A REMARK ON FRACTIONAL INTEGRALS ON MODULATION SPACES

MITSURU SUGIMOTO AND NAOHITO TOMITA

1. INTRODUCTION

The fractional integral operator I_{α} is defined by

$$I_{\alpha}f(x) = \frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy, \quad \gamma(\alpha) = \frac{\pi^{n/2} 2^{\alpha} \Gamma(\alpha/2)}{\Gamma((n-\alpha)/2)},$$

where $0 < \alpha < n$. The well known Hardy-Littlewood-Sobolev theorem says that I_{α} is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ when $1 and <math>1/q = 1/p - \alpha/n$ (see [6, Chapter 5, Theorem 1]). We can regard this theorem as information on how the operation of I_{α} changes the decay property of functions. On the other hand, the operator I_{α} can be understood as a differential operator of $(-\alpha)$ -th order since $\widehat{I_{\alpha}f} = |\xi|^{-\alpha}\widehat{f}$ ([6, Chapter 5, Lemma 1]), and we can expect an increase in the smoothness by acting it to functions.

The purpose of this paper is to investigate the effect of I_{α} on both decay and smoothness properties. To study these two properties simultaneously, we consider the operation of I_{α} on the modulation spaces $M^{p,q}$, which were introduced by Feichtinger [3] (see also Triebel [8]). We say that f belongs to $M^{p,q}$ if its short short-time Fourier transform

$$V_{\varphi}f(x,\xi) = e^{-ix\cdot\xi} [f * (M_{\xi}\varphi)](x) = (2\pi)^{-n/2} [\hat{f} * (M_{-x}\varphi)](\xi)$$

is in L^p (resp. L^q) with respect to x (resp. ξ), where φ is the Gauss function $\varphi(t) = e^{-|t|^2/2}$. Although the exact definition will be given in the next section, we can see here that the decay of $V_{\varphi}f(x,\xi)$ with respect to x is determined by that of f, and the one with respect to ξ is determined by that of \hat{f} , that is, the smoothness of f. Hence, the first index p of $M^{p,q}$ measures the decay of f, and the second index q of $M^{p,q}$ measures the smoothness of f. To understand it, we remark that $C_1(1+|t|)^a \leq f(t) \leq C_2(1+|t|)^b$ implies $\widetilde{C}_1(1+|t|)^a \leq f * \varphi(t) \leq \widetilde{C}_2(1+|t|)^b$, where a, b are arbitrary real numbers, since the Gauss function is rapidly decreasing. These explanations can be found in Gröchenig [5, Chapter 11].

Since the fractional integral operator I_{α} is a bounded operator from $L^{p}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$ of convolution type, it is easy to see that I_{α} is bounded from $M^{p_{1},q_{1}}(\mathbb{R}^{n})$ to $M^{p_{2},q_{2}}(\mathbb{R}^{n})$ when

(1.1)
$$1/p_2 = 1/p_1 - \alpha/n$$
 and $q_1 = q_2$

([7, Theorem 3.2]). This boundedness says that the smoothness does not change but the decay of $I_{\alpha}f$ is worse than that of f since $M^{p_1,q_1}(\mathbb{R}^n) \hookrightarrow M^{p_2,q_2}(\mathbb{R}^n)$ in this case (see Section 2 for this embedding). However, as we have discussed in the

²⁰⁰⁰ Mathematics Subject Classification. 42B20, 42B35.

Key words and phrases. Modulation spaces, fractional integrals.

above, we can expect an increase in the smoothness. Furthermore, since I_{α} is not bounded on $L^{2}(\mathbb{R}^{n})$ and $M^{2,2}(\mathbb{R}^{n}) = L^{2}(\mathbb{R}^{n})$, we can easily prove that I_{α} is not bounded from $M^{p_{1},q_{1}}(\mathbb{R}^{n})$ to $M^{p_{2},q_{2}}(\mathbb{R}^{n})$ when $p_{1} \geq p_{2}$ and $q_{1} \geq q_{2}$ by using duality and interpolation (see Remark 4.1). This means that both decay and smoothness do not increase, simultaneously.

On the other hand, Tomita [7] essentially proved that I_{α} is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$ when

(1.2)
$$1/p_2 < 1/p_1 - \alpha/n$$
 and $1/q_2 < 1/q_1 + \alpha/n$.

This boundedness says that the decay of $I_{\alpha}f$ is worse than that of f by the order α/n , but the smoothness of $I_{\alpha}f$ is better than that of f up to the order α/n . This result seems to be reasonable but there still remain the problems whether the order α/n is the best possible one or not and what about the critical cases $1/p_2 = 1/p_1 - \alpha/n$ or $1/q_2 = 1/q_1 + \alpha/n$. The following theorem is the complete answers to these questions:

Theorem 1.1. Let $0 < \alpha < n$ and $1 < p_1, p_2, q_1, q_2 < \infty$. Then the fractional integral operator I_{α} is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$ if and only if

$$1/p_2 \leq 1/p_1 - \alpha/n$$
 and $1/q_2 < 1/q_1 + \alpha/n$.

