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1 Introduction

Let k be an algebraic closed field of characteristic zero and let k((t)) be the field of formal Laurent

series in the variable t. A formal connection on k((t)) is a pair (M, t∂t) consisting of a finite

dimensional k((t))-vector space M and a k-linear map t∂t : M →M satisfying

t∂t(fm) = t∂t(f)m+ ft∂t(m)

for any f ∈ k((t)) and m ∈ M . In [2], S. Bloch and H. Esnault define local Fourier transforms

F (0,∞), F (∞,0), F (∞,∞) for formal connections, by analogy with the ℓ-adic local Fourier transform

considered in [6]. In [6], 2.6.3, Laumon and Malgrange give conjectural formulas of local Fourier

transforms for a class of Qℓ-sheaf. This results are proved by Lei Fu ([4]). In this paper, we

prove an analogous conjecture of local Fourier transform for formal connections. Actually, we can

calculate local Fourier transforms for any formal connections.

A key technical tool for the definitions of local Fourier transforms of formal connections is the

notion of good lattices pairs. By definition in [3], Lemma 6.21, a pair of good lattices V , W of M

is a pair of lattices in M satisfying the following conditions

(1) V ⊂ W ⊂M

(2) t∂t(V) ⊂ W

(3) For any k ∈ N, the natural inclusion of complexes

(V t∂t−−→ W) → (
1

tk
V t∂t−−→ 1

tk
W)
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is a quasi-isomorphism.

Good lattices pairs V , W exist. The number dimkW/V is independent of the choice of good

lattices pairs of M , and is called the irregularity of M .

For any f ∈ k((t)), denote by [f ] the formal connection on k((t)) consisting of a one dimensional

k((t))-vector space with a basis e and a k-linear map t∂t : k((t))e→ k((t))e satisfying

t∂t(ge) = (t∂t(g) + fg)e

for any g ∈ k((t)). Two such objects [f ] and [f ′] are isomorphic if and only if f − f ′ ∈ tk[[t]] + Z.

Therefore the non-negative integer

max(0,−ordt(f))

is a well-defined invariant of the isomorphic class of [f ], and is called the slope of [f ]. Let p be

the slope of [f ]. One can verify k[[t]]e, t−pk[[t]]e is a good lattices pair of [f ]. So the irregularity

coincides with the slope for any one dimensional formal connection. The definition of slopes for

arbitrary formal connections is given in [5], (2.2.5). The irregularity of a formal connection coincide

with the sum of its slopes. Any formal connection has a unique slope decomposition. So the slope

of an irreducible formal connection is equal to its irregularity divided by its dimension. A formal

connection is called regular if the irregularity of this connection is equal to 0.

Throughout this paper, r and s are to be positive integers. Let t′ be the Fourier transform

coordinate of t. Write z = 1
t
and z′ = 1

t′
. Let

[r] : k((t)) →֒ k((
r
√
t))

be the natural inclusion of fields. Let T = r
√
t and let α be a formal Laurent series in k((T )) of

order −s with respect to T . Let R be a regular formal connection on k((T )). In this paper, we

calculate the local Fourier transform

F (0,∞)
(

[r]∗
(

[T∂T (α)] ⊗k((T )) R
))

.

Similarly, let k((z)) be the field of formal Laurent series in the variable z. Let

[r] : k((z)) →֒ k((
1
r
√
t
))

be the natural inclusion of fields. Let Z = 1
r
√
t
and let α be a formal Laurent series in k((Z)) of

order −s with respect to Z. Let R be a regular formal connection on k((Z)). We also calculate
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the local Fourier transforms

F (∞,0)
(

[r]∗
(

[Z∂Z(α)]⊗k((Z)) R
))

if r > s;

F (∞,∞)
(

[r]∗
(

[Z∂Z(α)]⊗k((Z)) R
))

if r < s.

We refer the reader to [2] for the definitions and properties of local Fourier transforms. The

main results of this paper are the following three theorems.

Theorem 1. Given a formal Laurent series α in k(( r
√
t)) of order −s with respect to r

√
t, consider

the following system of equations

{

∂t(α(
r
√
t)) + t′ = 0,

α( r
√
t) + tt′ = β( 1

r+s
√
t′
).

(1.1)

Using the first equation, we find an expression of r
√
t in terms of 1

r+s
√
t′
. We then substitute this

expression into the second equation to get β( 1
r+s

√
t′
), which is a formal Laurent series in k(( 1

r+s
√
t′
))

of order −s with respect to 1
r+s

√
t′
. Let T = r

√
t and let Z ′ = 1

r+s
√
t′
. For any regular formal

connection R on k((T )), we have

F (0,∞)
(

[r]∗
(

[T∂T (α)] ⊗k((T )) R
))

= [r + s]∗
(

[Z ′∂Z′(β) +
s

2
]⊗K((Z′)) R

)

,

where the right R means the formal connection on k((Z ′)) after replacing the variable T with Z ′.

Theorem 2. Suppose r > s. Given a formal Laurent series α in k(( 1
r
√
t
)) of order −s with respect

to 1
r
√
t
, consider the following system of equations

{

∂t(α(
1
r
√
t
)) + t′ = 0,

α( 1
r
√
t
) + tt′ = β( r−s

√
t′).

(1.2)

Using the first equation, we find an expression of 1
r
√
t
in terms of r−s

√
t′. We then substitute this

expression into the second equation to get β( r−s
√
t′), which is formal Laurent series in k(( r−s

√
t′)) of

order −s with respect to r−s
√
t′. Let Z = 1

r
√
t
and let T ′ = r−s

√
t′. For any regular formal connection

R on k((Z)), we have

F (∞,0)
(

[r]∗
(

[Z∂Z(α)]⊗k((Z)) R
))

= [r − s]∗
(

[T ′∂T ′(β) +
s

2
]⊗k((T ′)) R

)

,

where the right R means the formal connection on k((T ′)) after replacing the variable Z with T ′.
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Theorem 3. Suppose r < s. Given a formal Laurent series α in k(( 1
r
√
t
)) of order −s with respect

to 1
r
√
t
, consider the following system of equations

{

∂t(α(
1
r
√
t
)) + t′ = 0,

α( 1
r
√
t
) + tt′ = β( 1

s−r
√
t′
).

(1.3)

Using the first equation, we find an expression of 1
r
√
t
in terms of 1

s−r
√
t′
. We then substitute this

expression into the second equation to get β( 1
s−r

√
t′
), which is a formal Laurent series in k(( 1

s−r
√
t′
))

of order −s with respect to 1
s−r

√
t′
. Let Z = 1

r
√
t
and let Z ′ = 1

s−r
√
t′
. For any regular formal

connection R on k((Z)), we have

F (∞,∞)
(

[r]∗
(

[Z∂Z(α)]⊗k((Z)) R
))

= [s− r]∗
(

[Z ′∂Z′(β) +
s

2
]⊗k((Z′)) R

)

,

where the right R means the formal connection on k((Z ′)) after replacing the variable Z with Z ′.

