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A REMARK ON FRACTIONAL INTEGRALS ON

MODULATION SPACES

MITSURU SUGIMOTO AND NAOHITO TOMITA

1. introduction

The fractional integral operator Iα is defined by

Iαf(x) =
1

γ(α)

∫

Rn

f(y)

|x− y|n−α
dy, γ(α) =

πn/22αΓ(α/2)

Γ((n− α)/2)
,

where 0 < α < n. The well known Hardy-Littlewood-Sobolev theorem says that Iα
is bounded from Lp(Rn) to Lq(Rn) when 1 < p < q <∞ and 1/q = 1/p−α/n (see
[6, Chapter 5, Theorem 1]). We can regard this theorem as information on how
the operation of Iα changes the decay property of functions. On the other hand,
the operator Iα can be understood as a differential operator of (−α)-th order since

Îαf = |ξ|−αf̂ ([6, Chapter 5, Lemma 1]), and we can expect an increase in the
smoothness by acting it to functions.

The purpose of this paper is to investigate the effect of Iα on both decay and
smoothness properties. To study these two properties simultaneously, we consider
the operation of Iα on the modulation spaces Mp,q, which were introduced by
Feichtinger [3] (see also Triebel [8]). We say that f belongs to Mp,q if its short
short-time Fourier transform

Vϕf(x, ξ) = e−ix·ξ[f ∗ (Mξϕ)](x) = (2π)−n/2[f̂ ∗ (M−xϕ)](ξ)

is in Lp (resp. Lq) with respect to x (resp. ξ), where ϕ is the Gauss function

ϕ(t) = e−|t|2/2. Although the exact definition will be given in the next section, we
can see here that the decay of Vϕf(x, ξ) with respect to x is determined by that of

f , and the one with respect to ξ is determined by that of f̂ , that is, the smoothness
of f . Hence, the first index p of Mp,q measures the decay of f , and the second
index q of Mp,q measures the smoothness of f . To understand it, we remark that

C1(1 + |t|)a ≤ f(t) ≤ C2(1 + |t|)b implies C̃1(1 + |t|)a ≤ f ∗ ϕ(t) ≤ C̃2(1 + |t|)b,
where a, b are arbitrary real numbers, since the Gauss function is rapidly decreasing.
These explanations can be found in Gröchenig [5, Chapter 11].

Since the fractional integral operator Iα is a bounded operator from Lp(Rn) to
Lq(Rn) of convolution type, it is easy to see that Iα is bounded from Mp1,q1(Rn)
to Mp2,q2(Rn) when

(1.1) 1/p2 = 1/p1 − α/n and q1 = q2

([7, Theorem 3.2]). This boundedness says that the smoothness does not change
but the decay of Iαf is worse than that of f since Mp1,q1(Rn) →֒ Mp2,q2(Rn) in
this case (see Section 2 for this embedding). However, as we have discussed in the
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above, we can expect an increase in the smoothness. Furthermore, since Iα is not
bounded on L2(Rn) and M2,2(Rn) = L2(Rn), we can easily prove that Iα is not
bounded fromMp1,q1(Rn) toMp2,q2(Rn) when p1 ≥ p2 and q1 ≥ q2 by using duality
and interpolation (see Remark 4.1). This means that both decay and smoothness
do not increase, simultaneously.

On the other hand, Tomita [7] essentially proved that Iα is bounded from
Mp1,q1(Rn) to Mp2,q2(Rn) when

(1.2) 1/p2 < 1/p1 − α/n and 1/q2 < 1/q1 + α/n.

This boundedness says that the decay of Iαf is worse than that of f by the order
α/n, but the smoothness of Iαf is better than that of f up to the order α/n.
This result seems to be reasonable but there still remain the problems whether
the order α/n is the best possible one or not and what about the critical cases
1/p2 = 1/p1 − α/n or 1/q2 = 1/q1 + α/n. The following theorem is the complete
answers to these questions:

Theorem 1.1. Let 0 < α < n and 1 < p1, p2, q1, q2 < ∞. Then the fractional

integral operator Iα is bounded from Mp1,q1(Rn) to Mp2,q2(Rn) if and only if

1/p2 ≤ 1/p1 − α/n and 1/q2 < 1/q1 + α/n.

