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Abstract

We will extend the Boltzmann-Hamel equations to the optimal control setting,

producing a set of equations for both kinematic and dynamic nonholonomic optimal

control problems. In particular, we will show the dynamic optimal control problem

can be written as a minimal set of 4n − 2m first order differential equations of

motion.
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1 INTRODUCTION

1.1 Overview

Quasi-velocity formulations, such as Maggi’s equation and the Boltzmann-

Hamel equation, have achieved much success in the analysis of nonholonomic

systems due to their ability to cast the dynamical equations of motion in a
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form requiring fewer equations, see (10), (13), and (11). For an n degree of free-

dom system with m nonholonomic constraints, 2n+m equations of motion are

required if one uses the fundamental nonholonomic form of Lagranges equa-

tion. 2n differential equations for the system state, and m algebraic relations

that must be solved for the multipliers. However, if quasi-velocity techniques

are employed, the system can be written as a system of 2n − m first order

differential equations.

The standard approach to optimal control problems is to use Lagrange Multi-

pliers. Under certain conditions, the optimal control problem can be reformu-

lated as a vakonomic (variational nonholonomic) problem (3). One can further

analyze optimal control problems with Pontryagin’s Maximum Principle, see

(2), (5), or (1). Solutions to the kinematic optimal control problems, where

one has direct control over a number of the velocities, can be expressed using

2n +m equations of motion; whereas solutions to dynamical optimal control

problems, where one has acceleration controls, can be expressed with 4n+m

equations of motion. Some geometric aspects of this system have been dis-

cussed in (6). In this paper, we extend quasi-velocity techniques to optimal

control problems with nonholonomic constraints. We show how to write the

optimal control equations for kinematically actuated systems as a system of

2n first order differential equations (a savings of m equations) and the optimal

control equations for dynamically actuated systems as a system of 4n − 2m

first order differential equations (a savings of 3m equations).
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1.2 Summation Convention

To aid in notation, we will invoke the summation convention throughout

this paper. Greek letters (α, β, γ, . . .) run over the constrained dimensions

1, . . . , m. Capital letters (A,B,C, . . .) run over the unconstrained dimensions

m+ 1, . . . , n. Lower case letters (a, b, c, . . .) run over all dimensions 1, . . . , n.

2 QUASI-VELOCITIES AND VARIATIONS

In this section we will present the basic background on nonholonomic con-

straints and quasi-velocities. We will discuss the basic properties of this con-

nection and derive the transpositional relations, (10), (13).

2.1 Nonholonomic Constraints and Quasi-Velocities

Let Q be the configuration manifold of our system, with dimQ = n and TQ its

corresponding tangent bundle (our phase space). A mechanical Lagrangian is

given by L : TQ→ R, usually taken to have the form L(q, q̇) = gij q̇
iq̇j − V (q)

where gij is the kinetic energy metric and V (q) is a potential term.

We further suppose our system is subject to m linear scleronomic (time inde-

pendent) nonholonomic constraints, i.e. constraints of the form:

aαi (q)q̇
i = 0 (1)

Define now a vector space isomorphism Ψj
i on the tangent space, with inverse

transformation Φij. The first m rows of Ψj
i are taken to agree with the con-

straint matrix, i.e. Ψσ
i (q) = aσi (1). The remaining rows can be choosen freely,
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so long as the resulting matrix Ψ is invertible. The transformation Ψ can be

viewed as a change of basis:

Ψ :

{

∂

∂qi

}n

i=1

→

{

∂

∂θi

}n

i=1

where the new basis is referred to as the quasi-basis. The velocity of the system

v ∈ TqQ can be expressed in terms of the ordinary or quasi-basis as follows:

q̇i
∂

∂qi
=
(

Ψj
i q̇
i
) ∂

∂θj
= uj

∂

∂θj
=
(

Φiju
j
) ∂

∂qi

where the components uj are the quasi-velocities. Basis vectors transform as:

∂

∂θj
= Φij

∂

∂qi
and

∂

∂qi
= Ψi

j

∂

∂θj

Finally, one defines a set of n one-forms, dual to the quasi-basis:

dθj = Ψj
idq

i

Even though this notation is found in the literature, it is really a notational

misnomer, as the one forms dθj are not exact.