When R is trivial, the above three theorems are conjectured by Laumon and Malgrange ([6]

2.6.3) except the term s
2 is missing in the conjecture. Any formal connection on k((t)) is a direct sum

of indecomposable connections. As in [1], section 5.9, any indecomposable connectionM = N⊗R,

where R is regular and N = [d]∗L where L is a one dimensional connection on a finite extension

[d] : k((t)) → k((t
1
d )). So we can calculate local Fourier transform for all formal connections.

Acknowledgements. It is a great pleasure to thank my advisor Lei Fu for his guidance

and support during my graduate studies. In [8], Claude Sabbah proves these results of local

Fourier transforms for formal connections with a geometric method. Our method is elementary

and directly.

2 Proofs of Theorems 1, 2

Given a formal Laurent series α in the variable r
√
t of order −s, consider the system of equations

(1.1). We express r
√
t as a formal Laurent series in 1

r+s
√
t′

of order 1 using the first equation and

then substitute this expression into the second equation to get β ∈ k(( 1
r+s

√
t′
)). We have

∂t′(β) = ∂t′
(
α(

r
√
t) + tt′

)
= ∂t

(
α(

r
√
t)
) dt

dt′
+ t′

dt

dt′
+ t (2.1)

=
(

∂t
(
α(

r
√
t)
)
+ t′

) dt

dt′
+ t = t.

It follows that β is a formal Laurent series in 1
r+s

√
t′

of order −s. Let T = r
√
t and Z ′ = 1

r+s
√
t′
. Set

a(T ) = −T st∂t(α) and b(Z
′) = Z ′st′∂t′(β).
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Then a(T ) is a formal power series in T of order 0 and b(Z ′) is a formal power series in Z ′ of order

0. From the system of equations (1.1) and (2.1), we get

{
a(T ) = ( T

Z′
)r+s

b(Z ′) = ( T
Z′
)r.

(2.2)

To prove Theorem 1, it suffices to prove the following theorem.

Theorem 1′. Given a formal power series a(T ) =
∑

i≥0 aiT
i with ai ∈ k and a0 6= 0, solve the

system of equations (2.2) to get b(Z ′) =
∑

i≥0 biZ
′i for some bi ∈ k. Then bs =

r
r+s

as and

F (0,∞)
(

[r]∗[−r(a0T−s + a1T
1−s + . . .+ as)]

)

= [r + s]∗[−(r + s)(b0Z
′−s + b1Z

′1−s + . . .+ bs) +
s

2
].

In fact, suppose Theorem 1′ holds. Let c be an element in k. By remark 2.2 we shall prove later,

for a(T ) = −T st∂t(α)− c
r
T s, we can get a solution b(Z ′) of the system of equations (2.2) such that

b(Z ′) ≡ Z ′st′∂t′(β)−
c

r + s
Z ′s mod. Z ′s+1.

Then

F (0,∞)
(

[r]∗[T∂T (α) + c
)

= F (0,∞)
(

[r]∗[−rT−s(−T st∂t(α) −
c

r
T s)]

)

= [r + s]∗[−(r + s)Z ′−s(Z ′st′∂t′(β)−
c

r + s
Z ′s)]

= [r + s]∗[Z
′∂Z′(β) + c].

So Theorem 1 holds for R = [c]. As in [1], section 5.9, every irreducible regular formal connection

N on k((T )) is [d]∗L, where L is a one dimensional formal connection on a finite extension [d] :

k((T )) → k((T
1
d ). So L is regular, we have L = [c] for some c ∈ k. Then N = [d]∗[c] = ⊕1≤i≤d[c+

i
d
]. We have d = 1 because N is irreducible. This shows that every irreducible regular formal

connection is isomorphic to the one dimensional connection [c] for some c ∈ k. So every regular

formal connection is a successive extension of connections of the type [c]. Since F (0,∞) is functoriel

and exact, Theorem 1 holds for any regular formal connection R on k((T )).

Remark 2.1. If as = 0, then there exists α ∈ k(( r
√
t)) such that a(T ) = −T st∂t(α). Using the first

equation of (2.2), we find an expression of T in terms of Z ′. We then substitute this expression

into the second equation of (2.2) to get b(Z ′). This expression also satisfies the first equation of
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(1.1). We then substitute this expression into the second equation of (1.1) to get β(Z ′). By (2.1),

we have

b(Z ′) =
∑

i≥0

biZ
′i = Z ′st′∂t′(β).

This shows bs = 0.

Remark 2.2. Solving the first equation of (2.2), we get T =
∑

i≥0 λiZ
′i+1 with λ0 = r+s

√
a0.

The solution is not unique and different solutions differ by an r + s-th root of unity. As long

as λ0 is chosen to be an r + s-th root of a0, for each i, λi depends only on a0, . . . , ai. We have

b(Z ′) = (
∑

i≥0 λiZ
′i)r, and for each i, bi depends only on λ0, . . . , λi. Therefore as long as we fix

an r + s-th root of a0, for each i, bi depends only on a0, . . . , ai. So to prove Theorem 1′, we can

assume a(T ) =
∑

0≤i≤s aiT
i.

Remark 2.3. Solving the first equation of (2.2), we get T =
∑

i≥0 λiZ
′i+1 for some λj ∈ k. Then λ0

is an r+s-th root of a0. Then
∑

i≥0 biZ
′i = (

∑

i≥0 λiZ
′i)r. Choose a′0, . . . , a

′
s ∈ k such that a′i = ai

for all 0 ≤ i < s and a′s = 0. For a(T1) =
∑

0≤i≤s a
′
iT

i
1, consider the system of equations (2.2) if

the variable T is changed by T1. Using the first equation, we can express T1 as
∑

i≥0 λ
′
iZ

′i+1 with

λ′0 = λ0. Then we have
∑

i≥0 b
′
iZ

′i = (
∑

i≥0 λ
′
iZ

′i)r. Remark 2.1 shows b′s = 0. Since ai = a′i for

0 ≤ i < s, we have λi = λ′i for all 0 ≤ i < s. That is,

T ≡ T1 mod. Z ′s+1 and T ≡ T1 ≡ λ0Z
′ mod. Z ′2.

Comparing coefficients of Z ′s on both sides of

∑

i≥0

aiT
i =

(∑

i≥0

λiZ
′i
)r+s

and
∑

0≤i≤s

a′iT
i
1 =

(∑

i≥0

λ′iZ
′i
)r+s

,

we have

asλ
s
0 = (as − a′s)λ

s
0 = (r + s)(λs − λ′s)λ

r+s−1
0 .

Comparing coefficients of Z ′s on both sides of

∑

i≥0

biZ
′i =

(∑

i≥0

λiZ
′i
)r

and
∑

i≥0

b′iZ
′i =

(∑

i≥0

λ′iZ
′i
)r

,

we have

bs = bs − b′s = r(λs − λ′s)λ
r−1
0 .