Theorem 1.1 says that the boundedness of I_{α} holds even if $1/p_2 = 1/p_1 - \alpha/n$, $1/q_2 < 1/q_1 + \alpha/n$ and $q_1 > q_2$. This is a strictly improvement of (1.1) and (1.2). However, the boundedness does not hold if the second index is critical, that is, $1/q_2 = 1/q_1 + \alpha/n$. We remark that [7] did not treat the necessary condition for the boundedness.

In order to consider the detailed behavior of the first and second indices, we introduce the more general operator $I_{\alpha,\beta}$ defined by $I_{\alpha,\beta} = I_{\alpha} + I_{\beta}$, that is,

$$I_{\alpha,\beta}f = \mathcal{F}^{-1}\left[\left(|\xi|^{-\alpha} + |\xi|^{-\beta}\right)\widehat{f}\right],\,$$

where $0 < \beta \leq \alpha < n$. We note that $|\xi|^{-\alpha} + |\xi|^{-\beta} \sim |\xi|^{-\alpha}$ in the case $|\xi| \leq 1$, and $|\xi|^{-\alpha} + |\xi|^{-\beta} \sim |\xi|^{-\beta}$ in the case $|\xi| \geq 1$. Since $I_{\alpha,\alpha} = 2I_{\alpha}$, we have Theorem 1.1 as a corollary of the following main result in this paper:

Theorem 1.2. Let $0 < \beta \leq \alpha < n$ and $1 < p_1, p_2, q_1, q_2 < \infty$. Then $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$ if and only if

$$1/p_2 \le 1/p_1 - \alpha/n$$
 and $1/q_2 < 1/q_1 + \beta/n$.

Finally we mention some related results. Cowling, Meda and Pasquale [2] proved that $I_{\alpha,\beta}$ is bounded from (L^{p_1}, ℓ^{q_1}) to (L^{p_2}, ℓ^{q_2}) when

$$1/p_2 \ge 1/p_1 - \beta/n$$
 and $1/q_2 \le 1/q_1 - \alpha/n$,

where (L^{p_i}, ℓ^{q_i}) , i = 1, 2, are amalgam spaces defined by

$$||f||_{(L^p,\ell^q)} = \left(\sum_{k\in\mathbb{Z}^n} ||\varphi(\cdot-k)f||_{L^p}^q\right)^{1/q}$$

with an appropriate (see (3.1)) cut-off function φ . The result between $I_{\alpha,\beta}$ and amalgam spaces of Lorentz type can be also found in Cordero and Nicola [1]. The

definition of amalgam spaces is based on a similar idea to that of modulation spaces since we have the equivalence

$$\|f\|_{M^{p,q}} \sim \left(\sum_{k \in \mathbb{Z}^n} \|\mathcal{F}^{-1}[\varphi(\cdot - k)\widehat{f}]\|_{L^p}^q\right)^{1/q}$$

Roughly speaking, amalgam spaces are defined by a decomposition of the function f while the modulation spaces by the same decomposition of \hat{f} . Theorem 1.2 also shows a difference between the modulation spaces and amalgam spaces, because the boundedness of $I_{\alpha,\beta}$ on the modulation spaces does not hold if the second index is critical.

2. Preliminaries

Let $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ be the Schwartz spaces of all rapidly decreasing smooth functions and tempered distributions, respectively. We define the Fourier transform $\mathcal{F}f$ and the inverse Fourier transform $\mathcal{F}^{-1}f$ of $f \in \mathcal{S}(\mathbb{R}^n)$ by

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) \, dx \quad \text{and} \quad \mathcal{F}^{-1}f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} f(\xi) \, d\xi.$$

We introduce the modulation spaces based on Gröchenig [5]. Fix a function $\varphi \in \mathcal{S}(\mathbb{R}^n) \setminus \{0\}$ (called the *window function*). Then the short-time Fourier transform $V_{\varphi}f$ of $f \in \mathcal{S}'(\mathbb{R}^n)$ with respect to φ is defined by

$$V_{\varphi}f(x,\xi) = (f, M_{\xi}T_x\varphi) \quad \text{for } x, \xi \in \mathbb{R}^n,$$