2.2 Variations

Definition 1 Consider a curve γ(t) : [a, b] → Q. A proper variation of γ(t) is

a differentiable function q(s, t) : [−ε, ε]× [a, b] → Q that satisfies the following

conditions:

(i) q(0, t) = γ(t), ∀t ∈ [a, b]

(ii) q(s, a) = γ(a) and q(s, b) = γ(b), ∀s ∈ [−ε, ε].

Definition 2 The infinitessimal variation δq(t) corresponding to the varia-

tion q(s, t) is the vector field defined along γ(t) by δq(t) =
∂q(s, t)

∂s

∣

∣

∣

∣

∣

s=0

.
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We will further assume the variations to be continuous and contemporaneous.

Continuity of the variations implies that the Lie Derivative Lq̇δq ≡ 0 vanishes

identically. Contemporaneous variations occur without the passage of time.

The infinitessimal variations, when expressed in terms of the quasi-basis, are

given by δθj(t) = Ψj
i δq

i.

2.3 The Transpositional Relations

A fundamental ingredient for understanding nonholonomic variational prob-

lems is the following set of transpositional relations (see (10), (13)).

Theorem 1 (First Transpositional Relations) Utilizing the shorthand d :=

∂/∂t, δ := ∂/∂s, we have:

(dδqi − δdqi)Ψj
i = (dδθj − δdθj) + γjabu

aδθb (2)

where γjab are the Hamel coefficients γspq =

{

∂Ψs
i

∂qj
−
∂Ψs

j

∂qi

}

ΦipΦ
j
q.

The left hand side of (2) is no more than dθj(Lq̇δq); and, therefore, for con-

tinuous variations, is identically zero. We therefore have the following:

Corollary 1 For proper, continuous variations, variations of the quasi-velocities

can be related to variations of the quasi-coordinates as follows:

δuj = dδθj + γjabu
aδθb (3)

Therefore, due to the nonintegrability of the constraint distribution (γσij 6= 0,

σ = 1, . . . , m), one cannot obtain closure in the quasi-coordinate space, even at

the differential level ((10), (13)). One must choose between δuσ = 0 or dδθj =

0. The correct dynamical equations of motion are obtained if one chooses the
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variations so that they obey the Principle of Virtual Work, δθj ≡ 0. If one,

on the other hand, choose the variations to satisfy δuσ = 0, one would obtain

trajectories that satisfy Hamilton’s Principle. Such trajectories are referred to

as the vakonomic motion of the system, a term introduced by Arnold.

Definition 3 The associated quasi-acceleration, ai, and quasi-jerk, i, are de-

fined to be ai = u̇i and i = ȧi.

A direct coordinate calculation shows:

Theorem 2 (Second Transpositional Relation) For continuous variations,

we have δdui = dδui. Equivalently, δai = ∂(δui)/∂t.

3 THE BOLTZMANN-HAMEL EQUATIONS

We will derive the Boltzmann-Hamel equations for nonholonomic mechanics

directly from variational principles. A more algebraic derivation of these equa-

tions is given in (10). We will begin with the Lagrange-D’Alembert Principle:

Definition 4 (Lagrange-D’Alembert Principle) The correct dynamical equa-

tions of motion are the ones which minimize the action I =
∫ b

a
L(q, q̇) dt,

where L(q, q̇) is the unconstrained mechanical Lagrangian and the variations

are chosen to satisfy the Principle of Virtual Work.