Theorem 1.1 says that the boundedness of Iα holds even if 1/p2 = 1/p1 − α/n,
1/q2 < 1/q1 + α/n and q1 > q2. This is a strictly improvement of (1.1) and (1.2).
However, the boundedness does not hold if the second index is critical, that is,
1/q2 = 1/q1 + α/n. We remark that [7] did not treat the necessary condition for
the boundedness.

In order to consider the detailed behavior of the first and second indices, we
introduce the more general operator Iα,β defined by Iα,β = Iα + Iβ , that is,

Iα,βf = F−1
[(
|ξ|−α + |ξ|−β

)
f̂
]
,

where 0 < β ≤ α < n. We note that |ξ|−α + |ξ|−β ∼ |ξ|−α in the case |ξ| ≤ 1, and
|ξ|−α + |ξ|−β ∼ |ξ|−β in the case |ξ| ≥ 1. Since Iα,α = 2Iα, we have Theorem 1.1
as a corollary of the following main result in this paper:

Theorem 1.2. Let 0 < β ≤ α < n and 1 < p1, p2, q1, q2 < ∞. Then Iα,β is

bounded from Mp1,q1(Rn) to Mp2,q2(Rn) if and only if

1/p2 ≤ 1/p1 − α/n and 1/q2 < 1/q1 + β/n.

Finally we mention some related results. Cowling, Meda and Pasquale [2] proved
that Iα,β is bounded from (Lp1 , ℓq1) to (Lp2 , ℓq2) when

1/p2 ≥ 1/p1 − β/n and 1/q2 ≤ 1/q1 − α/n,

where (Lpi , ℓqi), i = 1, 2, are amalgam spaces defined by

‖f‖(Lp,ℓq) =

(∑

k∈Zn

‖ϕ(· − k)f‖qLp

)1/q

with an appropriate (see (3.1)) cut-off function ϕ. The result between Iα,β and
amalgam spaces of Lorentz type can be also found in Cordero and Nicola [1]. The
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definition of amalgam spaces is based on a similar idea to that of modulation spaces
since we have the equivalence

‖f‖Mp,q ∼

(∑

k∈Zn

‖F−1[ϕ(· − k)f̂ ]‖qLp

)1/q

.

Roughly speaking, amalgam spaces are defined by a decomposition of the function

f while the modulation spaces by the same decomposition of f̂ . Theorem 1.2 also
shows a difference between the modulation spaces and amalgam spaces, because
the boundedness of Iα,β on the modulation spaces does not hold if the second index
is critical.

2. Preliminaries

Let S(Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing smooth
functions and tempered distributions, respectively. We define the Fourier transform
Ff and the inverse Fourier transform F−1f of f ∈ S(Rn) by

Ff(ξ) = f̂(ξ) =

∫

Rn

e−iξ·x f(x) dx and F−1f(x) =
1

(2π)n

∫

Rn

eix·ξ f(ξ) dξ.

We introduce the modulation spaces based on Gröchenig [5]. Fix a function ϕ ∈
S(Rn) \ {0} (called the window function). Then the short-time Fourier transform
Vϕf of f ∈ S ′(Rn) with respect to ϕ is defined by

Vϕf(x, ξ) = (f,MξTxϕ) for x, ξ ∈ R
n,

where Mξϕ(t) = eiξ·tϕ(t), Txϕ(t) = ϕ(t−x) and (·, ·) denotes the inner product on
L2(Rn). We note that, for f ∈ S ′(Rn), Vϕf is continuous on R