where $M_{\xi}\varphi(t) = e^{i\xi \cdot t}\varphi(t)$, $T_x\varphi(t) = \varphi(t-x)$ and (\cdot, \cdot) denotes the inner product on $L^2(\mathbb{R}^n)$. We note that, for $f \in \mathcal{S}'(\mathbb{R}^n)$, $V_{\varphi}f$ is continuous on \mathbb{R}^{2n} and $|V_{\varphi}f(x,\xi)| \leq C(1+|x|+|\xi|)^N$ for some constants $C, N \geq 0$ ([5, Theorem 11.2.3]). Let $1 \leq p, q \leq \infty$. Then the modulation space $M^{p,q}(\mathbb{R}^n)$ consists of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$\|f\|_{M^{p,q}} = \|V_{\varphi}f\|_{L^{p,q}} = \left\{ \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |V_{\varphi}f(x,\xi)|^p \, dx \right)^{q/p} d\xi \right\}^{1/q} < \infty,$$

with usual modification when $p = \infty$ or $q = \infty$. We note that $M^{2,2}(\mathbb{R}^n) = L^2(\mathbb{R}^n)$ ([5, Proposition 11.3.1]), $M^{p,q}(\mathbb{R}^n)$ is a Banach space ([5, Proposition 11.3.5]), $\mathcal{S}(\mathbb{R}^n)$ is dense in $M^{p,q}(\mathbb{R}^n)$ if $1 \leq p, q < \infty$ ([5, Proposition 11.3.4]), and $M^{p_1,q_1}(\mathbb{R}^n) \hookrightarrow M^{p_2,q_2}(\mathbb{R}^n)$ if $p_1 \leq p_2$ and $q_1 \leq q_2$ ([5, Theorem 12.2.2]). The definition of $M^{p,q}(\mathbb{R}^n)$ is independent of the choice of the window function $\varphi \in \mathcal{S}(\mathbb{R}^n) \setminus \{0\}$, that is, different window functions yield equivalent norms ([5, Proposition 11.3.2]). Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be such that $\operatorname{supp} \varphi$ is compact and $|\sum_{k \in \mathbb{Z}^n} \varphi(\xi - k)| \geq C > 0$ for all $\xi \in \mathbb{R}^n$. Then it is well known that

(2.1)
$$||f||_{M^{p,q}} \sim \left(\sum_{k \in \mathbb{Z}^n} ||\varphi(D-k)f||_{L^p}^q\right)^{1/q},$$

where $\varphi(D-k)f = \mathcal{F}^{-1}[\varphi(\cdot-k)\widehat{f}]$ (see, for example, [8]). The following two lemmas will be used in the sequel.

Lemma 2.1 ([9, Proposition, 1.3.2],[10, Lemma 3.1]). Let $1 \le p \le q \le \infty$ and $\Omega \subset \mathbb{R}^n$ be a compact set with diam $\Omega < R$. Then there exists a constant C > 0

such that $||f||_{L^q} \leq C||f||_{L^p}$ for all $f \in \mathcal{S}(\mathbb{R}^n)$ with $\operatorname{supp} \widehat{f} \subset \Omega$, where C depends only on p, q, n and R. In particular,

 $\|\varphi(D-k)f\|_{L^q} \le C \|\varphi(D-k)f\|_{L^p} \quad \text{for all } f \in \mathcal{S}(\mathbb{R}^n) \text{ and } k \in \mathbb{Z}^n,$

where φ is the Schwartz function with compact support.

Lemma 2.2 ([6, Chapter 4, Theorem 3]). Let $1 . If <math>m \in C^{[n/2]+1}(\mathbb{R}^n \setminus \{0\})$ satisfies

$$|\partial^{\gamma} m(\xi)| \le C_{\gamma} |\xi|^{-|\gamma|} \qquad for \ all \ |\gamma| \le [n/2] + 1,$$

then there exists a constant C > 0 such that

$$||m(D)f||_{L^p} \le C||f||_{L^p} \quad for \ all \ f \in \mathcal{S}(\mathbb{R}^n),$$

where C depends only on p, n and $C_{\gamma}, |\gamma| \leq [n/2] + 1$.

3. Sufficient condition for the boundedness of fractional integral operators

In this section, we prove the "if" part of Theorem 1.2. Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be such that

(3.1)
$$\varphi = 1$$
 on $[-1/2, 1/2]^n$, $\operatorname{supp} \varphi \subset [-3/4, 3/4]^n$, $\left| \sum_{k \in \mathbb{Z}^n} \varphi(\xi - k) \right| \ge C > 0$

for all $\xi \in \mathbb{R}^n$.

Lemma 3.1. Let $1 , <math>\alpha \in \mathbb{R}$ and

(3.2)
$$m_k^{\alpha}(\xi) = |k|^{\alpha} |\xi|^{-\alpha} \varphi(\xi - k),$$

where $k \in \mathbb{Z}^n \setminus \{0\}$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$ is as in (3.1). Then $\sup_{k \neq 0} \|m_k^{\alpha}(D)\|_{\mathcal{L}(L^p)} < \infty$.