Let L (q, u) = L(q, q̇(q, u)) be the re-expression of the unconstrained La-

grangian in terms of the quasi-velocities. Taking variations of the action and

using the first transpositional relations (3), one obtains:
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δI =
∫ b

a

(

∂L

∂qi
δqi +

∂L

∂ui
δui + Fiδq

i

)

dt

=
∫ b

a

(

∂L

∂θi
−

d

dt

∂L

∂ui
+
∂L

∂uj
γjkiu

k +Qi

)

δθi dt

where Fi is the external applied force and we have defined:

∂L

∂θi
=
∂L

∂qj
∂qj

∂θi
=
∂L

∂qj
Φji and Qi = ΦjiFj

After applying the Principle of Virtual Work, δθσ ≡ 0, the remaining n −m

variations δθI can be taken to be independent, and we obtain the Boltzmann-

Hamel equations for nonholonomic mechanics:

d

dt

∂L

∂uI
−
∂L

∂θI
−
∂L

∂uj
γjKIu

K =QI (4)

q̇i=ΦiJu
J (5)

One must use the unconstrained Lagrangian for these equations. After the

partial derivatives are taken, one then applies the constraints uσ = 0. The

Boltzmann-Hamel equations (4)- (5) are a minimal set of 2n −m first order

differential equations for the n qi’s and the n−m uI ’s.

4 KINEMATIC OPTIMAL CONTROL

In this section we will present a quasi-velocity based method for kinematic

optimal control problems, where one has direct controls over the velocities. As

an example, we will work out the optimal kinematic control equations for the

falling rolling disc.
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4.1 Theory

For a general affine kinematic control system subject to m nonholonomic con-

straints, the following system is typically specified: q̇i = X i
I(q)w

I , where the wI

are the n−m controls and X i
I(q) is the i-th component of the I-th independent

control vector field. Taking the m constraints as the first m quasi-velocities:

uσ = Ψσ
i q̇

i ≡ 0, (6)

one can, wlog, take the controls as the remaining independent quasi-velocities:

wI(q, q̇) = uI = ΨI
i q̇
i (7)

With this choice, the control vector fields are thus identifies with the last n−m

columns of Φ = Ψ−1, i.e. X i
I = ΦiI .

For a given cost integrand g(q, w), the Kinematic Optimal Control Problem

is then given by minimizing the cost function I =
∫ b

a
g(q, w) dt over all curves

satisfying (7)-(6) with fixed endpoints q(a) and q(b).

We now define the quasi-basis so that Ψσ
i = aσi , as usual, and, additionally,

so that ΨI
i = bIi . Then the constraints can be written uσ, and the n − m

control variables wI coincide with the remaining n − m free quasi-velocities

uI . Define now C(q, u) = g(q, w(q, q̇(q, u))). In our case, we have chosen the

unconstrained quasi-velocities to coincide with the controls, i.e. uI = wI , thus

we will have C(q, u) = g(q, u).

In order to enforce (6), we must apply the Lagrange Multipliers to the cost

function before taking variations. In this case, we are selecting Hamilton’s Prin-

ciple, where the cost function is minimized amongst the set of kinematically
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admissable curves. We then take unconstrained variations of the augmented

cost function I =
∫ b

a
(C(q, u) + µσu

σ) dt. Since C(q, u) only depends on the

unconstrained quasi-velocities uI , we have:

δI =
∫ b

a

(

∂C

∂θi
δθi +

∂C

∂uI
δuI + µσδu

σ + uσδµσ

)

dt

Setting the coefficients of the δµσ terms returns our constraints uσ = 0. Leav-

ing this term off for now, using the transpositional relations (3), and integrat-

ing by parts yields

δI =
∫ b

a

{(

∂C

∂θi
+
∂C

∂uI
γIsiu

s + µσγ
σ
siu

s

)

δθi −
d

dt

∂C

∂uI
δθI − µ̇σδθ

σ

}

dt

We thus have the following

Theorem 3 The Boltzmann-Hamel equations for the kinematic optimal con-

trol problem are:

d

dt

∂C

∂uI
−
∂C

∂θI
−
∂C

∂uJ
γJSIu

S =µτγ
τ
SIu

S (8)

−
∂C

∂θσ
−
∂C

∂uJ
γJSσu

S =−µ̇σ + µτγ
τ
Sσu

S (9)

q̇i=ΦiSu
S (10)

These represent a minimal set of 2n first order differential equations: the n−m

equations (8) for the unconstrained uI ’s, them equations (9) for the multipliers

µσ’s, and n kinematic relations (10) for the qi’s.