This proves bs =
r

r+s
as.
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Remark 2.4. Set f = a0T
−s + a1T

1−s + . . .+ as. Let

H = {σ ∈ Gal
(
k((T ))/k((t))

)
|σ(f) = f}.

We call f is irreducible with respect to the Galois extension k((T ))/k((t)) if #H = 1. Then f is

irreducible if and only if the connection [r]∗[−rf ] is irreducible.

Lemma 2.5. If Theorem 1′ holds for irreducible f , then it holds for all f.

Proof. By Remark 2.2, we can assume a(T ) =
∑

0≤i≤s aiT
i. Keep the notation in Remark 2.4.

Set p = #H . Then p|r. Let η be a primitive r-th root of unity in k. Then aiη
r
p
(i−s) = ai for all

0 ≤ i ≤ s. So ai = 0 or p|i− s. In particular, p|s since a0 6= 0. Let τ = T p and τ ′ = Z ′p. Then

f = a0τ
− s

p + apτ
1− s

p + . . .+ as

and it is irreducible with respect to the Galois extension k((τ))/k((t)). For a(τ) =
∑

0≤i≤ s
p
apiτ

i,

suppose b(τ ′) =
∑

i≥0 bpiτ
′i is a solution of the following system of equation

{

a(τ) = ( τ
τ ′
)

r+s
p

b(τ ′) = ( τ
τ ′
)

r
p .

(2.3)

Then bs = r
r+s

as and b(Z ′) =
∑

i≥0 bpiZ
′pi is a solution of the system of equations (2.2). For

a(τ) =
∑

0≤i≤ s
p
apiτ

i − j
r
τ

s
p (1 ≤ j ≤ p), by Remark 2.2 and 2.3, we can find a solution b(τ ′) of

the system of equations (2.3) such that

b(τ ′) ≡
∑

0≤i≤ s
p

bpiτ
′i − j

r + s
τ ′

s
p mod. τ ′

s
p
+1.

Applying Theorem 1′ to the system of equations (2.3) for a(τ) =
∑

0≤i≤ s
p
apiτ

i− j
r
τ

s
p (1 ≤ j ≤ p),

we have

F (0,∞)
(

[r]∗[−rf ]
)

= F (0,∞)
(

[
r

p
]∗[p]∗[−r(a0T−s + apT

p−s + . . .+ as)]
)

=
⊕

1≤j≤p

F (0,∞)
(

[
r

p
]∗[−

r

p
(a0τ

− s
p + apτ

p−s

p + . . .+ as) +
j

p
]
)

=
⊕

1≤j≤p

[
r + s

p
]∗[−

r + s

p
(b0τ

′− s
p + bpτ

′ p−s

p + . . .+ bs) +
j

p
+

s

2p
]

= [
r + s

p
]∗[p]∗[−(r + s)(b0Z

′−s + bpZ
′p−s + . . .+ bs) +

s

2
]

= [r + s]∗[−(r + s)(b0Z
′−s + bpZ

′p−s + . . .+ bs) +
s

2
].
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From now on, we assume f is irreducible.

Let’s describe the connection F (0,∞)
(
[r]∗[−rf ]

)
on k((z′)).

The formal connection [−rf ] on k((T )) consist of a one dimensional k((T ))-vector space with

a basis e and a k-linear map T∂T : k((T ))e→ k((T ))e satisfying

T∂T (ge) = (T∂T (g)− rfg)e

for any g ∈ k((T )). Since the formal connection [−rf ] on k((T )) has slope s, we get k[[T ]]e, T−sk[[T ]]e

is a good lattices pair for it. Identify [r]∗[−rf ] with k((T ))e as k((t))-vector spaces. Then the for-

mal connection [r]∗[−rf ] has pure slope s
r
and k[[T ]]e, T−sk[[T ]]e is a good lattices pair for this

connection. The action of the differential operator t∂t on k((T ))e is given by

t∂t(ge) = (t∂t(g)− fg)e

for any g ∈ k((T )). So we have

(∂t ◦ t)(T−ie) =
r − i

r
T−ie− (a0T

−(s+i)e+ . . .+ asT
−ie) (1 ≤ i ≤ r),

t · T−ie = T−(i−r)e (r + 1 ≤ i ≤ r + s).

By [2], Proposition 3.7, the map

ι : k((T ))e→ F (0,∞)
(

[r]∗[−rf ]
)

is an isomorphism of k-vector spaces. By [2], Lemma 2.4, (ιT−1e, . . . , ιT−(r+s)e) is a basis of

F (0,∞)
(

[r]∗[−rf ]
)

over k((z′)). Then by the relation ι ◦ t = −z′2∂z′ ◦ ι and ι ◦ ∂t = − 1
z′

◦ ι in

[2], Proposition 3.7, the matrix of the connection F (0,∞)
(
[r]∗[−rf ]

)
with respect to the differential

operator z′∂z′ and the basis (ιT−1e, . . . , ιT−(r+s)e) is

−













r
︷ ︸︸ ︷

s
︷ ︸︸ ︷

as

as−1
. . .

...
. . . as

1
z′

. . .
1
z′

a0 as−1

. . .
...
a0













+ diag{r − 1

r
, . . . ,

1

r
, 0, . . . , 0}.

8



Then the matrix of the connection

[r + s]∗
(

F (0,∞)
(

[r]∗[−rf ]
))

= k((Z ′))⊗k((z′)) F (0,∞)
(

[r]∗[−rf ]
)

with respect to the differential operator Z ′∂Z′ and the basis (Z ′⊗ ιT−1e, . . . , Z ′r+s⊗ ιT−(r+s)e) is

−r + s

Z ′s















asZ
′s 1

as−1Z
′s−1 . . .

. . .
...

. . . asZ
′s 1

a0
. . . as−1Z

′s−1

. . .
...
a0















+(r + s)diag{r − 1

r
, . . . ,

1

r
, 0, . . . , 0}+ diag{1, . . . , r + s}.

We can write this matrix as (r + s)B − (r + s)
∑

0≤i≤s Z
′i−sAi for some matrices Ai and B with

entries in k, where

A0 =

(
0 Is

a0Ir 0

)

,

B = diag{r − 1

r
, . . . ,

1

r
, 0, . . . , 0}+ 1

r + s
diag{1, . . . , r + s}.

Let V be the k-vector subspace of [r + s]∗
(

F (0,∞)
(

[r]∗[−rf ]
))

generated by Z ′i ⊗ ιT−ie (1 ≤ i ≤

r+ s). With respect to this basis, V can be identified with the k-vector space of column vectors in

k of length r+ s. The action of the differential operator Z ′∂Z′ on elements of V can be written as

Z ′∂Z′(v) = (r + s)B(v)− (r + s)
∑

0≤i≤s

Z ′i−sAi(v).

Lemma 2.6. Suppose f is irreducible in the sense of Remark 2.4. Given α0, . . . , αs ∈ k, the

following three conditions are equivalent:

(1) F (0,∞)
(
[r]∗[−rf ]

)
= [r + s]∗[−(r + s)

∑

0≤i≤s αiZ
′i−s].

