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1 Introduction

Let k be an algebraic closed field of characteristic zero and let k((t)) be the field of formal Laurent
series in the variable ¢. A formal connection on k((t)) is a pair (M,t0;) counsisting of a finite

dimensional k((t))-vector space M and a k-linear map t9; : M — M satisfying

for any f € k((t)) and m € M. In [2], S. Bloch and H. Esnault define local Fourier transforms
F(0.00) - F(00,0) = F(0,%0) for formal connections, by analogy with the ¢-adic local Fourier transform
considered in [6]. In [6], 2.6.3, Laumon and Malgrange give conjectural formulas of local Fourier
transforms for a class of Qg-sheaf. This results are proved by Lei Fu ([4]). In this paper, we
prove an analogous conjecture of local Fourier transform for formal connections. Actually, we can
calculate local Fourier transforms for any formal connections.

A key technical tool for the definitions of local Fourier transforms of formal connections is the
notion of good lattices pairs. By definition in [3], Lemma 6.21, a pair of good lattices V, W of M
is a pair of lattices in M satisfying the following conditions

(HyvcwcM

(2) to: (V) C W

(3) For any k € N, the natural inclusion of complexes

1 1
V2% w) - (t—kvl@» —W)

tk
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is a quasi-isomorphism.

Good lattices pairs V, W exist. The number dimpW/V is independent of the choice of good
lattices pairs of M, and is called the irregularity of M.

For any f € k((t)), denote by [f] the formal connection on k((t)) consisting of a one dimensional

k((t))-vector space with a basis e and a k-linear map t0; : k((t))e — k((t))e satisfying

to(ge) = (t0(g) + fg)e

for any g € k((t)). Two such objects [f] and [f'] are isomorphic if and only if f — f’ € tk[[t]] + Z.
Therefore the non-negative integer

max (0, —ord:(f))

is a well-defined invariant of the isomorphic class of [f], and is called the slope of [f]. Let p be
the slope of [f]. One can verify k[[t]le, t~PE[[t]]e is a good lattices pair of [f]. So the irregularity
coincides with the slope for any one dimensional formal connection. The definition of slopes for
arbitrary formal connections is given in [5], (2.2.5). The irregularity of a formal connection coincide
with the sum of its slopes. Any formal connection has a unique slope decomposition. So the slope
of an irreducible formal connection is equal to its irregularity divided by its dimension. A formal
connection is called regular if the irregularity of this connection is equal to 0.

Throughout this paper, r and s are to be positive integers. Let ¢’ be the Fourier transform

coordinate of t. Write z = % and 2/ = tl, Let

[r] < k() = k((V1))

be the natural inclusion of fields. Let T' = v/t and let a be a formal Laurent series in k((T)) of
order —s with respect to T. Let R be a regular formal connection on k((T)). In this paper, we

calculate the local Fourier transform

F(0,00) ([T]* ([TZ)T(@)] k(1)) R)) '

Similarly, let k((z)) be the field of formal Laurent series in the variable z. Let

] k(=) < k((%ﬂ)

t

be the natural inclusion of fields. Let Z = % and let « be a formal Laurent series in k((Z)) of

order —s with respect to Z. Let R be a regular formal connection on k((Z)). We also calculate



the local Fourier transforms

F&O (11, (1202(0)] @xz R)) it 7 > 5.

F20o) (1], (1207(0)] @x(czy R) ) i 7 < 5.

We refer the reader to [2] for the definitions and properties of local Fourier transforms. The

main results of this paper are the following three theorems.

Theorem 1. Given a formal Laurent series o in k((</t)) of order —s with respect to \/t, consider

the following system of equations

O (a(V1)) +1' =0,
A1) + 1t = B=iz) .-
= B(=wg)-
Using the first equation, we find an expression of \/t in terms of %\/t_, We then substitute this

expression into the second equation to get ﬁ(%\%_/), which is a formal Laurent series in k((ﬁt_,))

of order —s with respect to #t_, Let T = /t and let Z' = %

ok For any regular formal

connection R on k((T)), we have

F(0,00) ([r]* ([T&T(a)] ®k((1) R)) = [r+s]. ([Z/az/ (B) + g] OK((21) R)v

where the right R means the formal connection on k((Z')) after replacing the variable T with Z'.

Theorem 2. Suppose r > s. Given a formal Laurent series o in k((%)) of order —s with respect

to %, consider the following system of equations
(1.2)

Using the first equation, we find an expression of % in terms of "/t'. We then substitute this

—s

expression into the second equation to get B( "N/t'), which is formal Laurent series in k(( "~/t')) of

order —s with respect to "N/t'. Let Z = % and let T' = "~/t'. For any regular formal connection

R on k((Z)), we have

S

Floo0 ([T]* ([Zaz(oe)] Bk((2)) R)) =lr=sk ([T/‘?T’ B3

| @r((rr)) R),

where the right R means the formal connection on k((T")) after replacing the variable Z with T".