As an interesting aside, if the cost function integrand C(q, u), when expressed

in terms of the quasi-velocities, is identical to the constrained mechanical

Lagrangian, then these equations produce the vakonomic motion associated

with the system. See (3) for additional discussion on the coincidence of the

vakonomic motion (Lagrange’s Problem) and the optimal control problem.
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4.2 Optimal Control of the Heisenberg System

The optimal control of the Heisenberg system, discussed in (4) and (2), is

a classical underactuated kinematic control problem. Local coordinates are

given by q = 〈x, y, z〉. For this system, one has velocity controls w1 = ẋ and

w2 = ẏ and the motion is subject to the nonholonomic constraint ż = yẋ−xẏ.

The control velocity field is therefore given by:

q̇ = X1w
1 +X2w

2,

where X1 = 〈1, 0, y〉T and X2 = 〈0, 1,−x〉T . Using these controls, one seeks to

steer the particle from the point 〈0, 0, 0〉 at time t = 0 to the point 〈0, 0, a〉 at

time T > 0, while minimizing the functional I =
1

2

∫ T

0

(

w2
1 + w2

2

)

dt.

We will derive the equations of motion which yield this solution path via

the vakonomic form of the Boltzmann-Hamel equations. We choose quasi-

velocities: u1 = yẋ− xẏ − ż, u2 = ẋ, and u3 = ẏ. Notice the quasi-velocities

u2 and u3 coincide with the control velocities. The transformation matrices Ψ

and Φ are given by:

Ψ =







y −x −1
1 0 0
0 1 0





 and Φ =







0 1 0
0 0 1
−1 y −x







The nonzero Hamel coefficients are γ123 = −γ132 = 2. Expressing the integrand

of the cost function in terms of quasi-velocities yields C =
1

2

(

u22 + u23
)

. The

kinematic optimal control Boltzmann-Hamel equations (8)-(10) immediately

produce the following set of first order differential equations:

ẋ = u2 ẏ = u3 ż = −u2 + yu2 − xu3
u̇2 = −2µu3 u̇3 = 2µu2 µ̇ = 0
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where µ(t) = µ(0) is an arbitrary constant that can be choosen such that the

solution trajectory reaches its final destination point. The top equations are

a reiteration of the control field q̇ = X1w
1 + X2w

2 = X1u
2 + X2u

3 and the

bottom equations produce the optimal control.

4.3 Optimal Control of the Vertical Rolling Disc

The generalized coordinates of the vertical rolling disc are given by q =

〈x, y, θ, φ〉, where (x, y) is the contact point of the disc and the x − y plane,

φ is the angle the disc makes with the x-axis, and φ is the angle a reference

point on the disc makes with the vertical. Assume we have the kinematic

controls w1 = θ̇ and w2 = φ̇, and that the motion is subject to the nonholo-

nomic constraints ẋ − cos(φ)θ̇ = 0 and ẏ − sin(φ)θ̇ = 0. This gives rise to

the control vector field q̇ = X1w
1 +X2w

2 where X1 = 〈cosφ, sinφ, 1, 0〉T and

X2 = 〈0, 0, 0, 1〉T .

We wish to steer the disc between two points while minimizing the cost

functional
1

2

∫ b

a
(w2

1 + w2
2) dt. We choose quasi-velocities u1 = ẋ − cos(φ)θ̇,

u2 = ẏ − sin(φ)θ̇, u3 = θ̇, and u4 = φ̇, so that the transformation matrices Ψ

and Φ are given by:

Ψ =













1 0 − cosφ 0
0 1 − sin φ 0
0 0 1 0
0 0 0 1













Φ =













1 0 cosφ 0
0 1 sinφ 0
0 0 1 0
0 0 0 1













The Hamel coefficients are: γ134 = sin φ = −γ143 and γ234 = − cos φ = −γ243.