Proof. Our proof is similar to that of [4, Theorem 20]. Since $||m_k^{\alpha}(D)||_{\mathcal{L}(L^p)} = ||m_k^{\alpha}(D+k)||_{\mathcal{L}(L^p)}$, by Lemma 2.2, it is enough to show that there exists a constant C > 0 such that

(3.3)
$$\sup_{\xi \neq 0} |\xi|^{|\gamma|} |\partial^{\gamma} m_k^{\alpha}(\xi+k)| = \sup_{\xi \neq 0} |\xi|^{|\gamma|} |\partial^{\gamma} \left(|k|^{\alpha} |\xi+k|^{-\alpha} \varphi(\xi) \right) | \le C$$

for all $k \neq 0$ and $|\gamma| \leq [n/2] + 1$. Since $\operatorname{supp} \varphi \subset [-3/4, 3/4]^n$, we see that $|\xi + k| \geq 1/4$ on $\operatorname{supp} \varphi$ for all $k \neq 0$. Hence, $|k| \sim |\xi + k|$ on $\operatorname{supp} \varphi$ for all $k \neq 0$. This gives (3.3).

We are now ready to prove the "if" part of Theorem 1.2.

Proof of "if" part of Theorem 1.2. Let $0 < \beta \leq \alpha < n, 1 < p_1, p_2, q_1, q_2 < \infty$, $1/p_2 \leq 1/p_1 - \alpha/n$ and $1/q_2 < 1/q_1 + \beta/n$. We first consider the case $1/p_2 = 1/p_1 - \alpha/n$ and $q_1 > q_2$. In view of (2.1),

(3.4)
$$\|I_{\alpha,\beta}f\|_{M^{p_{2},q_{2}}} \leq C \left(\sum_{k \in \mathbb{Z}^{n}} \|\varphi(D-k)(I_{\alpha,\beta}f)\|_{L^{p_{2}}}^{q_{2}}\right)^{1/q_{2}}$$
$$\leq \|\varphi(D)(I_{\alpha,\beta}f)\|_{L^{p_{2}}} + \left(\sum_{k \neq 0} \|\varphi(D-k)(I_{\alpha,\beta}f)\|_{L^{p_{2}}}^{q_{2}}\right)^{1/q_{2}}$$

where φ is as in (3.1). Since $0 < 1/p_2 + \beta/n \le 1/p_2 + \alpha/n = 1/p_1 < 1$, we can take $1 < \tilde{p_1} < \infty$ such that $1/p_2 = 1/\tilde{p_1} - \beta/n$. Note that $p_1 \le \tilde{p_1}$. By the Hardy-Littlewood-Sobolev theorem and Lemma 2.1, we have

$$\begin{aligned} \|\varphi(D)(I_{\alpha,\beta}f)\|_{L^{p_{2}}} &\leq \|\varphi(D)(I_{\alpha}f)\|_{L^{p_{2}}} + \|\varphi(D)(I_{\beta}f)\|_{L^{p_{2}}} \\ &= \|I_{\alpha}(\varphi(D)f)\|_{L^{p_{2}}} + \|I_{\beta}(\varphi(D)f)\|_{L^{p_{2}}} \\ &\leq C_{\alpha}\|\varphi(D)f\|_{L^{p_{1}}} + C_{\beta}\|\varphi(D)f\|_{L^{p_{1}}} \leq C\|\varphi(D)f\|_{L^{p_{1}}} \\ &\leq C\left(\sum_{k\in\mathbb{Z}^{n}}\|\varphi(D-k)f\|_{L^{p_{1}}}^{q_{1}}\right)^{1/q_{1}} \leq C\|f\|_{M^{p_{1},q_{1}}} \end{aligned}$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$. Assume that $\psi \in \mathcal{S}(\mathbb{R}^n)$ satisfies $\psi = 1$ on $\operatorname{supp} \varphi$, $\operatorname{supp} \psi$ is compact and $\left|\sum_{k \in \mathbb{R}^n} \psi(\xi - k)\right| \ge C > 0$ for all $\xi \in \mathbb{R}^n$. Then,

$$\begin{split} \varphi(D-k)(I_{\alpha,\beta}f) &= I_{\alpha,\beta}(\varphi(D-k)f) = I_{\alpha,\beta}(\varphi(D-k)\psi(D-k)f) \\ &= [I_{\alpha}\,\varphi(D-k)](\psi(D-k)f) + [I_{\beta}\,\varphi(D-k)](\psi(D-k)f) \\ &= |k|^{-\alpha}m_{k}^{\alpha}(D)(\psi(D-k)f) + |k|^{-\beta}m_{k}^{\beta}(D)(\psi(D-k)f) \end{split}$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$ and $k \neq 0$, where m_k^{α} and m_k^{β} are defined by (3.2). Hence, by Lemmas 2.1 and 3.1, we have