Theorem 3. Suppose r < s. Given a formal Laurent series o in k((%)) of order —s with respect

to \/E’ consider the following system of equations
Ou(a(7) +1' =
o)+t

#
B( ST )
expression into the second equation to get ﬁ(%w), which is a formal Laurent series in k((%rt,))

(1.3)

Using the We then substitute this

t

of order —s with respect to 5*;(/? Let Z = L and let 7' =

connection R on k((Z)), we have

For any regular formal

1
RSV

=

JF(00.00) ([r]* ([zaZ(a)] ®k((2)) R)) =[s— 1], ([Z’t?z' (B) + ;] Dr((2) R),

where the right R means the formal connection on k((Z')) after replacing the variable Z with Z'.
When R is trivial, the above three theorems are conjectured by Laumon and Malgrange ([0]
2.6.3) except the term 3 is missing in the conjecture. Any formal connection on k((t)) is a direct sum
of indecomposable connections. As in [I], section 5.9, any indecomposable connection M = N ® R,
where R is regular and N = [d].L where L is a one dimensional connection on a finite extension
[d] : k((t)) = k((t7)). So we can calculate local Fourier transform for all formal connections.
Acknowledgements. It is a great pleasure to thank my advisor Lei Fu for his guidance
and support during my graduate studies. In [§], Claude Sabbah proves these results of local

Fourier transforms for formal connections with a geometric method. Our method is elementary

and directly.

2 Proofs of Theorems 1, 2

Given a formal Laurent series o in the variable v/t of order —s, consider the system of equations

(CI). We express ¥/t as a formal Laurent series in of order 1 using the first equation and

7‘+\/7
then substitute this expression into the second equation to get 8 € k((== f)) We have
. , dtdt
O (B) = Ov(a(Vt)+tt) :at(a(\/i))%th%th (2.1)
” dt
= (at(a(\/i)) +t)@ +t=t.

It follows that [ is a formal Laurent series in %\S/t_’ of order —s. Let T = ¢/t and Z’' = %\%—/ Set

a(T) = —T°td,(a) and b(Z') = Z'*t' 9y (B).



Then a(T) is a formal power series in T of order 0 and b(Z’) is a formal power series in Z’ of order

0. From the system of equations (1)) and 21I), we get

(1) = (L)
L@y 22)

To prove Theorem 1, it suffices to prove the following theorem.

Theorem 1'. Given a formal power series a(T) = Y5 aiT" with a; € k and ag # 0, solve the

system of equations (Z.2) to get b(Z') = 3,50 biZ" for some b € k. Then bs = 2=as and

FOO [ [-r(aT™ + aT' ™ + ...+ a,)])

= [r+sl]=(r+8) (b2~ + b2 + ..+ b)) + 2.
2

In fact, suppose Theorem 1’ holds. Let ¢ be an element in k. By remark [2.2] we shall prove later,

for a(T) = —T*t0;(a) — €T, we can get a solution b(Z") of the system of equations (2.2)) such that

c

bZ') = 7"t 0 (B) — Z'* mod. Z's*1.

r+s

Then

FO (1] [T0r(a) + )

= FO ([T (T4, 0) = 7T7)))
r+s

= [r+sll=(r+s)2"°(2"t0n (B) - Z")

= [r+s|[Z2'02(B) + .

So Theorem 1 holds for R = [¢]. As in [I], section 5.9, every irreducible regular formal connection
N on k((T)) is [d]«L, where L is a one dimensional formal connection on a finite extension [d] :
k((T)) = k((T7). So L is regular, we have L = [¢] for some ¢ € k. Then N = [d],[] = Di<i<d[c+
é]. We have d = 1 because N is irreducible. This shows that every irreducible regular formal
connection is isomorphic to the one dimensional connection [c] for some ¢ € k. So every regular
formal connection is a successive extension of connections of the type [c]. Since F(%>°) is functoriel

and exact, Theorem 1 holds for any regular formal connection R on k((T)).

Remark 2.1. If ay = 0, then there exists o € k((¥/t)) such that a(T) = —T*t0;(c). Using the first
equation of (2.2)), we find an expression of T in terms of Z’. We then substitute this expression

into the second equation of [2:2) to get b(Z’). This expression also satisfies the first equation of



(TI). We then substitute this expression into the second equation of (II]) to get 5(Z’). By 1)),

we have

D(Z') =Y b2 =Z"t0u(B).

i>0

This shows b, = 0.

Remark 2.2. Solving the first equation of [2.2), we get ' = >, N Z'"H with A\ = +/ag.
The solution is not unique and different solutions differ by an r + s-th root of unity. As long
as Ao is chosen to be an r 4+ s-th root of ag, for each i, A\; depends only on ay,...,a;. We have
b(Z') = (350 AiZ")", and for each i, b; depends only on Ao, ..., A;. Therefore as long as we fix
an 7 + s-th root of ag, for each ¢, b; depends only on aq,...,a;. So to prove Theorem 1/, we can
assume a(7T) = Zogigs a; T

Remark 2.3. Solving the first equation of Z2), we get T'= >~ \iZ"*+" for some \; € k. Then g
is an 7+ s-th root of ag. Then Y7, b:;Z" = (32,59 AiZ")". Choose aj, ..., a} € k such that aj = a;
for all 0 <i < s and a; = 0. For a(T1) = 3 i<, alT{, consider the system of equations ([2.2)) if
the variable T is changed by T}. Using the first equation, we can express Ty as Y5, AjZ""*! with
Ao = Ao- Then we have Y, b;Z" = (32,50 AjZ")". Remark 2Tl shows b = 0. Since a; = aj for

0 <i<s,wehave \; = )] for all 0 < i < s. That is,
T=T mod. Zt and T =T, = M Z' mod. Z2.