2n and |Vϕf(x, ξ)| ≤
C(1+ |x|+ |ξ|)N for some constants C,N ≥ 0 ([5, Theorem 11.2.3]). Let 1 ≤ p, q ≤
∞. Then the modulation space Mp,q(Rn) consists of all f ∈ S ′(Rn) such that

‖f‖Mp,q = ‖Vϕf‖Lp,q =

{∫

Rn

(∫

Rn

|Vϕf(x, ξ)|
p dx

)q/p

dξ

}1/q

<∞,

with usual modification when p = ∞ or q = ∞. We note that M2,2(Rn) =
L2(Rn) ([5, Proposition 11.3.1]), Mp,q(Rn) is a Banach space ([5, Proposition
11.3.5]), S(Rn) is dense in Mp,q(Rn) if 1 ≤ p, q < ∞ ([5, Proposition 11.3.4]), and
Mp1,q1(Rn) →֒ Mp2,q2(Rn) if p1 ≤ p2 and q1 ≤ q2 ([5, Theorem 12.2.2]). The defini-
tion of Mp,q(Rn) is independent of the choice of the window function ϕ ∈ S(Rn) \
{0}, that is, different window functions yield equivalent norms ([5, Proposition
11.3.2]). Let ϕ ∈ S(Rn) be such that suppϕ is compact and

∣∣∑
k∈Zn ϕ(ξ − k)

∣∣ ≥
C > 0 for all ξ ∈ R

n. Then it is well known that

(2.1) ‖f‖Mp,q ∼

(∑

k∈Zn

‖ϕ(D − k)f‖qLp

)1/q

,

where ϕ(D−k)f = F−1[ϕ(·−k)f̂ ] (see, for example, [8]). The following two lemmas
will be used in the sequel.

Lemma 2.1 ([9, Proposition, 1.3.2],[10, Lemma 3.1]). Let 1 ≤ p ≤ q ≤ ∞ and

Ω ⊂ R
n be a compact set with diamΩ < R. Then there exists a constant C > 0
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such that ‖f‖Lq ≤ C‖f‖Lp for all f ∈ S(Rn) with supp f̂ ⊂ Ω, where C depends

only on p, q, n and R. In particular,

‖ϕ(D − k)f‖Lq ≤ C‖ϕ(D − k)f‖Lp for all f ∈ S(Rn) and k ∈ Z
n,

where ϕ is the Schwartz function with compact support.

Lemma 2.2 ([6, Chapter 4, Theorem 3]). Let 1 < p <∞. Ifm ∈ C [n/2]+1(Rn\{0})
satisfies

|∂γm(ξ)| ≤ Cγ |ξ|
−|γ| for all |γ| ≤ [n/2] + 1,

then there exists a constant C > 0 such that

‖m(D)f‖Lp ≤ C‖f‖Lp for all f ∈ S(Rn),

where C depends only on p, n and Cγ , |γ| ≤ [n/2] + 1.

3. Sufficient condition for the boundedness of fractional integral

operators

In this section, we prove the “if” part of Theorem 1.2. Let ϕ ∈ S(Rn) be such
that

(3.1) ϕ = 1 on [−1/2, 1/2]n, suppϕ ⊂ [−3/4, 3/4]n,

∣∣∣∣∣
∑

k∈Zn

ϕ(ξ − k)

∣∣∣∣∣ ≥ C > 0

for all ξ ∈ R
n.

Lemma 3.1. Let 1 < p <∞, α ∈ R and

(3.2) mα
k (ξ) = |k|α|ξ|−αϕ(ξ − k),

where k ∈ Z
n \{0} and ϕ ∈ S(Rn) is as in (3.1). Then supk 6=0 ‖m

α
k (D)‖L(Lp) <∞.