In terms of the quasi-velocities, the integrand of the cost function becomes

C(q, u) = 1
2
u23 +

1
2
u24. The Boltzmann-Hamel equations (8)-(10) then produce

the following set of first order differential equations:
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u̇3 = (µ2 cosφ− µ1 sin φ)u4 µ̇1 = 0 ẋ = cos(φ)u3 θ̇ = u3

u̇4 = (µ1 sinφ− µ2 cosφ)u3 µ̇2 = 0 ẏ = sin(φ)u3 φ̇ = u4

4.4 Kinematic Optimal Control of the Falling Rolling Disc

The falling rolling disc can be described by the contact point (x, y) and Clas-

sical Euler angles (φ, θ, ψ), as shown in Figure 1. We will take the coordinate

ordering (φ, θ, ψ, x, y).

PSfrag replacements

ed

φ̇

θ̇

ψ̇

eθ

eψ

P

C

r

x

y

z

φ ψ

θ

Fig. 1. Euler Angles of the Falling Rolling Disc

Suppose we have direct control over the body-axis angular velocities w1 =

ωd := φ̇ sin θ, w2 = θ̇, and w3 = Ω := φ̇ cos θ + ψ̇ (in the ed, eθ, and

eψ directions, respectively (see Fig. 1)), and the system is subject to the

nonholonomic constraints ẋ + rψ̇ cosφ = 0 and ẏ + rψ̇ sinφ = 0. We wish

to steer the disc between two points while minimizing the cost functional

I[γ] =
1

2

∫ b

a

(

w2
1 + w2

2 + w2
3

)

dt. We will choose as quasi-velocities u1 = φ̇ sin θ,

u2 = θ̇, u3 = φ̇ cos θ + ψ̇, u4 = ẋ+ rψ̇ cosφ, and u5 = ẏ + rψ̇ sinφ. The quasi-

velocities (u1, u2, u3) = (ωd, θ̇,Ω) represent the angular velocity expressed in

the body-fixed frame, and are coincident with the kinematic controls. These

are not true velocities (like the Euler Angle Rates), as they are non-integrable.

The nonholonomic constraints in terms of these variables are u4 = u5 = 0.
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The transformation matrices are

Ψ =

















sin θ 0 0 0 0
0 1 0 0 0

cos θ 0 1 0 0
0 0 r cos φ 1 0
0 0 r sinφ 0 1

















and Φ =

















csc θ 0 0 0 0
0 1 0 0 0

− cot θ 0 1 0 0
r cosφ cot θ 0 −r cos φ 1 0
r sin φ cot θ 0 −r sinφ 0 1

















The nonzero Hamel-coefficients are γ121 = − cot θ = −γ112, γ
3
21 = 1 = −γ312,

γ413 = r sinφ csc θ = −γ431, and γ
5
13 = −r cosφ csc θ = −γ531.

Written in terms of the quasi-velocities, the integrand of the cost function is

C(q, u) = 1
2
(u21 + u22 + u23). The kinematic optimal control Boltzmann-Hamel

equations (8)-(10) give us a minimal set of 10 first order differential equations:

u̇1=u2u3 − u1u2 cot θ − r(µ4 sin φ− µ5 cosφ) csc θu3

u̇2=u21 cot θ − u1u3
u̇3= r(µ4 sinφ− µ5 cos φ) csc θu1
µ̇4=0, µ̇5 = 0

φ̇=csc θu1, θ̇ = u2, ψ̇ = − cot θu1 + u3
ẋ= r cosφ cos θu1 − r cosφu3, ẏ = r sinφ cot θu1 − r sin φu3

5 DYNAMIC OPTIMAL CONTROL

In this section, we will derive a set of Boltzmann-Hamel equations for the

dynamic optimal control problem, which is normally a fourth order system.