(2) [−(r + s)
∑

0≤i≤s αiZ
′i−s] is a subconnection of [r + s]∗

(

F (0,∞)
(

[r]∗[−rf ]
))

.

(3) There exist an integer N and v0, . . . , vs ∈ V such that v0 6= 0 and

{ ∑

0≤i≤k(Ai − αi)vk−i = 0 (0 ≤ k ≤ s− 1);
∑

0≤i≤s−1(Ai − αi)vs−i + (As −B − αs − N
r+s

)v0 = 0.
(2.4)

Proof. Since f is irreducible, the connection [r]∗[−rf ] on k((t)) is irreducible with pure slope s
r
.

By [2], Proposition 3.14, the connection F (0,∞)
(

[r]∗[−rf ]
)

on k((z′)) is irreducible with pure slope

9



s
r+s

. As in the proof of [2], Lemma 3.3, we have

F (0,∞)
(

[r]∗[−rf ]
)

= [r + s]∗[−(r + s)
∑

0≤i≤s

̺iZ
′i−s]

for some ̺0, . . . , ̺s ∈ k with ̺0 6= 0. Let µ be a primitive (r + s)-th root of unity in k. Then

[r + s]∗
(

F (0,∞)
(

[r]∗[−rf ]
))

=
⊕

1≤j≤r+s

[−(r + s)(µ−js̺0Z
′−s + µj(1−s)̺1Z

′1−s + . . .+ ̺s)].

So there are r + s one dimensional subconnections of [r + s]∗
(

F (0,∞)
(

[r]∗[−rf ]
))

which are not

isomorphic to each other.

(1) ⇒ (2) is trivial. For (2) ⇒ (1), assume that [−(r + s)
∑

0≤i≤s αiZ
′i−s] is a subconnection

of [r + s]∗
(

F (0,∞)
(

[r]∗[−rf ]
))

. Then

[−(r + s)
∑

0≤i≤s

αiZ
′i−s] = [−(r + s)

∑

0≤i≤s

µj(i−s)̺iZ
′i−s]

for some 1 ≤ j ≤ r + s. Then

F (0,∞)
(

[r]∗[−rf ]
)

= [r + s]∗[−(r + s)
∑

0≤i≤s

µj(i−s)̺iZ
′i−s]

= [r + s]∗[−(r + s)
∑

0≤i≤s

αiZ
′i−s].

For (2) ⇒ (3), assume that [−(r+s)
∑

0≤i≤s αiZ
′i−s] is a subconnection of [r+s]∗

(

F (0,∞)
(

[r]∗[−rf ]
))

.

This means that there is a nonzero map of connections

φ : [−(r + s)
∑

0≤i≤s

αiZ
′i−s] → [r + s]∗

(

F (0,∞)
(

[r]∗[−rf ]
))

.

The connection [−(r + s)
∑

0≤i≤s αiZ
′i−s] consist of a one dimensional k((Z ′))-vector space with

a basis ε and a k-linear map Z ′∂Z′ : k((Z ′))ε→ k((Z ′))ε satisfying

Z ′∂Z′(gε) =
(

Z ′∂Z′(g)− (r + s)g
∑

0≤i≤s

αiZ
′i−s

)

ε

for any g ∈ k((Z ′)). Suppose φ(ε) =
∑

0≤i Z
′i+Nvi for some integer N and some vi ∈ V with

10



v0 6= 0. Then

−(r + s)
∑

0≤i≤s

αiZ
′i−s

∑

0≤i

Z ′i+Nvi = φ
(
Z ′∂Z′(ε)

)

= Z ′∂Z′

(
φ(ε)

)
= Z ′∂Z′

(∑

0≤i

Z ′i+Nvi
)

=
∑

0≤i

Z ′i+N
(
(r + s)B + i+N

)
vi − (r + s)

∑

0≤i

Z ′i+N
∑

0≤j≤s

Z ′j−sAj(vi).

Comparing coefficients of Z ′i, for N − s ≤ i ≤ N on each side, we get the system of equations

(2.4). This proves (2) ⇒ (3). So for α0 = µ−sj̺0, α1 = µ(1−s)j̺1, . . . , αs = ̺s, the system of

equations (2.4) holds for some N ∈ Z and some v0, . . . , vs ∈ V with v0 6= 0. These (s + 1)-tuples

(µ−sj̺0, µ
(1−s)j̺1, . . . , ̺s) (1 ≤ j ≤ r + s) are pairwise distinct, since f is irreducible. Lemma 2.7

shows that there are at most r + s (s + 1)-tuples (α0, . . . , αs) such that the system of equations

(2.4) holds for N = 0 and some v0, . . . , vs ∈ V with v0 6= 0. This proves (3) ⇒ (2).

Hensel’s lemma. Let E be a finite dimensional k-vector space. Suppose D is a k[[t]]-linear

endomorphism of E ⊗k k[[t]]. Write the action of D on elements of E:

D(v) =
∑

i≥0

tiDi(v), for unique elements Di ∈ Endk(E).

Suppose the characteristic polynomial of D0 has a simple root α0 in k. Then

(1) The equation

(D − α)(u) = 0

has a solution α ∈ k[[t]] with constant term α0 and 0 6= u ∈ E ⊗k k[[t]]. In this case, α is uniquely

determined by α0.

(2) Let k be a positive integer. The following systems of equations

∑

0≤i≤j

(Di − αi)uj−i = 0 (0 ≤ j ≤ k)

has a solution α1, . . . , αk ∈ k; u0, . . . , uk ∈ E with u0 6= 0. In this case, α1, . . . , αk are uniquely

determined by α0.

Proof. The proof is similar to that of [9], Proposition 7, p. 34.

Lemma 2.7. Given α0, . . . , αs ∈ k, there exist v0, . . . , vs ∈ V such that v0 6= 0 and

{ ∑

0≤i≤k(Ai − αi)vk−i = 0 (0 ≤ k ≤ s− 1),
∑

0≤i≤s−1(Ai − αi)vs−i + (As −B − αs)v0 = 0
(2.5)

11



if and only if there exist v′0, . . . , v
′
s ∈ V such that v′0 6= 0 and

{ ∑

0≤i≤k(Ai − αi)v
′
k−i = 0 (0 ≤ k ≤ s− 1),

∑

0≤i≤s−1(Ai − αi)v
′
s−i + (As − 2r+s

2r+2s − αs)v
′
0 = 0.

(2.6)

Moreover, there are at most r+ s (s+1)-tuples (α0, . . . , αs) in k such that the system of equations

(2.5) (resp. (2.6)) holds for some v0, . . . , vs ∈ V with v0 6= 0 (resp. v′0, . . . , v
′
s ∈ V with v′0 6= 0).