(3.6)
$$\begin{aligned} \|\varphi(D-k)(I_{\alpha,\beta}f)\|_{L^{p_2}} &\leq C(|k|^{-\alpha}+|k|^{-\beta})\|\psi(D-k)f\|_{L^{p_2}} \\ &\leq C|k|^{-\beta}\|\psi(D-k)f\|_{L^{p_2}} \leq C|k|^{-\beta}\|\psi(D-k)f\|_{L^{p_1}} \end{aligned}$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$ and $k \neq 0$. Set $a(k) = |k|^{-\beta}$ if $k \neq 0$, and a(0) = 1. Note that $\{a(k)\} \in \ell^r(\mathbb{Z}^n)$, where $1/r = 1/q_2 - 1/q_1$. Therefore, by (3.6) and Hörder's inequality, we see that

(3.7)
$$\left(\sum_{k \neq 0} \|\varphi(D-k)(I_{\alpha,\beta}f)\|_{L^{p_2}}^{q_2} \right)^{1/q_2} \leq \left\{ \sum_{k \in \mathbb{Z}^n} (a(k)\|\psi(D-k)f\|_{L^{p_1}})^{q_2} \right\}^{1/q_2} \\ \leq \|\{a(k)\}\|_{\ell^r} \left(\sum_{k \in \mathbb{Z}^n} \|\psi(D-k)f\|_{L^{p_1}}^{q_1} \right)^{1/q_1} \leq C \|f\|_{M^{p_1,q_1}}$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$. Combining (3.4), (3.5) and (3.7), we obtain the desired result with $1/p_2 = 1/p_1 - \alpha/n$ and $q_1 > q_2$.

We next consider the case $1/p_2 = 1/p_1 - \alpha/n$ and $q_1 \leq q_2$. Since $\beta/n > 0$, we can take $1 < \tilde{q}_2 < \infty$ such that $q_1 > \tilde{q}_2$ and $1/\tilde{q}_2 < 1/q_1 + \beta/n$. Note that $q_2 > \tilde{q}_2$. Then, by the preceding case, we see that $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,\tilde{q}_2}(\mathbb{R}^n)$. This implies that $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$, since $M^{p_2,\tilde{q}_2}(\mathbb{R}^n) \hookrightarrow M^{p_2,q_2}(\mathbb{R}^n)$.

Finally, we consider the case $1/p_2 < 1/p_1 - \alpha/n$. Since $0 < 1/p_1 - \alpha/n < 1$, we can take $1 < \widetilde{p}_2 < \infty$ such that $1/\widetilde{p}_2 = 1/p_1 - \alpha/n$. Note that $p_2 > \widetilde{p}_2$. Then, by the preceding cases, we see that $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{\widetilde{p}_2,q_2}(\mathbb{R}^n)$. This implies that $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$, since $M^{\widetilde{p}_2,q_2}(\mathbb{R}^n) \hookrightarrow M^{p_2,q_2}(\mathbb{R}^n)$. The proof is complete.

4. Necessary condition for the boundedness of fractional integral operators

Before proving the "only if" part of Theorem 1.2, we give the following remark:

Remark 4.1. Let $p_1 \geq p_2$ and $q_1 \geq q_2$. In Introduction, we have stated that I_{α} is not bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$. In fact, since $M^{p_2,q_2}(\mathbb{R}^n) \hookrightarrow M^{p_1,q_1}(\mathbb{R}^n)$, if I_{α} is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$ then I_{α} is bounded on $M^{p_1,q_1}(\mathbb{R}^n)$. Then, by duality, I_{α} is also bounded on $M^{p'_1,q'_1}(\mathbb{R}^n)$. By interpolation, the boundedness on $M^{p_1,q_1}(\mathbb{R}^n)$ and on $M^{p'_1,q'_1}(\mathbb{R}^n)$ implies that I_{α} is bounded on $M^{2,2}(\mathbb{R}^n)$. However, since I_{α} is not bounded on $L^2(\mathbb{R}^n)$ ([6, p.119]), this is a contradiction. Hence, I_{α} is not bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$.

In the rest of the paper, we prove the "only if" part of Theorem 1.2.

Lemma 4.2. Let $0 < \beta \leq \alpha < n$ and $1 < p_1, p_2, q_1, q_2 < \infty$. If $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$, then $1/p_2 \leq 1/p_1 - \alpha/n$.