We will present a minimal set of 4n−2m first order differential equations that

produces the optimal control, and then discuss examples.
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5.1 Boltzmann-Hamel Equations for Optimal Dynamic Control

Given a nonholonomic mechanical system with n−m independent acceleration

controls, it can be recast into the form given by the dynamical Boltzmann-

Hamel equations (4)-(5). The dynamical optimal control problem is the prob-

lem of finding solution curves between two fixed points 〈q(a), q̇(a)〉 and 〈q(b), q̇(b)〉

that minimize the cost function I =
∫ b

a
g(q, q̇, Q) dt. Utilizing (4) and (5), we

can rewrite the integrand as an explicit function of the coordinates, quasi-

velocities, and quasi-accelerations C(q, u, a) = g(q, q̇(q, u), Q(q, u, a)).

Since the Boltzmann-Hamel equations no longer depend on the constrained

quasi-velocities and quasi-accelerations, C(q, u, a) is also independent of uσ

and aσ. Taking variations yields: δI =
∫

{

∂C

∂qi
δqi +

∂C

∂uJ
δuJ +

∂C

∂aJ
δaJ

}

dt.

Using the second transpositional relations Theorem 2 for δaJ and then inte-

grating by parts we obtain δI =
∫

{

∂C

∂qi
δqi +

[

∂C

∂uJ
−

d

dt

∂C

∂aJ

]

δuJ
}

dt. Defin-

ing the parameters

κJ =
∂C

∂uJ
−

d

dt

∂C

∂aJ
(11)

and using the first Transpositional relations (3) we obtain:

δI =
∫

{

∂C

∂θr
− κ̇Jδ

J
r + κJγ

J
sru

s

}

δθr dt

These variations are not free, but subject to the nonholonomic constraints

aσi q̇
i = 0. We form the augmented cost integrand by replacing C(q, u, a)

with C(q, u, a)+µσu
σ. Taking variations, the δµσ coefficients recover the con-

straints. Ignoring these terms, we are left with δI =

∫

{

∂C

∂θr
− κ̇Jδ

J
r + κJγ

J
sru

s − µ̇σδ
σ
r + µσγ

σ
sru

s

}

δθr dt

where the variations are now taken to be unconstrained. Notice the multipliers

14



µσ are not the mechanical multipliers, but a multiplier on the cost function

that enforces Hamilton’s Principle. We thus have the following:

Theorem 4 The Boltzmann-Hamel equations for Optimal Dynamic Control

are given by:

−
∂C

∂θA
+ κ̇A − κJγ

J
SAu

S =µτγ
τ
SAu

S (12)

−
∂C

∂θσ
− κJγ

J
Sσu

S =µτγ
τ
Sσu

S − µ̇σ (13)

q̇i=ΦiSu
S (14)

The optimal control system can therefore be given by a minimal set of 4n−2m

first order differential equations as follows. We have n kinematic relations

(14), 2n − 2m relations u̇A = aA and ȧA = A, n − m equations for ̇A

(given by inserting (11) into (12)), and, finally, m relations for the multi-

pliers µ̇σ (13). Once the resulting optimal control dynamics are determined,

the control forces which produce the optimal trajectory are then given by the

n −m algebraic equations (4). The solution is then found by solving the re-

lated boundary value problem, with 4n−2m prescribed boundary conditions:

qi(0), uA(0), qi(T ), uA(T ).