Proof. Let µ be a primitive (r+ s)-th root of unity in k. We fix an (r + s)-th root a
1

r+s

0 of a0. For

any 1 ≤ j ≤ r+ s, set ej to be the column vector (µja
1

r+s

0 , . . . , µj(r+s−1)a
r+s−1

r+s

0 , a0) and εj the row

vector (µ−ja
− 1

r+s

0 , . . . , µ−j(r+s−1)a
− r+s−1

r+s

0 , a−1
0 ). Then

A0 · ej = µrja
r

r+s

0 · ej, εj · A0 = µrja
r

r+s

0 · εj , εi · ej = (r + s)δij .

Set d = (r, s). We get ker(A0 − µrja
r

r+s

0 ) is generated by those ek with r + s|(k − j)d, and

im(A0 − µrja
r

r+s

0 ) is generated by the other ek’s. Then

im(A0 − µrja
r

r+s

0 ) = {v ∈ V |εk · v = 0 for all k satisfying r + s|(k − j)d}.

For the only if part, suppose the system of equations (2.5) holds for some v0, . . . , vs ∈ V with v0 6= 0.

In particular, (A0−α0)v0 = 0. Then α0 = µrja
r

r+s

0 for some integer j and then v0 =
∑

r+s|(i−j)d γiei

for some γi ∈ k. For any 1 ≤ k, l ≤ r + s, we have

εk · (B − 2r + s

2r + 2s
)el

=
∑

1≤i≤r

r − i

r
µi(l−k) +

∑

1≤i≤r+s

i

r + s
µi(l−k) − 2r + s

2r + 2s

∑

1≤i≤r+s

µi(l−k).

If k = l,

εk · (B − 2r + s

2r + 2s
)el =

∑

1≤i≤r

r − i

r
+

∑

1≤i≤r+s

i

r + s
− 2r + s

2r + 2s

∑

1≤i≤r+s

1 = 0.

Suppose k 6= l and r + s|(l − k)d. Let ξ = µl−k. Then ξd = 1 and ξ 6= 1. For any d|n, we have
∑

1≤i≤n ξ
i = 0 and hence

∑

1≤i≤n iξ
i = n

d

∑

1≤i≤d iξ
i. So we have

εk · (B − 2r + s

2r + 2s
)el = −1

r

∑

1≤i≤r

iξi +
1

r + s

∑

1≤i≤r+s

iξi

= −1

r

r

d

∑

1≤i≤d

iξi +
1

r + s

r + s

d

∑

1≤i≤d

iξi = 0.

So εk · (B − 2r+s
2r+2s )v0 = 0 if r + s|(k − j)d. Therefore (B − 2r+s

2r+2s )v0 = (A0 − α0)v for some v ∈ V .

Then v′0 = v0, . . . , v
′
s−1 = vs−1, v

′
s = vs − v satisfy the system of equations (2.6). Reversing the

12



above argument, we get the if part. So for the last assertion, it suffices to show that the same

assertion holds for the following system of equations

∑

0≤i≤k

(Ai − αi)vk−i = 0 for any 0 ≤ k ≤ s. (2.7)

Suppose the system of equations (2.7) holds for some α0, . . . , αs ∈ k and some v0, . . . , vs ∈ V with

v0 6= 0. There exists an integer 1 ≤ j ≤ r + s such that α0 = µrja
r

r+s

0 and v0 =
∑

r+s|(i−j)d γiei

for some γi ∈ k with γj 6= 0. The system of equations (2.7) is equivalent to the following equation

( ∑

0≤i≤s

AiZ
′i −

∑

0≤i≤s

αiZ
′i
)( ∑

0≤i≤s

viZ
′i
)

≡ 0 mod. Z ′s+1.

There exist ρ0 = µja
1

r+s

0 , ρ1, . . . , ρs ∈ k such that

∑

0≤i≤s

αiZ
′i ≡

( ∑

0≤i≤s

ρiZ
′i
)r

mod. Z ′s+1.

Let

Γ =















0 1
...

. . .

0
. . .

asZ
′s . . .

... 1
a0 0















and Γ0 =








0 1
...

. . .

0 1
a0 0







.

Then
∑

0≤i≤sAiZ
′i = Γr, A0 = Γr

0 and hence

(

Γ−
∑

0≤i≤s

ρiZ
′i
)( ∑

0≤k≤r−1

( ∑

0≤i≤s

ρiZ
′i
)k

Γr−1−k
)( ∑

0≤i≤s

viZ
′i
)

≡ 0 mod. Z ′s+1.

Write
( ∑

0≤k≤r−1

( ∑

0≤i≤s

ρiZ
′i
)k

Γr−1−k
)( ∑

0≤i≤s

viZ
′i
)

=
∑

0≤i

uiZ
′i

for some ui ∈ V. Then

u0 =
∑

0≤k≤r−1

ρk0Γ
r−1−k
0

∑

r+s|(i−j)d

γiei

=
∑

r+s|(i−j)d

γi ·
∑

0≤k≤r−1

µjka
k

r+s

0 µi(r−1−k)a
r−1−k
r+s

0 ei

= rµj(r−1)γja
r−1

r+s

0 ej 6= 0.
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and

(

Γ−
∑

0≤i≤s

ρiZ
′i
)( ∑

0≤i≤s

uiZ
′i
)

≡ 0 mod. Z ′s+1. (2.8)

Since ρ0 is a simple root of the characteristic polynomial of Γ0, by Hensel’s lemma, ρ1, . . . , ρs are

uniquely determined by ρ0. So α0, . . . , αs are uniquely determined by ρ0 = µja
1

r+s

0 (1 ≤ j ≤ r+s).

This proves the last assertion.

Now we are ready to prove Theorem 1′. By Remark 2.2, we assume that a(T ) =
∑

0≤i≤s aiT
i.

Then the first equation of (2.2) means that T
Z′

is a root in k[[Z ′]] of the polynomial

λr+s −
∑

0≤i≤s

aiZ
′iλi ∈ k[[Z ′]][λ].

This polynomial is exactly the characteristic polynomial of Γ. The characteristic polynomial of

Γ0 is the polynomial λr+s − a0 which has no multiple roots, then by Hensel’s lemma, Γ has an

eigenvector
∑

i≥0 Z
′ivi corresponding this eigenvalue T

Z′
with v0 6= 0. Since

∑

0≤i≤s Z
′iAi = Γr,

we have

( ∑

0≤i≤s

Z ′iAi

)(∑

0≤i

Z ′ivi
)

=
( T

Z ′

)r(∑

0≤i

Z ′ivi
)

=
(∑

0≤i

biZ
′i
)(∑

0≤i

Z ′ivi
)

.

So
∑

0≤i≤k

(Ai − bi)vk−i = 0 for any 0 ≤ k ≤ s.

Recall that
∑

0≤i≤s aiT
i−s is assumed to be irreducible. Then by Lemma 2.6 and 2.7, we have

F (0,∞)
(

[r]∗[−r(a0T−s + a1T
1−s + . . .+ as)]

)

= [r + s]∗[−(r + s)(b0Z
′−s + b1Z

′1−s + . . .+ bs −
2r + s

2r + 2s
)]

= [r + s]∗[−(r + s)(b0Z
′−s + b1Z

′1−s + . . .+ bs) +
s

2
].