Proof. Our proof is similar to that of [4, Theorem 20]. Since ‖mα
k (D)‖L(Lp) =

‖mα
k (D+k)‖L(Lp), by Lemma 2.2, it is enough to show that there exists a constant

C > 0 such that

(3.3) sup
ξ 6=0

|ξ||γ||∂γmα
k (ξ + k)| = sup

ξ 6=0
|ξ||γ||∂γ

(
|k|α|ξ + k|−αϕ(ξ)

)
| ≤ C

for all k 6= 0 and |γ| ≤ [n/2] + 1. Since suppϕ ⊂ [−3/4, 3/4]n, we see that
|ξ + k| ≥ 1/4 on suppϕ for all k 6= 0. Hence, |k| ∼ |ξ + k| on suppϕ for all k 6= 0.
This gives (3.3). �

We are now ready to prove the “if” part of Theorem 1.2.

Proof of “if” part of Theorem 1.2. Let 0 < β ≤ α < n, 1 < p1, p2, q1, q2 < ∞,
1/p2 ≤ 1/p1 − α/n and 1/q2 < 1/q1 + β/n. We first consider the case 1/p2 =
1/p1 − α/n and q1 > q2. In view of (2.1),

‖Iα,βf‖Mp2,q2 ≤ C

(∑

k∈Zn

‖ϕ(D − k)(Iα,βf)‖
q2
Lp2

)1/q2

≤ ‖ϕ(D)(Iα,βf)‖Lp2 +


∑

k 6=0

‖ϕ(D − k)(Iα,βf)‖
q2
Lp2




1/q2(3.4)
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where ϕ is as in (3.1). Since 0 < 1/p2 + β/n ≤ 1/p2 + α/n = 1/p1 < 1, we can
take 1 < p̃1 < ∞ such that 1/p2 = 1/p̃1 − β/n. Note that p1 ≤ p̃1. By the
Hardy-Littlewood-Sobolev theorem and Lemma 2.1, we have

‖ϕ(D)(Iα,βf)‖Lp2 ≤ ‖ϕ(D)(Iαf)‖Lp2 + ‖ϕ(D)(Iβf)‖Lp2

= ‖Iα(ϕ(D)f)‖Lp2 + ‖Iβ(ϕ(D)f)‖Lp2

≤ Cα‖ϕ(D)f‖Lp1 + Cβ‖ϕ(D)f‖Lp̃1 ≤ C‖ϕ(D)f‖Lp1

≤ C

(∑

k∈Zn

‖ϕ(D − k)f‖q1Lp1

)1/q1

≤ C‖f‖Mp1,q1

(3.5)

for all f ∈ S(Rn). Assume that ψ ∈ S(Rn) satisfies ψ = 1 on suppϕ, suppψ is
compact and

∣∣∑
k∈Zn ψ(ξ − k)

∣∣ ≥ C > 0 for all ξ ∈ R
n. Then,

ϕ(D − k)(Iα,βf) = Iα,β(ϕ(D − k)f) = Iα,β(ϕ(D − k)ψ(D − k)f)

= [Iα ϕ(D − k)](ψ(D − k)f) + [Iβ ϕ(D − k)](ψ(D − k)f)

= |k|−αmα
k (D)(ψ(D − k)f) + |k|−βmβ

k(D)(ψ(D − k)f)

for all f ∈ S(Rn) and k 6= 0, where mα
k and mβ

k are defined by (3.2). Hence, by
Lemmas 2.1 and 3.1, we have

‖ϕ(D − k)(Iα,βf)‖Lp2 ≤ C(|k|−α + |k|−β)‖ψ(D − k)f‖Lp2

≤ C|k|−β‖ψ(D − k)f‖Lp2 ≤ C|k|−β‖ψ(D − k)f‖Lp1

(3.6)

for all f ∈ S(Rn) and k 6= 0. Set a(k) = |k|−β if k 6= 0, and a(0) = 1. Note
that {a(k)} ∈ ℓr(Zn), where 1/r = 1/q2 − 1/q1. Therefore, by (3.6) and Hörder’s
inequality, we see that


∑

k 6=0

‖ϕ(D − k)(Iα,βf)‖
q2
Lp2




1/q2

≤

{∑

k∈Zn

(a(k)‖ψ(D − k)f‖Lp1 )
q2

}1/q2

≤ ‖{a(k)}‖ℓr

(∑

k∈Zn

‖ψ(D − k)f‖q1Lp1

)1/q1

≤ C‖f‖Mp1,q1

(3.7)

for all f ∈ S(Rn). Combining (3.4), (3.5) and (3.7), we obtain the desired result
with 1/p2 = 1/p1 − α/n and q1 > q2.