5.2 Dynamic Optimal Control of the Vertical Rolling Disc

Consider the vertical rolling disc of §4.3 with control torques in the θ and

φ directions. The corresponding dynamical equations of motion (see (2)) are:

3
2
θ̈ = w3,

1
4
φ̈ = w4, ẋ = θ̇ cos φ, and ẏ = θ̇ sin φ. This is equivalent to a minimal

set of 6 first order differential equations (the number obtained by using the

Boltzmann-Hamel equations (4) and (5).
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We now wish to choose the control forces so as to minimize the cost function

∫ 1
2
(w2

3 + w2
4) dt. Solving for the controls in terms of the quasi-accelerations

w3 = 3
2
θ̈ = 3

2
a3 and w4 = 1

4
φ̈ = 1

4
ä4, this is equivalent to minimizing the

action
∫
(

9

8
a23 +

1

32
a24

)

dt subject to the nonholonomic constraints. Using the

dynamic optimal control Boltzmann-Hamel equations (12) and (13), coupled

with the dynamical equations of motion above, and eliminating the controls,

we have a minimal system of 12 first order differential equations:

ẋ = cosφ u3 ̇3 =
4

9
(µ1 sinφ− µ2 cosφ)u4

ẏ = sinφ u3 ̇4 = 16(−µ1 sin φ+ µ2 cosφ)u3

θ̇ = u3 u̇3 = a3 ȧ3 = 3 µ̇1 = 0

φ̇ = u4 u̇4 = a4 ȧ4 = 4 µ̇2 = 0

By use of quasi-velocities, quasi-accelerations, and quasi-jerks, we have made

the following simplifications: u1 = u2 = a1 = a2 = 1 = 2 = 0, thereby elimi-

nating the necessity of 6 of the 18 first order differential equations necessary

in the standard approach. The solution to this system of differential equations

yields the optimal dynamic control equations of the vertical rolling disc. It is

equivalent to the following reduced system

ẋ = cosφθ̇ ẏ = sinφθ̇
....
θ =

4

9
(µ1 sinφ− µ2 cosφ)φ̇

....
φ = 16(−µ1 sinφ+ µ2 cosφ)θ̇

where µ1, µ2 are constants.

5.3 Dynamic Optimal Control of the Free Rigid Body

Consider dynamic control of the free rigid body, where the generalized coordi-

nates are given by the Type-I Euler angles (ψ, θ, φ). As quasi-velocities, choose
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the body-fixed components of the angular momentum u1 = ωx = −ψ̇ sin θ+ φ̇,

u2 = ωy = ψ̇ cos θ sinφ + θ̇ cosφ, and u3 = ωz = ψ̇ cos θ cos φ − θ̇ sin φ. The

transformation matrices are given as:

Ψ =







− sin θ 0 1
cos θ sinφ cosφ 0
cos θ cosφ − sin φ 0





 and Φ =







0 sec θ sin φ sec θ cos φ
0 cosφ − sinφ
1 tan θ sin φ tan θ cos φ







The mechanical Lagrangian is given as L (q, u) =
1

2
(Ixxu

2
1 + Iyyu

2
2 + Izzu

2
3).

The nonzero Hamel coefficients are γ123 = 1, γ213 = −1, γ312 = 1, γ132 = −1,

γ231 = 1, and γ321 = −1. For notational convenience, define η32 = Izz − Iyy,

η13 = Ixx− Izz, and η21 = Iyy− Ixx. Then the Boltzmann-Hamel equations (4)

produce the Euler Equations:

Ixxu̇1+η32u2u3 =Mx Iyyu̇2+η13u1u3 =My Izzu̇3+η21u1u2 =Mz (15)

where Mx, My, and Mz are the control torques applied about the body fixed

principal axes. The cost function integrand 1
2
(M2

x + M2
y + M2

z ), when ex-

pressed in terms of quasi-variables, is given by: C = 1
2
{I2xxa

2
1 + Iyya

2
2 + Izza

2
3 +

2Ixxη32a1u2u3+2Iyyη13u1a2u3+2Izzη21u1u2a3 + η232u
2
2u

2
3+ η213u

2
1u

2
3+ η221u

2
1u

2
2}.