Proof. We only consider the case $\alpha > \beta$, since the proof in the case $\alpha = \beta$ is simpler. Let $\psi \in \mathcal{S}(\mathbb{R}^n) \setminus \{0\}$ be such that $\operatorname{supp} \psi \subset [-1,1]^n$. Set $\Psi = \mathcal{F}^{-1}\psi$ and $\Psi_{\lambda}(x) = \Psi(\lambda x)$, where $\lambda > 0$. Then

(4.1)
$$\varphi(D-k)\Psi_{\lambda} = \begin{cases} \Psi_{\lambda} & \text{if } k = 0, \\ 0 & \text{if } k \neq 0 \end{cases}$$

for all $0 < \lambda < 1/4$, where φ is as in (3.1). Similarly,

(4.2)
$$\varphi(D-k)(I_{\alpha,\beta}\Psi_{\lambda}) = I_{\alpha,\beta}(\varphi(D-k)\Psi_{\lambda}) = \begin{cases} I_{\alpha}\Psi_{\lambda} + I_{\beta}\Psi_{\lambda} & \text{if } k = 0, \\ 0 & \text{if } k \neq 0 \end{cases}$$

for all $0 < \lambda < 1/4$. By (2.1) and (4.1), we see that

(4.3)
$$\|\Psi_{\lambda}\|_{M^{p_1,q_1}} \le C \left(\sum_{k \in \mathbb{Z}^n} \|\varphi(D-k)\Psi_{\lambda}\|_{L^{p_1}}^{q_1} \right)^{1/q_1} = C \|\Psi_{\lambda}\|_{L^{p_1}} = C\lambda^{-n/p_1}$$

for all $0 < \lambda < 1/4$. Since $\alpha > \beta$, we can take $0 < \lambda_0 < 1/4$ such that $\|I_{\alpha}\Psi\|_{L^{p_2}\lambda_0^{-\alpha}} > 2\|I_{\beta}\Psi\|_{L^{p_2}\lambda_0^{-\beta}}$. Note that $\|I_{\alpha}\Psi\|_{L^{p_2}\lambda^{-\alpha}} > 2\|I_{\beta}\Psi\|_{L^{p_2}\lambda^{-\beta}}$ for all $0 < \lambda \leq \lambda_0$. Since $I_{\alpha}\Psi_{\lambda}(x) = \lambda^{-\alpha}(I_{\alpha}\Psi)(\lambda x)$, by (2.1) and (4.2), we see that

(4.4)
$$\|I_{\alpha,\beta}\Psi_{\lambda}\|_{M^{p_{2},q_{2}}} \geq C \left(\sum_{k\in\mathbb{Z}^{n}} \|\varphi(D-k)(I_{\alpha,\beta}\Psi_{\lambda})\|_{L^{p_{2}}}^{q_{2}}\right)^{1/q_{2}}$$
$$= C\|I_{\alpha}\Psi_{\lambda}+I_{\beta}\Psi\|_{L^{p_{2}}} \geq C \left(\|I_{\alpha}\Psi_{\lambda}\|_{L^{p_{2}}}-\|I_{\beta}\Psi_{\lambda}\|_{L^{p_{2}}}\right)$$
$$= C\lambda^{-n/p_{2}} \left(\lambda^{-\alpha}\|I_{\alpha}\Psi\|_{L^{p_{2}}}-\lambda^{-\beta}\|I_{\beta}\Psi\|_{L^{p_{2}}}\right)$$
$$\geq C\lambda^{-n/p_{2}} \left(\lambda^{-\alpha}\|I_{\alpha}\Psi\|_{L^{p_{2}}}/2\right) = C\lambda^{-n/p_{2}-\alpha}$$

for all $0 < \lambda < \lambda_0$. Hence, by (4.3) and (4.4), if $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$, then

$$C_1 \lambda^{-n/p_2 - \alpha} \le \|I_{\alpha,\beta} \Psi_\lambda\|_{M^{p_2,q_2}} \le \|I_{\alpha,\beta}\|_{\text{op}} \|\Psi_\lambda\|_{M^{p_1,q_1}} \le C_2 \lambda^{-n/p_1}$$

for all $0 < \lambda < \lambda_0$. This implies $-n/p_2 - \alpha \ge -n/p_1$, that is, $1/p_2 \le 1/p_1 - \alpha/n$. The proof is complete.

Remark 4.3. Let 0 and N be a sufficiently large number. Then

$$\begin{cases} |x|^{-n/p} (\log |x|)^{-\alpha/p} \chi_{\{|x|>N\}} \in L^p(\mathbb{R}^n), & \text{if } \alpha > 1, \\ |x|^{-n/p} (\log |x|)^{-\alpha/p} \chi_{\{|x|>N\}} \notin L^p(\mathbb{R}^n), & \text{if } \alpha \le 1. \end{cases}$$

In fact, by a change of variables,

$$\int_{|x|>N} |x|^{-n} (\log|x|)^{-\alpha} dx = C_n \int_N^\infty r^{-n} (\log r)^{-\alpha} r^{n-1} dr = C_n \int_{\log N}^\infty t^{-\alpha} dt$$

Lemma 4.4. Let $0 < \beta \le \alpha < n$ and $1 < p_1, p_2, q_1, q_2 < \infty$. If $1/q_2 = 1/q_1 + \beta/n$, then $I_{\alpha,\beta}$ is not bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$.