Comparing coefficients of Z’S on both sides of
i AN 1 i s \TTS
S aTi = (ZAiZl) and > aiTi = (ZAiZl) ,
i>0 i>0 0<i<s i>0
we have

ash = (4 — )N = (+5)(h — XONFT* 7,

Comparing coefficients of Z’¢ on both sides of

S bz = (Z/\Z—Z’i)r and 342" = (ZA;Z”')T,

i>0 i>0 i>0 i>0
we have

by =bs — bl =r(As — NN L.

This proves by = #as.



Remark 2.4. Set f =agT*+a1T'"° +... +a,. Let

H = {o € Gal(k((T))/k((1)))|o(f) = f}.

We call f is irreducible with respect to the Galois extension k((T))/k((t)) if #H = 1. Then f is

irreducible if and only if the connection [r],[—rf] is irreducible.
Lemma 2.5. If Theorem 1’ holds for irreducible f, then it holds for all f.

Proof. By Remark 2.2 we can assume a(T) = Y .,  a:iT". Keep the notation in Remark 2.4
Set p = #H. Then p|r. Let n be a primitive r-th root of unity in k. Then amg(i*s) = a; for all

0<i<s. Soa; =0or p|i —s. In particular, p|s since ag # 0. Let 7 = T? and 7/ = Z'P. Then

1—

f=am P +a,m P 4+... +as

and it is irreducible with respect to the Galois extension k((7))/k((t)). For a(T) = Y gcice apiT",
- — P

suppose b(') = 3,5 bpiT'" is a solution of the following system of equation

a(r) = (%) _
{ o) = () =9

Then by = Z=a, and b(Z') = 37,5 bpiZ""" is a solution of the system of equations ([Z2). For

ol

a(t) = Zogigﬁ apiT — %T; (1 <4 < p), by Remark 22l and 23] we can find a solution b(7') of

the system of equations (23)) such that

)= Z byt — 7% mod. 7%t
0<1< 2 +s
Applying Theorem 1’ to the system of equations ([Z3)) for a(r) = ZO<1<S apiTt — 2 % (1<j<p),

we have

FO ([r.l-r1])

= FOO(LLelpllr(aol ™" +a,T7 " + .. 4-a.)])

= @ ]-"OOO)( ——(aoT Pt apr T +...+as)+z]>

1<5<p p p
+ + _s p—s ]

= P e by T kb + L 2

1<j<p p p p p
+ _ _
— N+ 002 45,27 4 )+ ]
= I+ sh[=(r+ 9002+ 0,27 b))+ 5]



From now on, we assume f is irreducible.

Let’s describe the connection F(*°) ([r],[—rf]) on k((z")).
The formal connection [—rf] on k((T')) consist of a one dimensional k((T))-vector space with

a basis e and a k-linear map TOr : k((T'))e — k((T))e satisfying

Tor(ge) = (Tor(g) —rfg)e

for any g € k((T)). Since the formal connection [—rf] on k((7T")) has slope s, we get k[[T]]e, T~ *k[[T]]e
is a good lattices pair for it. Identify [r].[—rf] with k((T"))e as k((t))-vector spaces. Then the for-
mal connection [r],[—rf] has pure slope 2 and k[[T]]e, T~°k[[T]]e is a good lattices pair for this

connection. The action of the differential operator t9; on k((T'))e is given by

t0(ge) = (t0(g9) — fg)e

for any g € k((T")). So we have

r—1

(8t o t)(Tfle) = T‘*ie _ (QOT*(SJri)e 4+ CLSTiie) (1 < i < T),

r

t-T e =T"(""¢ (r+1<i<r+s).
By [2], Proposition 3.7, the map
L R(T))e = FO (p]. =)

is an isomorphism of k-vector spaces. By [2], Lemma 2.4, (:T te,...,.T~("+9e¢) is a basis of
f(o*oo)([r]*[—rf]) over k((z')). Then by the relation t ot = —2?0,y 0 and Lo 9y = —L ovin

2], Proposition 3.7, the matrix of the connection F (> ([r],[—rf]) with respect to the differential

operator z'd,, and the basis (T e,..., T~ "+9)e) is
T S
—_——~ —_——~
Qs 1
Z/
As—1
. 1 . r—
- as 2’ +d1a’g{—7' 7_705 70}
r r
Qg as—1
ag



Then the matrix of the connection

[+ 1" (FO (u[=r11) ) = B((Z") @1qeryy FO (] [=r 1)

with respect to the differential operator Z’d,s and the basis (Z' @ /T e, ..., 2"t @I~ *9)e) is

asZ'® 1
as—IZIS_l
S r+s : asZ' 1
s
Z ao . as_lzls—l
ao
. r—1 1 .
+(r + s)diag{——,...,—,0,...,0} + diag{1,...,r + s}.
r r

We can write this matrix as (r + s)B — (r + ) > <, <, 2" *A; for some matrices A; and B with

entries in k, where

0 I
A = <aolr 0)’

-1 1 1
r ooy = 0,...,0+ diag{1,...,7 + s}.
s

B = diag{ R "

Let V be the k-vector subspace of [r + s|* (]—"(070") ([r]*[—rf])) generated by Z"* @ /T % (1 <i <
r+s). With respect to this basis, V' can be identified with the k-vector space of column vectors in
k of length r + s. The action of the differential operator Z’dz: on elements of V' can be written as
Z'07:(v) = (r+s)B(v) = (r+s) Y Z'"*Ai(v).
0<i<s

Lemma 2.6. Suppose f is irreducible in the sense of Remark [2] Given ao,...,as € k, the
following three conditions are equivalent:

(1) FOR([rlu[=rf]) = [r+ sll=(r + 8) Cocics 2" 7).