The κ’s (11) are given by:

κ1= Iyyη13a2u3 + Izzη21u2a3 + η213u1u
2
3 + η221u1u

2
2 (16)

−Ixx1 − Ixxη32u2a3 − Ixxη32a2u3
κ2= Ixxη32a1u3 + Izzη21u1a3 + η232u2u

2
3 + η221u

2
1u2 (17)

−Iyy2 − η13Iyyu1a3 − η13Iyya1u3

κ3= Ixxη32a1u2 + Iyyη13u1a2 + η232u
2
2u3 + η213u

2
1u3 (18)

−Izz3 − η21Izzu1a2 − η21Izza1u2

The optimal control Boltzmann-Hamel equations (12) then work out to be:

κ̇ = κ× ω (19)

These provide 3 differential equations for the ̇’s. Let I be the moment inertia
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tensor with respect to the principal axes basis êx, êy, êz, so that, in dyadic

notation, I = Ixxêxêx + Iyyêyêy + Izzêzêz. Let Π := I · ω be the body axis

angular momentum, and κ = 〈κ1, κ2, κ3〉. Then (16)-(18) can alternatively be

re-expressed as:

κ = Π×Π̇+Π× (ω×Π)−Π̈−I ·
{

2ω × Π̇+ ω̇ ×Π+ ω × (ω ×Π)
}

(20)

Finally, by defining λ(ω, ω̇) = κ+ Π̈, the dynamic optimal control equations

for the free rigid body can be expressed as:

...
Π = λ̇+ Π̈× ω − λ× ω (21)

In addition, we have the kinematic relations

ψ̇=sec θ sinφu2 + sec θ cosφu3 (22)

θ̇=cosφu2 − sinφu3 (23)

φ̇=u1 + tan θ sinφu2 + tan θ cosφu3 (24)

as well as the relations u̇i = ai, ȧi = i. This is a set of 12 first order differential

equations. Once one solves the corresponding boundary value problem (initial,

final Euler angles, angular velocities specified), the controls are determins by

the algebraic relations (15).

For the special case when the rigid body is spherical one sees from (20) that

κ = −Π̈ and λ = 0. Then the Boltzmann-Hamel equations for the optimal

dynamic control of the free rigid body (21) reduce to
...
ω = ω̈×ω. When coupled

with the kinematic relations (22)-(24) and the algebraic relations (15), the

optimal control trajectories of the free rigid sphere are produced. Integrating

once yields the second order system ω̈ = c+ ω̇×ω, which coincides with the

result of (12). See also (8). The optimal solution trajectory of the reorientation

of the rigid sphere from q(0) = 〈0, 0, 0〉, ω(0) = 〈0, 0, 0〉 to the point q(1) =
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Fig. 2. Optimal Dynamic Control of Free Sphere: Euler Angles and Body Fixed

Angular Velocity with respect to time.

〈π,−π/4, π/5〉, ω(1) = 〈0, 0, 0〉 is plotted in Fig. 2.

6 CONCLUSIONS

In this paper, we showed how one can extend quasi-velocity techniques to

kinematic and optimal control problems. Standard Lagrange Multiplier tech-

niques for kinematical optimal control problems produce a set of 2n+m first

order differential equations: n for the coordinates qi, n for the velocities q̇i,

and m for the multipliers µσ. On the other hand, by generalizing the dynamic

Boltzmann-Hamel equations to the kinematic control setting (Theorem 3), we

obtain a savings of m first order differential equations, as one no longer need

solve for the constrained quasi-velocities. Moreover, the differential equations

for the multipliers (9) are naturally separated from the differential equations

for the quasi-velocities (8).

For the dynamic optimal control problem, one typically encounters a fourth

order system, plus multipliers, which produces a total of 4n + m first order
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differential equations. The Boltzmann-Hamel form of the equations (Theorem

4) gives a minimal set of 4n− 2m equations of motion, as one no longer need

integrate the m constrained quasi-velocities, quasi-accelerations, and quasi-

jerks, uσ ≡ 0, aσ ≡ 0, σ ≡ 0, respectively. This approach gives us a total

savings of 3m first order differential equations. Initial and final conditions are

then enforced by solving the resulting system of differential equations as a two

point boundary value problem.

The authors wish to thank support from NSF grants DMS-0604307 and CMS-

0408542.
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