Proof. We only consider the case $\alpha > \beta$, since the proof in the case $\alpha = \beta$ is simpler. Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be as in (3.1). Set $C_{\alpha} = \sup_{k \neq 0} \|m_k^{\alpha}(D)\|_{\mathcal{L}(L^{p_2})}$ and $C_{\beta} = \sup_{k \neq 0} \|m_k^{-\beta}(D)\|_{\mathcal{L}(L^{p_2})}$, where m_k^{α} and $m_k^{-\beta}(D)$ are defined by (3.2) with φ . Since $\alpha > \beta$, we can take a sufficiently large natural number N such that $C_{\beta}^{-1}N^{-\beta} > 2C_{\alpha}N^{-\alpha}$. Then

(4.5)
$$C_{\beta}^{-1}|k|^{-\beta} > 2C_{\alpha}|k|^{-\alpha} \quad \text{for all } |k| \ge N$$

Since $1/q_2 > 1/q_1$, we can take $\epsilon > 0$ such that $(1 + \epsilon)q_2/q_1 < 1$. For these ϵ and N, set

$$f(x) = \sum_{|\ell| > N} |\ell|^{-n/q_1} (\log |\ell|)^{-(1+\epsilon)/q_1} e^{i\ell \cdot x} \Psi(x),$$

where $\psi \in \mathcal{S}(\mathbb{R}^n) \setminus \{0\}$ satisfies $\operatorname{supp} \psi \subset [-1/4, 1/4]^n$ and $\Psi = \mathcal{F}^{-1}\psi$. Since $\varphi = 1$ on $[-1/2, 1/2]^n$ and $\operatorname{supp} \varphi \subset [-3/4, 3/4]^n$,

(4.6)
$$\varphi(D-k)f(x) = \begin{cases} |k|^{-n/q_1} (\log |k|)^{-(1+\epsilon)/q_1} e^{ik \cdot x} \Psi(x) & \text{if } |k| > N, \\ 0 & \text{if } |k| \le N. \end{cases}$$

Similarly,

(4.7)
$$\varphi(D-k)I_{\alpha,\beta}f(x) = \begin{cases} |k|^{-n/q_1} (\log|k|)^{-(1+\epsilon)/q_1} I_{\alpha,\beta}(M_k\Psi)(x) & \text{if } |k| > N, \\ 0 & \text{if } |k| \le N, \end{cases}$$

where $M_k \Psi(x) = e^{ik \cdot x} \Psi(x)$. By (4.6), we have

$$\|\varphi(D-k)f\|_{L^{p_1}} = \begin{cases} \|\Psi\|_{L^{p_1}}|k|^{-n/q_1} (\log |k|)^{-(1+\epsilon)/q_1} & \text{if } |k| > N, \\ 0 & \text{if } |k| \le N. \end{cases}$$

Then, by Remark 4.3, we see that $f \in M^{p_1,q_1}(\mathbb{R}^n)$. On the other hand, since

$$I_{\alpha}(M_{k}\Psi) = \mathcal{F}^{-1} \left[|\xi|^{-\alpha} \psi(\xi - k) \right]$$

= $|k|^{-\alpha} \mathcal{F}^{-1} \left[\left(|k|^{\alpha} |\xi|^{-\alpha} \varphi(\xi - k) \right) \psi(\xi - k) \right] = |k|^{-\alpha} m_{k}^{\alpha}(D)(M_{k}\Psi)$

and

$$\begin{aligned} |k|^{-\beta}M_k\Psi &= \mathcal{F}^{-1}\left[|k|^{-\beta}\psi(\xi-k)\right] \\ &= \mathcal{F}^{-1}\left[\left(|k|^{-\beta}|\xi|^{\beta}\varphi(\xi-k)\right)\left(|\xi|^{-\beta}\psi(\xi-k)\right)\right] = m_k^{-\beta}(D)I_{\beta}(M_k\Psi), \end{aligned}$$

by Lemma 3.1, we have

$$\|I_{\alpha}(M_{k}\Psi)\|_{L^{p_{2}}} \leq |k|^{-\alpha} \|m_{k}^{\alpha}(D)\|_{\mathcal{L}(L^{p_{2}})} \|M_{k}\Psi\|_{L^{p_{2}}} \leq C_{\alpha}|k|^{-\alpha} \|M_{k}\Psi\|_{L^{p_{2}}}$$