Suppose r > s. Given a formal Laurent series α in the variable 1
r
√
t
of order −s, consider the

system of equations (1.2). We express 1
r
√
t
as a formal power series in r−s

√
t′ of order 1 using the

first equation, and then substitute this expression into the second equation to get β ∈ k(( r−s
√
t′)).

Similar to equation (2.1), we have ∂t′(β) = t. It follows that β is a formal Laurent series in r−s
√
t′

of order −s. Let Z = 1
r
√
t
and let T ′ = r−s

√
t′. Set

a(Z) = Zst∂t(α) and b(T
′) = −T ′st′∂t′β.
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Then a(Z) is a formal power series in Z of order 0 and b(T ′) is a formal power series in T ′ of order

0. From the system of equations (1.2), we get

{

a(Z) = −(T
′

Z
)r−s

b(T ′) = −(T
′

Z
)r.

(2.9)

Similar to Theorem 1 and 1′, to prove Theorem 2, it suffices to show the following theorem.

Theorem 2′. Suppose r > s. Given a formal power series a(Z) =
∑

i≥0 aiZ
i with ai ∈ k and

a0 6= 0, suppose b(T ′) =
∑

i≥0 biT
′i with bi ∈ k is a solution of the system of equations (2.9). We

have bs =
r

r−s
as and

F (∞,0)
(

[r]∗[−r(a0Z−s + a1Z
1−s + . . .+ as)]

)

= [r − s]∗[−(r − s)(b0T
′−s + b1T

′1−s + . . .+ bs) +
s

2
].

Proof. The proof of bs =
r

r−s
as is similar to that of Theorem 1′. Using the first equation of (2.9),

we can express Z as a formal power series in the variable T ′ of order 1. We then substitute this

expression into the second equation to get b(T ′) is a formal power series in T ′ with nonzero constant

term. That is, b0 6= 0. Let ζ be an r-th root of −1 in k and let Z = ζ ·Z1. Let [−] : k((z)) → k((z))

be the automorphism of k-algebra defined by z 7→ −z. From the system of equations (2.9), we get

{ ∑

i≥0 biT
′i = ( T

′

Z1
)r

∑

i≥0 ζ
i−saiZ

i
1 = ( T

′

Z1
)r−s.

Since b0 6= 0, by Theorem 1′, we have

F (0,∞)
(

[r − s]∗[−(r − s)(b0T
′−s + b1T

′1−s + . . .+ bs) +
s

2
]
)

= [r]∗[−r(ζ−sa0Z
−s + ζ1−sa1Z

1−s + . . .+ as) +
s

2
+
s

2
]

= [−]∗[r]∗[−r(a0Z−s + a1Z
1−s + . . .+ as)]

= F (0,∞)
(

F (∞,0)
(

[r]∗[−r(a0Z−s + a1Z
1−s + . . .+ as)]

))

.

The theorem holds by [2], Proposition 3.10.

3 Proof of Theorem 3

Suppose r < s. Given a formal Laurent series α in the variable 1
r
√
t
of order −s, consider the

system of equations (1.3). We express 1
r
√
t
as a formal Laurent series in 1

s−r
√
t′

of order 1 using the
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first equation and then substitute this expression into the second equation to get β ∈ k(( 1
s−r

√
t′
)).

Similar to equation (2.1), we have ∂t′(β) = t. It follows that β is a formal Laurent series in 1
s−r

√
t′

of order −s. Let Z = 1
r
√
t
and Z ′ = 1

s−r
√
t′
. Set

a(Z) = Zst∂t(α) and b(Z
′) = Z ′st′∂t′(β).

Then a(Z) is a formal power series in Z of order 0 and b(Z ′) is a formal power series in Z ′ of order

0. From the system of equations (1.3), we get

{
a(Z) = −( Z

Z′
)s−r

b(Z ′) = (Z
′

Z
)r.

(3.1)

Similar to Theorem 1 and 1′, to prove Theorem 3, it suffices to show the following theorem.

Theorem 3′. Suppose s > r. Given a formal power series a(Z) =
∑

i≥0 aiZ
i with ai ∈ k and

a0 6= 0, solve the system of equations (3.1) to get b(Z ′) =
∑

i≥0 biZ
′i for some bi ∈ k. Then

bs =
r

s−r
as and

F (∞,∞)
(

[r]∗[−r(a0Z−s + a1Z
1−s + . . .+ as)]

)

= [s− r]∗[−(s− r)(b0Z
′−s + b1Z

′1−s + . . .+ bs) +
s

2
].

Lemma 3.1. Set h = a0Z
−s + a1Z

1−s + . . . + as. We can reduce Theorem 3′ to the case where

s ≥ 2r and where h is irreducible with respect to the Galois extension k((Z))/k((z)).

Proof. The proof of bs =
r

s−r
as is similar to that of Theorem 1′ and the proof of the last assertion

is similar to that of Lemma 2.5. If s < 2r, then s > 2(s− r). Let ζ be an r-th root of −1 in k and

let Z = ζ · Z1. From the system of equations (3.1), we get
{ ∑

i≥0 biZ
′i = −(Z

′

Z1
)r

∑

i≥0 ζ
i−saiZ

i
1 = (Z1

Z′
)s−r.

We prove b0 6= 0 similarly as in Theorem 2′. Applying this theorem to [s− r]∗[−(s− r)(b0Z
′−s +

. . .+ bs) +
s
2 ], we have

F (∞,∞)
(

[s− r]∗[−(s− r)(b0Z
′−s + b1Z

′1−s + . . .+ bs) +
s

2
]
)

= [r]∗[−r(ζ−sa0Z
−s + ζ1−sa1Z

1−s + . . .+ as) +
s

2
+
s

2
]

= [−]∗[r]∗[−r(a0Z−s + a1Z
1−s + . . .+ as)]

= F (∞,∞)
(

F (∞,∞)
(
[r]∗[−rh]

))

.

The lemma holds by [2], Proposition 3.12 (iv).
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From now on, we assume h is irreducible.

Let’s describe the formal connection F (∞,∞)
(
[r]∗[−rh]

)
on k((z′)).

The formal connection [−rh] on k((Z)) consist of a one dimensional k((Z))-vector space with

a basis e′ and a k-linear map Z∂Z : k((Z))e′ → k((Z))e′ satisfying

Z∂Z(ge
′) = (Z∂Z(g)− rhg)e′

for any g ∈ k((Z)). Since the formal connection [−rh] on k((Z)) has slope s, we get k[[Z]]e′, Z−sk[[Z]]e′

is a good lattices pair for it. Identify [r]∗[−rh] with k((Z))e′ as k((z))-vector spaces. So the con-

nection [r]∗[−rh] on k((z)) has pure slope s
r
and k[[Z]]e′, Z−sk[[Z]]e′ is a good lattices pair for

this connection. The action of the differential operator z∂z on k((Z))e′ is given by

z∂z(ge
′) = (z∂z(g)− hg)e′

for any g ∈ k((Z)). Then for any i ∈ Z, we have

z2∂z(Z
−(r+i)e′) = −r + i

r
Z−ie′ − (a0Z

−(i+s)e′ + . . .+ asZ
−ie′).