(2) [=(r+8) Xp<ics a; Z""=%] is a subconnection of [r + s]* (.7-'(0700) ([r]*[—rf]))

(3) There exist an integer N and vy, ...,vs € V such that vg # 0 and

ZOSiSk(Ai — Oél')’Uk,i = O (0 S k S S — 1),
Y o<ics—1(Ai = @i)vs i+ (As = B — oy — Z-)vg = 0.

r+s

(2.4)

Proof. Since f is irreducible, the connection [r].[—7f] on k((t)) is irreducible with pure slope 2.

By [2], Proposition 3.14, the connection F(%-°°) ([r]* [—rf]) on k((2)) is irreducible with pure slope



- As in the proof of [2], Lemma 3.3, we have

FO (. =rf]) = [+ sl [=(r+5) D 0:2"7]

0<i<s

for some oo, ..., 0s € k with gy # 0. Let u be a primitive (r 4+ s)-th root of unity in k. Then

r+ 5 (FO (. [=rf1))

= P w0z + w0z Lt o).
1<j<r+s

So there are 7 + s one dimensional subconnections of [r + s|* (]—'(OW) ([rh[—rf])) which are not
isomorphic to each other.
(1) = (2) is trivial. For (2) = (1), assume that [—(r +5) Y g<;<, @i Z"*~*] is a subconnection

of [r+ s]* (]—'(O’OO) ([rh[—rf])) Then

49 3 @z == ts) 3 WOz

0<i<s 0<i<s
for some 1 < j <r+s. Then
f(o’oo)([r]*[—rfD = [r+s][—(r+s) Z uj(ifs)giZ”'*s]
0<i<s

= [r+sl—(r+s) Z 7"

0<i<s

For (2) = (3), assume that [—(r+s) > <<, @ Z"*] is a subconnection of [r+s]* (]:(O,oo) ([r]* [—T‘f]))
This means that there is a nonzero map of connections
bil=(r+s5) 3 @z [+ o) (FO (b)),
0<i<s
The connection [—(r +5) > <<, a; Z""~%] consist of a one dimensional k((Z'))-vector space with

a basis € and a k-linear map Z'0z : k((Z'))e — k((Z'))e satistying

Z'07:(ge) = (Z’az, (9) — (r+s)g Z aiZ/i—s>€

0<i<s

for any g € k((Z’)). Suppose ¢(e) = Y ; 2" Nv; for some integer N and some v; € V with

10



vp # 0. Then

—(T+ S) Z aiZ/i—sZZli-i-N,Ui — ¢(Z/32/ (5))

0<i<s 0<i
= Z/az/ (d)({:‘)) = Z’[)Z/(Z Z/iJvai)
0<i
= Z Z"N((r+s)B+i+ N)v; — (r+s) Z 7N Z 775 Ay (v).
0<i 0<i 0<j<s

Comparing coefficients of Z’%, for N — s < i < N on each side, we get the system of equations
@4). This proves (2) = (3). So for ag = p~ ¥ 9,010 = p'*p1,... ay = o, the system of

equations (Z.4) holds for some N € Z and some vyg,...,vs € V with vg # 0. These (s + 1)-tuples

(= 00, u 1=V o1, ..., 05) (1 < j <7+ s) are pairwise distinct, since f is irreducible. Lemma 27
shows that there are at most r + s (s + 1)-tuples (ayp,...,as) such that the system of equations
(24) holds for N = 0 and some vy, ...,vs € V with vy # 0. This proves (3) = (2). O

Hensel’s lemma. Let E be a finite dimensional k-vector space. Suppose D is a kl[[t]]-linear
endomorphism of E ®y, k[[t]]. Write the action of D on elements of E:
D(v) = Z t'D;(v), for unique elements D; € Endy(E).
>0
Suppose the characteristic polynomial of Dy has a simple root ag in k. Then
(1) The equation
(D= a)(u) =0

has a solution « € k[[t]] with constant term ag and 0 # u € E @y, k[[t]. In this case, « is uniquely
determined by «y.

(2) Let k be a positive integer. The following systems of equations

Z (Dz —ai)uj_i =0 (0 S] S k)

0<i<j
has a solution «aq,...,ar € k; ug,...,ux € E with ug # 0. In this case, ay,...,qx are uniquely
determined by «y.
Proof. The proof is similar to that of [9], Proposition 7, p. 34. O
Lemma 2.7. Given ay,...,as € k, there exist vy, ...,vs € V such that vg # 0 and
Yo<ick(Ai —ai)up—; =0 (0 <k <s—1), (2.5)
ZOSiSs—l(Ai — O[Z')US,i + (AS — B — O[S)’UO = 0 ’

11



if and only if there exist v, ...,v, € V such that v # 0 and

{ Zogigk(Ai —ai)u,_; =0(0<k<s—1),

T S 26
Socics 1(Ai — )], + (A, — 2 — )} =0. (2:6)

Moreover, there are at most r+ s (s+ 1)-tuples (ao, . .., as) in k such that the system of equations

(2:3) (resp. (2:8)) holds for some vo,...,vs € V with vg # 0 (resp. v, ..., v, € V with v #0).