We next consider the case 1/p2 = 1/p1 − α/n and q1 ≤ q2. Since β/n > 0,
we can take 1 < q̃2 < ∞ such that q1 > q̃2 and 1/q̃2 < 1/q1 + β/n. Note that
q2 > q̃2. Then, by the preceding case, we see that Iα,β is bounded fromMp1,q1(Rn)

to Mp2, eq2(Rn). This implies that Iα,β is bounded from Mp1,q1(Rn) to Mp2,q2(Rn),

since Mp2, eq2(Rn) →֒Mp2,q2(Rn).
Finally, we consider the case 1/p2 < 1/p1 − α/n. Since 0 < 1/p1 − α/n < 1,

we can take 1 < p̃2 < ∞ such that 1/p̃2 = 1/p1 − α/n. Note that p2 > p̃2.
Then, by the preceding cases, we see that Iα,β is bounded from Mp1,q1(Rn) to

Mfp2,q2(Rn). This implies that Iα,β is bounded from Mp1,q1(Rn) to Mp2,q2(Rn),

since Mfp2,q2(Rn) →֒Mp2,q2(Rn). The proof is complete.

4. Necessary condition for the boundedness of fractional integral

operators

Before proving the “only if” part of Theorem 1.2, we give the following remark:
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Remark 4.1. Let p1 ≥ p2 and q1 ≥ q2. In Introduction, we have stated that
Iα is not bounded from Mp1,q1(Rn) to Mp2,q2(Rn). In fact, since Mp2,q2(Rn) →֒
Mp1,q1(Rn), if Iα is bounded fromMp1,q1(Rn) toMp2,q2(Rn) then Iα is bounded on

Mp1,q1(Rn). Then, by duality, Iα is also bounded onMp′

1
,q′

1(Rn). By interpolation,

the boundedness on Mp1,q1(Rn) and on Mp′

1
,q′

1(Rn) implies that Iα is bounded on
M2,2(Rn). However, since Iα is not bounded on L2(Rn) ([6, p.119]), this is a
contradiction. Hence, Iα is not bounded from Mp1,q1(Rn) to Mp2,q2(Rn).

In the rest of the paper, we prove the “only if” part of Theorem 1.2.

Lemma 4.2. Let 0 < β ≤ α < n and 1 < p1, p2, q1, q2 < ∞. If Iα,β is bounded

from Mp1,q1(Rn) to Mp2,q2(Rn), then 1/p2 ≤ 1/p1 − α/n.

Proof. We only consider the case α > β, since the proof in the case α = β is
simpler. Let ψ ∈ S(Rn) \ {0} be such that suppψ ⊂ [−1, 1]n. Set Ψ = F−1ψ and
Ψλ(x) = Ψ(λx), where λ > 0. Then

