Φ ∂jΦ, (E.6)

(2)Γi
00 = ∂iΦ− 4Eij∂jΦ+ 4Ψ∂iΦ, (E.7)

(2)Γ0
jk = [−2HΨ−Ψ′ + 4ΦΨ′ − 2HΦ+ 8HΦ (Φ + Ψ)] δjk

+ 2HEjk − 8ΦHEjk + E′
jk − 4ΦE′

jk, (E.8)

(2)Γi
0j = Ei′

j + 4Ψ′Ei
j −Ψ′δij − 4ΨΨ′δij

− 4EikE′
kj + 4ΨEi

j

′
, (E.9)

(2)Γi
jk = 2∂(k[E

i
j) −Ψδij)]− ∂i(Ejk −Ψδjk) (E.10)

+ 4
(

Eil −Ψδil
)

[

∂l(Ejk −Ψδjk)

− ∂k(Elj −Ψδlj)− ∂j(Ekl −Ψδkl)
]

.

Appendix E.2. The radiation fluid equations

The conservation equation ∇µT
µν for the stress energy tensor (7) with a radiation

equation of state P = ρ/3 and where we assume πµν = 0, are the conservation
equation

(

δ(1)ρ
)′

+ 4Hδ(1)ρ+
4

3
ρ̄
(

∆v(1) − 3Ψ(1)′
)

= 0, (E.11)

(

δ(2)ρ
)′

+ 4Hδ(2)ρ+
4

3
ρ̄
(

∆v(2) − 3Ψ(2)′
)

= Sc,

and the Euler equation

v(1)′ +Φ(1) +
δ(1)ρ

4ρ̄
= 0, (E.12)

v(2)′ +Φ(2) +
δ(2)ρ

4ρ̄
= Se,

where the source terms in the second order equations, which are quadratic in first
order perturbation variables, are given by

Sc =
8

3

{

δρΨ′ + 6ρ̄ΨΨ′ − (Φ + δ)ρ̄∆v

+ ∂iv
[

−∂iδρ− 2ρ̄∂iv′ − 2ρ̄∂iΦ + 3ρ̄∂iΨ
]

}

, (E.13)

∂iSe = − 2

(

δρ

ρ̄
∂iv

)′

+ 10Ψ′∂iv + 4Ψ∂iv
′ − 2∂j

(

∂jv∂iv
)

+ 2Φ∂iv
′ − 2

δρ

ρ
∂iΦ + 4Φ∂iΦ. (E.14)
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