1
Proof. Let p be a primitive (r + s)-th root of unity in k. We fix an (r + s)-th root aj*® of ag. For

1 r4+s—1

any 1 < j <r+s, set e to be the column vector (/aj*, ..., /" Va, ™" ) and ; the row

1 _ _rte—1
vector (uJay ", ..., pIs g T g0 h) Then

S == N = —
Ao-ej =pag™ - ej, g5 Ao = pag -gj, girej = (14 5)di5-

Set d = (r,s). We get ker(4g — u”'aorﬁ) is generated by those ej with r + s|(k — j)d, and

im(Ag — p"7aj ") is generated by the other ej’s. Then

im(Ag — ,uTjag_‘r“) = {v € Vl]ex - v =0 for all k satisfying r + s|(k — j)d}.

For the only if part, suppose the system of equations (Z.3]) holds for some vy, ..., vs € V with vg # 0.
In particular, (Ap—ap)vg = 0. Then ap = urjaOT? for some integer j and then vy = ZTJFS‘(Z-,j)d Yi€i

for some ; € k. For any 1 <k, [ <r+ s, we have

e (B — 2r+s Je
k 2r + 2s !
r—i 1 ; 2r +s i
_ i(l—k) i(l—k) _ i(l—k)
1<Z< r g +1<; T+SM 2r +2s Z g '
<i<lr <i<r+s 1<i<r+s

If k=1,

2r—+s r—1 ) 2r+s
- (B — = — 1=0.
ek ( 27“—0—25)6[ Z r + Z r+s 2r+2s Z

1<ilr 1<i<r+s 1<i<r+s
Suppose k # [ and r + s|(l — k)d. Let & = p'=*. Then ¢ = 1 and & # 1. For any d|n, we have

Yi<i<n ¢" = 0 and hence Di<i<n gt =1 di<i<d i&'. So we have

2r+s 1 ) 1 .
(B — - __ E e - E )
o 2T+2S)el T4 i T ; i
1<i<r 1<i<r+s
1r - 1 r4+s ;
_ __-_ .~ <1 =0.
rd Z % +r—|—s d Z i
1<i<d 1<i<d

So ey - (B — 22::255)1;0 =0if r 4 s|(k — j)d. Therefore (B — 22TTJ:‘2SS)U0 = (Ao — ap)v for some v € V.

Then vy = vo,...,v,_ = vs_1,V, = vs — v satisfy the system of equations ([2.6]). Reversing the

12



above argument, we get the if part. So for the last assertion, it suffices to show that the same

assertion holds for the following system of equations

Z (A; — a;)vg—; =0 for any 0 < k < s. (2.7)
0<i<k
Suppose the system of equations (2.7) holds for some «p, ..., as € k and some vy, ...,vs € V with

vp # 0. There exists an integer 1 < j < r + s such that ag = ;ﬂjaF and vy = ZTJFS‘(i_j)d Yie;

for some ~y; € k with ; # 0. The system of equations (2.7)) is equivalent to the following equation

( Z A; 7" — Z aiZli)( Z viZ'i) =0 mod. Z"*t!.

0<i<s 0<i<s 0<i<s

o1
There exist po = pai™, p1,...,ps € k such that

Z 7" = ( Z piZ’i)T mod. Z'5t1.

0<i<s 0<i<s
Let
0 1
0 1
r=| © B and Ty = :

CLSZIS T 0 1

. ap 0
1
ap 0

Then Y g o, AiZ" =T7, Ag = Iy and hence

(I‘— 3 piZIi)( 3 ( 3 piZ/i)kFT_l_k)( 3 viZ/i) =0 mod. Z"**.

0<i<s 0<k<r—1 0<i<s 0<i<s

Write
3 ( Z piZm-)’“Frflfk)( $ Uiz’i) ~ Yz
0<k<r—1 0<i<s 0<i<s 0<i

for some u; € V. Then

k —1-k
U = E polg E viei
0<k<r-—1 r+s|(i—j)d

r—

k 1—k
jk w5  i(r—1—k) “vFs
S 3 el R

r+s|(i—j)d  0<k<r—1

, r-1
= 7" Vai e #0.
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and

(I‘— Z piZ”)( Z uiZ’i) =0 mod. Z"*. (2.8)

0<i<s 0<i<s

Since pg is a simple root of the characteristic polynomial of I'y, by Hensel’s lemma, p1, ..., ps are
uniquely determined by pg. So o, ..., as are uniquely determined by pg = aor;s (1<j<r+s).
This proves the last assertion. O

Now we are ready to prove Theorem 1’. By Remark [2.2] we assume that a(T) = Y ., a;/T".

Then the first equation of (2.2) means that % is a root in k[[Z]] of the polynomial
X =N a2\ € K2
0<i<s
This polynomial is exactly the characteristic polynomial of I'. The characteristic polynomial of
Iy is the polynomial A"*% — ag which has no multiple roots, then by Hensel’s lemma, I' has an
eigenvector Zizo Z",; corresponding this eigenvalue % with vg # 0. Since Zogigs Z""A; =TT,
we have
i i T\" i i i
(X za) (7)) = (7) (L zn) = (Xnz) (T2
0<i<s 0<i 0<i 0<i 0<i

So

Z (A; — bj)vg—; =0 for any 0 < k < s.
0<i<k

Recall that Y5, a;T*° is assumed to be irreducible. Then by Lemma 2.6 and 27, we have

F(0,00) ([r]*[—r(aoT_S +a TV .+ as)])
2r+s

_2r+2s

= [r4sl-(r+s)(0oZ 5 +b 2"+ .. 4+ by)+ g].