(4.1) ϕ(D − k)Ψλ =

{
Ψλ if k = 0,

0 if k 6= 0

for all 0 < λ < 1/4, where ϕ is as in (3.1). Similarly,

(4.2) ϕ(D − k)(Iα,βΨλ) = Iα,β(ϕ(D − k)Ψλ) =

{
IαΨλ + IβΨλ if k = 0,

0 if k 6= 0

for all 0 < λ < 1/4. By (2.1) and (4.1), we see that

(4.3) ‖Ψλ‖Mp1,q1 ≤ C

(∑

k∈Zn

‖ϕ(D − k)Ψλ‖
q1
Lp1

)1/q1

= C‖Ψλ‖Lp1 = Cλ−n/p1

for all 0 < λ < 1/4. Since α > β, we can take 0 < λ0 < 1/4 such that

‖IαΨ‖Lp2λ−α
0 > 2‖IβΨ‖Lp2λ

−β
0 . Note that ‖IαΨ‖Lp2λ−α > 2‖IβΨ‖Lp2λ−β for

all 0 < λ ≤ λ0. Since IαΨλ(x) = λ−α(IαΨ)(λx), by (2.1) and (4.2), we see that

‖Iα,βΨλ‖Mp2,q2 ≥ C

(∑

k∈Zn

‖ϕ(D − k)(Iα,βΨλ)‖
q2
Lp2

)1/q2

= C‖IαΨλ + IβΨ‖Lp2 ≥ C (‖IαΨλ‖Lp2 − ‖IβΨλ‖Lp2 )

= Cλ−n/p2

(
λ−α‖IαΨ‖Lp2 − λ−β‖IβΨ‖Lp2

)

≥ Cλ−n/p2

(
λ−α‖IαΨ‖Lp2/2

)
= Cλ−n/p2−α

(4.4)

for all 0 < λ < λ0. Hence, by (4.3) and (4.4), if Iα,β is bounded from Mp1,q1(Rn)
to Mp2,q2(Rn), then

C1λ
−n/p2−α ≤ ‖Iα,βΨλ‖Mp2,q2 ≤ ‖Iα,β‖op‖Ψλ‖Mp1,q1 ≤ C2λ

−n/p1

for all 0 < λ < λ0. This implies −n/p2 − α ≥ −n/p1, that is, 1/p2 ≤ 1/p1 − α/n.
The proof is complete. �

Remark 4.3. Let 0 < p <∞ and N be a sufficiently large number. Then
{
|x|−n/p(log |x|)−α/pχ{|x|>N} ∈ Lp(Rn), if α > 1,

|x|−n/p(log |x|)−α/pχ{|x|>N} 6∈ Lp(Rn), if α ≤ 1.
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In fact, by a change of variables,
∫

|x|>N

|x|−n (log |x|)−α dx = Cn

∫ ∞

N

r−n (log r)−α rn−1dr = Cn

∫ ∞

logN

t−α dt.

Lemma 4.4. Let 0 < β ≤ α < n and 1 < p1, p2, q1, q2 <∞. If 1/q2 = 1/q1 + β/n,
then Iα,β is not bounded from Mp1,q1(Rn) to Mp2,q2(Rn).

Proof. We only consider the case α > β, since the proof in the case α = β is
simpler. Let ϕ ∈ S(Rn) be as in (3.1). Set Cα = supk 6=0 ‖m

α
k (D)‖L(Lp2) and

Cβ = supk 6=0 ‖m
−β
k (D)‖L(Lp2), where m

α
k and m−β

k (D) are defined by (3.2) with
ϕ. Since α > β, we can take a sufficiently large natural number N such that
C−1

β N−β > 2CαN
−α. Then

(4.5) C−1
β |k|−β > 2Cα|k|

−α for all |k| ≥ N.

Since 1/q2 > 1/q1, we can take ǫ > 0 such that (1 + ǫ)q2/q1 < 1. For these ǫ and
N , set

f(x) =
∑

|ℓ|>N

|ℓ|−n/q1 (log |ℓ|)−(1+ǫ)/q1 eiℓ·xΨ(x),

where ψ ∈ S(Rn) \ {0} satisfies suppψ ⊂ [−1/4, 1/4]n and Ψ = F−1ψ. Since ϕ = 1
on [−1/2, 1/2]n and suppϕ ⊂ [−3/4, 3/4]n,

(4.6) ϕ(D − k)f(x) =

{
|k|−n/q1 (log |k|)−(1+ǫ)/q1 eik·x Ψ(x) if |k| > N,

0 if |k| ≤ N.