By [2], Proposition 3.12 (ii), the map

ι : k((Z))e′ → F (∞,∞)
(

[r]∗[−rh]
)

is an isomorphism of k-vector spaces. As in [2], Proposition 3.14, (ιZ−1e′, . . . , ιZ−(s−r)e′) is a

basis of F (∞,∞)
(

[r]∗[−rh]
)

over k((Z ′)). By the relation ι ◦ z2∂z = 1
z′

◦ ι and −ι ◦ 1
z
= z′2∂z′ ◦ ι

in [2], Proposition 3.12 (iii), we have

z′2∂z′(ιZ−(i+s−r)e′) = −ιZ−(i+s)e′

=
as
a0
ιZ−ie′ + . . .+

a1
a0
ιZ−(i+s−1)e′ +

1

a0z′
ιZ−(r+i)e′ +

r + i

ra0
ιZ−ie′.

Let

A =



















0 −as

a0

1
...

. . . −as−r+1

a0

. . . −as−r

a0
− 1

a0z′

. . . −as−r−1

a0

. . .
...

1 −a1

a0



















.
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For any i ∈ Z, let Bi be the s× s-matrix whose entries are all zero except the (1, s)-th entry which

is valued by − r+i
ra0

. We have

(ιZ−(i+1)e′, . . . , ιZ−(i+s)e′) = (ιZ−ie′, . . . , ιZ−(i+s−1)e′)(A+Bi).

So

z′2∂z′(ιZ−1e′, . . . , ιZ−se′) = −(ιZ−(r+1)e′, . . . , ιZ−(r+s)e′)

= −(ιZ−1e′, . . . , ιZ−se′)
∏

1≤i≤r

(A+Bi).

Consider the connection

[s− r]∗
(

F (∞,∞)
(

[r]∗[−rh]
))

= k((Z ′))⊗k((z′)) F (∞,∞)
(

[r]∗[−rh]
)

.

Set ∧ = diag{Z ′, . . . , Z ′s} and ε′ = (Z ′ ⊗ ιZ−1e′, . . . , Z ′s ⊗ ιZ−se′). We have

Z ′∂Z′(ε′) = ε′ ·
(

diag{1, . . . , s} − s− r

z′
∧−1

( ∏

1≤i≤r

(A+Bi)
)

∧
)

= ε′ ·
(

diag{1, . . . , s} − s− r

Z ′s

∏

1≤i≤r

(

Z ′ ∧−1 (A+Bi) ∧
))

.

We have

Z ′ ∧−1 A∧ =



















0 −as

a0
Z ′s

1
...

. . . −as−r+1

a0
Z ′s−r+1

. . . −as−r

a0
Z ′s−r − 1

a0

. . . −as−r−1

a0
Z ′s−r−1

. . .
...

1 −a1

a0
Z ′



















and Z ′ ∧−1 Bi∧ is the s × s-matrix whose entries are all zero except the (1, s)-th entry which is

valued by − r+i
ra0

Z ′s. So we can write

diag{1, 2, . . . , s} − s− r

Z ′s

∏

1≤i≤r

(

Z ′ ∧−1 (A+Bi) ∧
)

= −(s− r)
∑

i≥0

Z ′i−sCi

and
(
Z ′ ∧−1 A ∧

)r
=

∑

i≥0

Z ′iC′
i

for some matrices Ci and C
′
i with entries in k. Then Ci = C′

i for all 0 ≤ i ≤ s− 1 and

C′
s − Cs = diag{ 1

s− r
, . . . ,

s

s− r
} − P
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where P is the s × s-matrix whose entries are all zero except the (i, i + s − r)-th entry which is

valued by − r+i
ra0

(1 ≤ i ≤ r). Let W be the k-vector space of column vectors in k of length s. We

have

Lemma 3.2. Suppose s ≥ 2r and h is irreducible with respect to the Galois extension k((Z))/k((z)).

Given α0, . . . , αs ∈ k with α0 6= 0, the following three conditions are equivalent:

(1) F (∞,∞)
(
[r]∗[−rh]

)
= [s− r]∗[−(s− r)

∑

0≤i≤s αiZ
′i−s].

(2) [−(s− r)
∑

0≤i≤s αiZ
′i−s] is a subconnection of [s− r]∗F (∞,∞)

(
[r]∗[−rh]

)
.

(3) There exist N ∈ Z and w0, . . . , ws ∈W such that w0 6= 0 and

{ ∑

0≤i≤k(Ci − αi)wk−i = 0 (0 ≤ k ≤ s− 1),
∑

0≤i≤s−1(Ci − αi)ws−i + (Cs − αs − N
s−r

)w0 = 0.
(3.2)

Proof. Set U = W ⊗k k((Z
′)) and W = W ⊗k k[[Z

′]]. Let u = (u1, . . . , us) be the canonical basis

of W. There exists a unique connection (U,Z ′∂Z′) such that the action of Z ′∂Z′ on elements of W

can be written as

Z ′∂Z′(w) = −(s− r)
∑

i≥0

Z ′i−sCi(w).

The map of k((Z ′))-vector spaces

U → [s− r]∗
(

F (∞,∞)
(

[r]∗[−rh]
))

which maps each ui to Z
′i⊗ιZ−ie′ is a surjective morphism of connections. We have Z ′s+1∂Z′(W) ⊂

W . Let ψ : W → W/Z ′W ∼= W be the canonical map. The k-linear action on W ∼= W/Z ′W

induced by Z ′s+1∂Z′ is −(s− r)C0. Write

Z ′ ∧−1 A∧ =
∑

i≥0

Z ′iDi

for some matrices Di with entries in k. The characteristic polynomial of D0 is λs + 1
a0
λr. So

W is the direct sum of two subspaces W0 and W1, invariant under D0, and such that D0|W0
is

nilpotent, D0|W1
is invertible. Then dimW0 = r and dimW1 = s− r. Since C0 = Dr

0, we have W0

and W1 are C0-invariant, and then C0|W0
= 0, C0|W1

is invertible. By the splitting lemma in [7],

2, W is the direct sum of two free submodules W0 and W1, invariant under Z ′s+1∂Z′ , and such

that W0 = ψ(W0), W1 = ψ(W1). Let U0, U1 be the subconnections of U generated by W0, W1,

respectively. Then U = U0 ⊕ U1. The induced action of Z ′s+1∂Z′ on W0 is 0, so the slopes of the
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connection U0 are all < s. But [s − r]∗
(

F (∞,∞)
(

[r]∗[−rh]
))

is an s − r dimensional connection

on k((Z ′)) with pure slope s, we have

Homconn.