[r+ slu[—(r+8)(boZ" ™5 + 01 2" 75 + ... + b, )]

Suppose 7 > s. Given a formal Laurent series « in the variable % of order —s, consider the
system of equations (L2). We express T%/E as a formal power series in "v/# of order 1 using the
first equation, and then substitute this expression into the second equation to get 3 € k(( "V/t')).
Similar to equation (21), we have 9y (3) = t. It follows that 3 is a formal Laurent series in "/t

of order —s. Let Z = % and let 77 = "~/t'. Set
a(Z) = Z°t0 () and b(T') = —=T"*t' 0y 3.

14



Then a(Z) is a formal power series in Z of order 0 and b(7”) is a formal power series in 7" of order

0. From the system of equations (IZ), we get
a(Z) = —(L)r=s
{ (2)=-(%) 29)
Z

Similar to Theorem 1 and 1’, to prove Theorem 2, it suffices to show the following theorem.

Theorem 2'. Suppose r > s. Given a formal power series a(Z) = Y ,5,a;Z" with a; € k and
ap # 0, suppose b(T") = Y ,5 b;T"" with b; € k is a solution of the system of equations ([2.9). We

have b, = ﬁas and

F(e0,0) ([T]* [~r(a0Z 5 +a Z 5 4. + as)]>

= [r—slu[=(r—8)(bgT' ™5 +byT" 75 + ... +b,) + g].

Proof. The proof of by = L-a, is similar to that of Theorem 1’. Using the first equation of (2.9,
we can express Z as a formal power series in the variable T” of order 1. We then substitute this
expression into the second equation to get b(7”) is a formal power series in T’ with nonzero constant
term. That is, by # 0. Let ¢ be an r-th root of —1in k and let Z = (- Z;. Let [—] : k((2)) — k((2))

be the automorphism of k-algebra defined by z — —z. From the system of equations ([2.9]), we get

Zizo béTli = (E_I)T )
dis0C Tt Z) = (g_l)r_s-

Since bg # 0, by Theorem 1’, we have
FOe) ([T = 8]i[=(r = 8)(boT"™* + 1T * + ...+ bs) + g])
Ptz + GG b a) + 4 )
= [-]'rlf-r(aZ* + a1 Z'* + ... + as)]

= FO(FEO ([, [~r(a0Z " + @2 + .+ a,)]) ).

The theorem holds by [2], Proposition 3.10. O

3 Proof of Theorem 3

Suppose 7 < s. Given a formal Laurent series o in the variable % of order —s, consider the
system of equations ([3]). We express % as a formal Laurent series in +\/F of order 1 using the

15



first equation and then substitute this expression into the second equation to get 5 € k((%w))

Similar to equation (ZII), we have dy(8) = t. It follows that § is a formal Laurent series in +\/F

_ 1 I 1
of order —s. Let Z = i and Z' = 7 Set

a(Z) = Z°t0(a) and b(Z') = Z"*t' 3y (B).

Then a(Z) is a formal power series in Z of order 0 and b(Z’) is a formal power series in Z’ of order

0. From the system of equations (3], we get

a(2) = —(Z)r
{ o2 = (2. (3.1)

Similar to Theorem 1 and 1, to prove Theorem 3, it suffices to show the following theorem.
Theorem 3’. Suppose s > 7. Given a formal power series a(Z) = Y_,5¢a:Z" with a; € k and
ag # 0, solve the system of equations BI) to get b(Z') = Y75 b:iZ" for some b; € k. Then

bs = =—as and

FE) ([l [=r(a0Z " + a2 + ...+ a,)))

= [s—rlu[~(s = ") (BoZ'~* + b1 25 + ...+ by) + g].
Lemma 3.1. Set h = apZ 5+ a1 2"+ ... +a,. We can reduce Theorem & to the case where

s > 2r and where h is irreducible with respect to the Galois extension k((Z))/k((2)).

Proof. The proof of by = -~a, is similar to that of Theorem 1’ and the proof of the last assertion
is similar to that of Lemma 25 If s < 2r, then s > 2(s —r). Let ¢ be an r-th root of —1 in k and

let Z = (- Z;. From the system of equations (B.1]), we get

Eizo bézli =—( 1)
250 (aiZi = (Z_)

We prove by # 0 similarly as in Theorem 2'. Applying this theorem to [s — 7].[—(s — r)(boZ'~% +
.+ bs) + 3], we have

Floo0) ([s (s — 1) (b0 Z " + i Z T 4+ by + g])

= [rla[=r(CPa0Z™" + Cl_salZl_s +...4as)+ g + g]
= [I[l-r(aoZ™* + a1 Z" " + ... + as)]
= FEo (o) (). [-rh)).
The lemma holds by [2], Proposition 3.12 (iv). 0
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From now on, we assume h is irreducible.