Similarly,

(4.7) ϕ(D − k)Iα,βf(x) =

{
|k|−n/q1 (log |k|)−(1+ǫ)/q1 Iα,β(MkΨ)(x) if |k| > N,

0 if |k| ≤ N,

where MkΨ(x) = eik·xΨ(x). By (4.6), we have

‖ϕ(D − k)f‖Lp1 =

{
‖Ψ‖Lp1 |k|−n/q1 (log |k|)−(1+ǫ)/q1 if |k| > N,

0 if |k| ≤ N.

Then, by Remark 4.3, we see that f ∈Mp1,q1(Rn). On the other hand, since

Iα(MkΨ) = F−1
[
|ξ|−αψ(ξ − k)

]

= |k|−αF−1
[(
|k|α|ξ|−αϕ(ξ − k)

)
ψ(ξ − k)

]
= |k|−αmα

k (D)(MkΨ)

and

|k|−βMkΨ = F−1
[
|k|−βψ(ξ − k)

]

= F−1
[(
|k|−β|ξ|βϕ(ξ − k)

) (
|ξ|−βψ(ξ − k)

)]
= m−β

k (D)Iβ(MkΨ),

by Lemma 3.1, we have

‖Iα(MkΨ)‖Lp2 ≤ |k|−α‖mα
k (D)‖L(Lp2)‖MkΨ‖Lp2 ≤ Cα|k|

−α‖MkΨ‖Lp2

and

‖MkΨ‖Lp2 ≤ |k|β‖m−β
k (D)‖L(Lp2)‖Iβ(MkΨ)‖Lp2 ≤ Cβ |k|

β‖Iβ(MkΨ)‖Lp2
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for all |k| > N . Hence, by (4.5),

‖Iα,β(MkΨ)‖Lp2 ≥ ‖Iβ(MkΨ)‖Lp2 − ‖Iα(MkΨ)‖Lp2

≥
(
C−1

β |k|−β − Cα|k|
−α
)
‖MkΨ‖Lp2 ≥

(
C−1

β |k|−β/2
)
‖Ψ‖Lp2 = C|k|−β

(4.8)

for all |k| > N . Then, it follows from (4.7) and (4.8) that

‖ϕ(D − k)(Iα,βf)‖Lp2 ≥ C|k|−n/q1−β (log |k|)−(1+ǫ)/q1

= C|k|−n/q2 (log |k|)−{(1+ǫ)q2/q1}/q2

for all |k| > N . Also, ‖ϕ(D− k)(Iα,βf)‖Lp2 = 0 if |k| ≤ N . Since (1 + ǫ)q2/q1 < 1,

by Remark 4.3, we have {|k|−n/q2(log |k|)−{(1+ǫ)q2/q1}/q2}|k|>N 6∈ ℓq2(Zn). This

implies
(∑

k∈Zn ‖ϕ(D − k)(Iα,βf)‖
q2
Lp2

)1/q2
= ∞, that is, Iα,βf 6∈ Mp2,q2(Rn).

Therefore, Iα,β is not bounded from Mp1,q1(Rn) to Mp2,q2(Rn). The proof is com-
plete. �

We are now ready to prove the “only if” part of Theorem 1.2.

Proof of “only if” part of Theorem 1.2. Let 0 < β ≤ α < n and 1 < p1, p2, q1, q2 <
∞. Assume that Iα,β is bounded fromMp1,q1(Rn) toMp2,q2(Rn). Then, by Lemma
4.2, we see that 1/p2 ≤ 1/p1 − α/n. On the other hand, if 1/q2 ≥ 1/q1 + β/n then
Iα,β is bounded from Mp1,q1(Rn) to Mp2, eq2(Rn), since Mp2,q2(Rn) →֒ Mp2, eq2(Rn),
where 1/q̃2 = 1/q1 + β/n. However, this contradicts Lemma 4.4. Hence, 1/q2 <
1/q1 + β/n. The proof is complete.
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