and

$$\|M_k\Psi\|_{L^{p_2}} \le |k|^{\beta} \|m_k^{-\beta}(D)\|_{\mathcal{L}(L^{p_2})} \|I_{\beta}(M_k\Psi)\|_{L^{p_2}} \le C_{\beta} |k|^{\beta} \|I_{\beta}(M_k\Psi)\|_{L^{p_2}}$$

for all |k| > N. Hence, by (4.5),

(4.8)
$$\|I_{\alpha,\beta}(M_k\Psi)\|_{L^{p_2}} \ge \|I_{\beta}(M_k\Psi)\|_{L^{p_2}} - \|I_{\alpha}(M_k\Psi)\|_{L^{p_2}} \\ \ge \left(C_{\beta}^{-1}|k|^{-\beta} - C_{\alpha}|k|^{-\alpha}\right) \|M_k\Psi\|_{L^{p_2}} \ge \left(C_{\beta}^{-1}|k|^{-\beta}/2\right) \|\Psi\|_{L^{p_2}} = C|k|^{-\beta}$$

for all |k| > N. Then, it follows from (4.7) and (4.8) that

$$\begin{aligned} |\varphi(D-k)(I_{\alpha,\beta}f)||_{L^{p_2}} &\geq C|k|^{-n/q_1-\beta} \left(\log|k|\right)^{-(1+\epsilon)/q_1} \\ &= C|k|^{-n/q_2} \left(\log|k|\right)^{-\{(1+\epsilon)q_2/q_1\}/q_1} \end{aligned}$$

for all |k| > N. Also, $\|\varphi(D-k)(I_{\alpha,\beta}f)\|_{L^{p_2}} = 0$ if $|k| \le N$. Since $(1+\epsilon)q_2/q_1 < 1$, by Remark 4.3, we have $\{|k|^{-n/q_2}(\log |k|)^{-\{(1+\epsilon)q_2/q_1\}/q_2}\}_{|k|>N} \notin \ell^{q_2}(\mathbb{Z}^n)$. This implies $(\sum_{k\in\mathbb{Z}^n} \|\varphi(D-k)(I_{\alpha,\beta}f)\|_{L^{p_2}}^{q_2})^{1/q_2} = \infty$, that is, $I_{\alpha,\beta}f \notin M^{p_2,q_2}(\mathbb{R}^n)$. Therefore, $I_{\alpha,\beta}$ is not bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$. The proof is complete.

We are now ready to prove the "only if" part of Theorem 1.2.

Proof of "only if" part of Theorem 1.2. Let $0 < \beta \leq \alpha < n$ and $1 < p_1, p_2, q_1, q_2 < \infty$. Assume that $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,q_2}(\mathbb{R}^n)$. Then, by Lemma 4.2, we see that $1/p_2 \leq 1/p_1 - \alpha/n$. On the other hand, if $1/q_2 \geq 1/q_1 + \beta/n$ then $I_{\alpha,\beta}$ is bounded from $M^{p_1,q_1}(\mathbb{R}^n)$ to $M^{p_2,\tilde{q}_2}(\mathbb{R}^n)$, since $M^{p_2,q_2}(\mathbb{R}^n) \hookrightarrow M^{p_2,\tilde{q}_2}(\mathbb{R}^n)$, where $1/\tilde{q}_2 = 1/q_1 + \beta/n$. However, this contradicts Lemma 4.4. Hence, $1/q_2 < 1/q_1 + \beta/n$. The proof is complete.

References

- E. Cordero and F. Nicola, Strichartz estimate in Wiener amalgam spaces for the Schrödinger equation, Math. Nachr., to appear.
- [2] M. Cowling, S. Meda and R. Pasquale, Riesz potentials and amalgams, Ann Inst. Fourier (Grenoble) 49 (1999), 1345-1367.
- [3] H.G. Feichtinger, Modulation spaces on locally compact abelian groups, in: M. Krishna, R. Radha and S. Thangavelu (Eds.), Wavelets and their Applications, Chennai, India, Allied Publishers, New Delhi, 2003, pp. 99-140, Updated version of a technical report, University of Vienna, 1983.
- [4] H.G. Feichtinger and G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal. 21 (2006), 349-359.
- [5] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
- [6] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
- [7] N. Tomita, Fractional integrals on modulation spaces, Math. Nachr. 279 (2006), 672-680.
- [8] H. Triebel, Modulation spaces on the Euclidean n-spaces, Z. Anal. Anwendungen 2 (1983), 443-457.
- [9] H. Triebel, Theory of Function spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983.
- [10] B. Wang, L. Zhao and B. Guo, Isometric decomposition operators, function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear equation, J. Funct. Anal. 233 (2006), 1-39.

MITSURU SUGIMOTO, DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: sugimoto@math.sci.osaka-u.ac.jp

NAOHITO TOMITA, DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: tomita@gaia.math.wani.osaka-u.ac.jp