(

U0, [s− r]∗
(

F (∞,∞)
(

[r]∗[−rh]
)))

= (0)

and then

U1
∼= [s− r]∗

(

F (∞,∞)
(

[r]∗[−rh]
))

.

For any one dimensional formal connection L on k((Z ′)) with slope s, we have

Homconn.(L,U0) = (0)

and then

Homconn.(L,U) = Homconn.(L,U1)
⊕

Homconn.(L,U0)

= Homconn.

(

L, [s− r]∗
(

F (∞,∞)
(

[r]∗[−rh]
)))

.

So to find a one dimensional subconnection in [s−r]∗
(

F (∞,∞)
(

[r]∗[−rh]
))

is equivalent to finding

a one dimensional subconnection in U of slope s. By Lemma 3.3, the remainder proof is similar to

that of Lemma 2.6.

Lemma 3.3. Suppose s ≥ 2r. Given α0, . . . , αs ∈ k with α0 6= 0, there exist w0, . . . , ws ∈W such

that w0 6= 0 and

∑

0≤i≤k

(Ci − αi)wk−i = 0 (0 ≤ k ≤ s) (3.3)

if and only if there exist w′
0, . . . , w

′
s ∈W such that w′

0 6= 0 and

{ ∑

0≤i≤k(C
′
i − αi)w

′
k−i = 0 (0 ≤ k ≤ s− 1),

∑

0≤i≤s−1(C
′
i − αi)w

′
s−i + (C′

s − αs − s−2r
2s−2r )w

′
0 = 0.

(3.4)

Moreover, there are at most s− r (s+1)-tuples (α0, . . . , αs) in k such that α0 6= 0 and the system

of equations (3.3) (resp. (3.4)) holds for some w0, . . . , ws ∈ W with w0 6= 0 (resp. w′
0, . . . , w

′
s ∈ W

with w′
0 6= 0).

Proof. Let η be a primitive (s−r)-th root of unity in k. We fix an (s−r)-th root (−a0)
1

s−r of −a0.

For any 1 ≤ j ≤ s− r, set e′j to be the column vector (0, . . . , 0, η(r+1)j(−a0)
r+1

s−r , . . . , ηsj(−a0)
s

s−r )

and ε′j the row vector (η−j(−a0)−
1

s−r , . . . , η−sj(−a0)−
s

s−r ). We have

C0 · e′j = η−rj(−a0)−
r

s−r · e′j, ε′j · C0 = η−rj(−a0)−
r

s−r · ε′j , ε′i · e′j = (s− r)δij .
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Set d = (r, s). Let W0 be as in Lemma 3.2. We have C0|W0
= 0. Then ker(C0 − η−rj(−a0)−

r
s−r ) is

generated by those e′k with s − r|(k − j)d, and im(C0 − η−rj(−a0)−
r

s−r ) is generated by W0 and

the other e′k’s. So

im(C0 − η−rj(−a0)−
r

s−r ) = {w ∈W |ε′k · w = 0 for all k satisfying s− r|(k − j)d}.

For the only if part, suppose the system of equations (3.3) holds for some w0, . . . , ws ∈ W with

w0 6= 0. So α0 = η−rj(−a0)−
r

s−r for some integer j and then w0 =
∑

s−r|(i−j)d σie
′
i for some

σi ∈ k. Since s ≥ 2r, for any 1 ≤ k, l ≤ s− r, we have

ε′k · (diag{
1

s− r
, . . . ,

s

s− r
} − P − s− 2r

2s− 2r
)e′l

=
∑

r+1≤i≤s

i

s− r
η(l−k)i −

∑

1≤i≤r

r + i

r
η(l−k)i − s− 2r

2
δkl.

If k = l, then

ε′k · (diag{
1

s− r
, . . . ,

s

s− r
} − P − s− 2r

2s− 2r
)e′l

=
∑

r+1≤i≤s

i

s− r
−

∑

1≤i≤r

r + i

r
− s− 2r

2
= 0.

If k 6= l and s− r|(l − k)d, then (ηl−k)d = 1 and ηl−k 6= 1. We have

ε′k · (diag{
1

s− r
, . . . ,

s

s− r
} − P − s− 2r

2s− 2r
)e′l

=
s− r

d

∑

1≤i≤d

i

s− r
η(l−k)i − r

d

∑

1≤i≤d

i

r
η(l−k)i = 0.

So ε′k · (diag{ 1
s−r

, . . . , s
s−r

} − P − s−2r
2s−2r )w0 = 0 if s− r|(k − j)d. Therefore

(diag{ 1

s− r
, . . . ,

s

s− r
} − P − s− 2r

2s− 2r
)w0 = (C0 − α0)w

for some w ∈ W . Then w′
0 = w0, . . . , w

′
s−1 = ws−1, w

′
s = ws − w satisfy the system of equations

(3.4). Reversing the above argument, we get the if part. The characteristic polynomial of D0 is

λs + 1
a0
λr. Each nonzero root of this polynomial is simple. Since

∑

i≥0 Z
′iC′

i = (Z ′ ∧−1 A∧)r and

C0 = Dr
0, the proof of the last assertion is similar to that of Lemma 2.7.

Now we are ready to prove Theorem 3′. Similar to Remark 2.2, we assume a(Z) =
∑

0≤i≤s aiZ
i.

Then the first equation of (3.1) means that Z′

Z
is a root in k[[Z ′]] with nonzero constant term of

the polynomial

λs +
a1
a0
Z ′λs−1 + . . .+

as
a0
Z ′s +

1

a0
λr ∈ k[[Z ′]][λ].

21



This polynomial is exactly the characteristic polynomial of Z ′ ∧−1 A ∧ . The characteristic poly-

nomial of D0 is λs + 1
a0
λr which has no nonzero multiple roots, by Hensel’s lemma, Z ′ ∧−1 A∧

has an eigenvector
∑

i≥0 Z
′iwi corresponding this eigenvalue Z′

Z
with w0 6= 0. Since

∑

i≥0 Z
′iC′

i =

(Z ′ ∧−1 A∧)r , we have

(∑

i≥0

Z ′iC′
i

)(∑

i≥0

Z ′iwi

)

=
(Z ′

Z

)r(∑

i≥0

Z ′iwi

)

=
(∑

i≥0

biZ
′i
)(∑

i≥0

Z ′iwi

)

.

That is,
∑

0≤i≤k

(C′
i − bi)wk−i = 0 for any k ≥ 0.

Recall that s ≥ 2r and
∑

0≤i≤s aiZ
i−s is assumed to be irreducible. By Lemma 3.2 and 3.3, we

have

F (∞,∞)
(

[r]∗[−rh]
)

= [s− r]∗[−(s− r)(b0Z
′−s + b1Z

′1−s + . . .+ bs −
s− 2r

2s− 2r
)]

= [s− r]∗[−(s− r)(b0Z
′−s + b1Z

′1−s + . . .+ bs) +
s

2
].
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