Let’s describe the formal connection F(%:°) ([r],[—rh]) on k((2')).
The formal connection [—rh] on k((Z)) consist of a one dimensional k((Z))-vector space with

a basis €’ and a k-linear map Z9z : k((Z))e’ — k((Z))e’ satisfying
Z07(g¢') = (Z0z(g) — rhg)e’

for any g € k((Z)). Since the formal connection [—rh] on k((Z)) has slope s, we get k[[Z]]e/, Z7°k[[Z]]€
is a good lattices pair for it. Identify [r].[—rh] with k((Z))e’ as k((z))-vector spaces. So the con-
nection [r].[—rh] on k((z)) has pure slope 2 and k[[Z]]e/, Z~°Kk[[Z]]¢’ is a good lattices pair for

this connection. The action of the differential operator z9, on k((Z))e’ is given by

20,(ge’) = (20:(g) — hg)e’

for any g € k((Z)). Then for any ¢ € Z, we have

r+1

22(92 (Z—(r-i-i)e/) _
r

Z7% — (apZ~ e 4. a,Z70).
By [2], Proposition 3.12 (ii), the map
L R((Z))e! = FE) ([r].[-rh)

is an isomorphism of k-vector spaces. As in [2], Proposition 3.14, (1Z7'¢/,...,1.Z=(57")¢!) is a
basis of F(°°:%°) ([r]*[—rh]) over k((Z')). By the relation 10220, = L orand —10 1 =29, 04

in [2], Proposition 3.12 (iii), we have

220,z ey =z ()
a . A1 (it 1 i r4+1 __.
= 77 4 g lits ey — 17 (rti)gr 4 — 17 7!,
ag aop apz rag
Let
0 as
ao
1
_ Gs—r41
ao
A= t. _Os—r _ _1
' ao agz’
Gs_p_1
ao
1 _a
ao

17



For any i € Z, let B; be the s x s-matrix whose entries are all zero except the (1, s)-th entry which

is valued by —ZEtt, We have

rag
(2=l 1Z- ey =z 12D (A + By).
So
220027 e ... Z7%) = _(LZ*(T‘+1)6/, o LZf(rJrs)e/)

= —(wz7,...1Z7%¢) H (A+ By).

1<ilr

Consider the connection
s = )" (FO (Il [=rh] ) ) = k((Z')) @(eryy F) (Il [-rn]).

Set A =diag{Z',..., 2"} and ¢’ = (Z' @ 1Z7te,..., Z'* @ 1Z~%¢"). We have

Z'0z:(e") = € (diag{l,...,s}— T A ( H (A—i-Bi)) /\)

2! ;
1<i<r

= a’-(diag{l,...,s}—sz;lsr H (Z’/\fl(A—i-Bi)/\)).

1<i<r
We have
_as 7ls
0 0.7
1
_Qs—r+41 r7ts—r+1
aop Z
ZI/\_l A/\: "' _bZ/57T_L
aop aop
_G8s—r—1 r7Is—r—1
aop Z
1 —a g
ag

and Z' A= B;A is the s x s-matrix whose entries are all zero except the (1,s)-th entry which is
valued by —ZE 7’5, So we can write
0

sS—7T

diag{1,2,...,s} — ?

I1 (Z’ A1 (A+ B)) A) = —(s—1)Y_7"C

1<i<r i>0
and
(Z' AP AN) =D 20
i>0

for some matrices C; and C! with entries in k. Then C; = CJ for all 0 <i < s—1 and

C! — C, = diag{ ! e, — }—P

sS—T sS—T
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where P is the s x s-matrix whose entries are all zero except the (i,7 + s — r)-th entry which is
valued by —:T*j (1 <i<r). Let W be the k-vector space of column vectors in k of length s. We

have

Lemma 3.2. Suppose s > 2r and h is irreducible with respect to the Galois extension k((Z))/k((z)).
Given o, . ..,as € k with ag # 0, the following three conditions are equivalent:

(1) FOo ([r]u[=rh]) = [s = 1]l (s = 1) Xpcics 0 Z"7°).

(2) [=(s = 1) Xo<izs o; Z""=%] is a subconnection of [s — r]* F(>) ([r].[-rh]).

(3) There exist N € Z and wy, . ..,ws € W such that wg # 0 and

{ Zogigk(ci - ai)wk,i =0 (0 < k <s-— 1),

3.2
Zogigs—l(ci —aj)ws—; + (Cs — as — S]L)wo =0. (3.2)

Proof. Set U =W ®; k((Z")) and W = W ®, k[[Z']]. Let u = (u,...,us) be the canonical basis
of W. There exists a unique connection (U, Z'9z/) such that the action of Z'9z on elements of W

can be written as

Z'0z/(w) = —(s—71) Z 750y (w).

i>0

The map of k((Z’))-vector spaces

U [s = 1] (F (r].[=r)))

which maps each u; to Z"*®1Z %€’ is a surjective morphism of connections. We have Z"**19, (W) C
W. Let v : W — W/Z'W = W be the canonical map. The k-linear action on W = W/Z'W
induced by Z"*T19z/ is —(s — r)Cp. Write
Z'NTVAN=YZ2"'D;
i>0

for some matrices D; with entries in k. The characteristic polynomial of Dy is A* + alo)\r. So
W is the direct sum of two subspaces Wy and Wi, invariant under Dy, and such that Dg|w, is
nilpotent, Do|w, is invertible. Then dimWy = r and dimW; = s — r. Since Cy = D, we have W
and W; are Cp-invariant, and then Cy|w, = 0, Co|w, is invertible. By the splitting lemma in [7],
2, W is the direct sum of two free submodules Wy and W, invariant under Z’**19,,, and such
that Wy = v (Wy), W1 = ¢»(W1). Let Uy, U be the subconnections of U generated by Wy, Wi,

respectively. Then U = Uy @ U;. The induced action of Z’**19, on W is 0, so the slopes of the
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connection Uy are all < s. But [s — r]* (.7-'(00’“) ([T]*[—T‘hD) is an s — r dimensional connection

on k((Z')) with pure slope s, we have

Homeou. (Uo. [s — r}* (F00) (1rl. [+1]) ) ) = (0)
and then
Uy [s—r]" (-7:(00’00) ([T]*[_Th]))'
For any one dimensional formal connection L on k((Z')) with slope s, we have
Homconn.(Lv UO) = (O)

and then

Homeonn. (L, U) = Homeonn. (L, Ur) @ Homeonn. (L, Uo)

= Homcony, (L, [S — T]* (]:(OO,OO) ([7']* [_Th]) ) )

So to find a one dimensional subconnection in [s —r]* (]—" (00,00) ( [r]« [—rh])) is equivalent to finding

a one dimensional subconnection in U of slope s. By Lemma [3.3] the remainder proof is similar to

that of Lemma O
Lemma 3.3. Suppose s > 2r. Given ayg, . ..,as € k with ag # 0, there exist wo, ..., ws € W such

that wo # 0 and

> (Ci—a)wr i =0(0<k<s) (3.3)
0<i<k

if and only if there exist wy, ..., wl, € W such that wj # 0 and

{ Y o<i<k(Cf —a)wy_; =0(0<k<s—1), )
ZO<Z<5 1(0/ - az)wls i + ( - Qs — 2551227“7“)11}6 =0. .
Moreover, there are at most s —r (s + 1)-tuples (o, . .., as) in k such that ag # 0 and the system

of equations (3.3) (resp. ([34])) holds for some wo, ..., ws € W with wy # 0 (resp. wy,...,w, € W
with wj # 0).

Proof. Let n be a primitive (s —r)-th root of unity in k. We fix an (s —r)-th root (—ao)ﬁ of —ayp.

")

For any 1 < j < s —r, set €} to be the column vector (0,...,0, nrtDi(—ag) Zti, 0 (—ag) T

and €/; the row vector (777 (=a0)"77,...,n~% (—ap) " 77). We have

Co - € =n""I(—ag)" =7 - ¢}, ) - Co =" (—ag) =7 -}, &} - €} = (s —1)di;.



. T

Set d = (r,s). Let Wy be as in Lemma[32l We have Cy|w, = 0. Then ker(Co —n~"(—ag)” *-7) is
generated by those ¢} with s — r|(k — j)d, and im(Cy — 1" (—ag) 77 ) is generated by Wy and
the other e}’s. So

. T

im(Cy —n~ " (—ag) 5 7) = {w € Wle}, - w =0 for all k satisfying s — r|(k — j)d}.

For the only if part, suppose the system of equations ([B.3) holds for some wy,...,ws € W with
wy # 0. So ag = 7" (—ag) 7 for some integer j and then wy = Zs—r|(i—j)d o;e; for some

0; € k. Since s > 2r, for any 1 <k, | <s—r, we have

1 s s—2r
Lo (di — P - ;
€k (la’g{S—Tj 78—7”} 25—2T)el
1 ; T+ ;. s—2r
_ v =kt _ T (k)i
Z Pl Z /) 5 Oki-
r+1<i<s 1<i<lr
If £k =1, then
1 s s—2r
Lo(di — P - ;
€k (la’g{S—Tj 78—7”} 25—2T)el
. . _9
_ Z v Z r—l—z_s T:O.
¢  s—r - r 2
r+1<i<s 1<ilr

If k#1 and s — r|(l — k)d, then (n'=%)? =1 and 5'~* # 1. We have

1 s s—2r
Loo(di ... - P - i’
€k ( lag{S—T, ,S—’I”} 25—27‘)el
s—r 1 N 1 ;
_ (I=kyi _ = o (l—k)i —0.
d Z s —Tn d Z rn
1<i<d 1<i<d
So ¢}, - (diag{,..., ==} — P — 22 )wo = 0 if s — r|(k — j)d. Therefore
1 s s—2r
di - P- = (Cy —
( lag{s—r’ ’s—r} 28—2T)w0 (Co = ao)w
for some w € W. Then wj = wy,...,ws_; = ws_1,w, = ws — w satisfy the system of equations

B4). Reversing the above argument, we get the if part. The characteristic polynomial of Dy is
A® + LX". Each nonzero root of this polynomial is simple. Since 37,5, Z2"C] = (Z' A=1 AA)" and

Cy = D, the proof of the last assertion is similar to that of Lemma 277 O

Now we are ready to prove Theorem 3'. Similar to Remark[2.2] we assume a(Z) = >, ., a; Z".
Then the first equation of (B1]) means that 27/ is a root in k[[Z']] with nonzero constant term of
the polynomial

. 1
N+ DBz 4+ g S e K2
ao ag ao

21



This polynomial is exactly the characteristic polynomial of Z’ A= A A . The characteristic poly-
nomial of Dy is A® + aiox\r which has no nonzero multiple roots, by Hensel’s lemma, Z’ A~1 AA

has an eigenvector .., Z"w; corresponding this eigenvalue 27’ with wg # 0. Since Y ,o, Z"C| =

(Z' N1 AN)", we have

(S ra)(5zm) - (5) (5 7w) - (Do) (S 7w).

=0 i>0 >0
That is,
> (C] = biywg—; = 0 for any k > 0.

0<i<k

Recall that s > 2r and Y .,., a;Z" "% is assumed to be irreducible. By Lemma and B3] we

have

Feoo) ([, [-rh))
s —2r

2s — 2r

=[5 —rh=(s = r)(boZ " + 012" 4+ b)) + 5],

= [s=r[~(s =) (b0 Z S+ 012"+ ... 4+ by —

)]
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