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PROBABILITY MEASURES AND EFFECTIVE RANDOMNESS

JAN REIMANN AND THEODORE A. SLAMAN

Abstract. We study the question, “For which reals x does there exist a mea-

sure µ such that x is random relative to µ?” We show that for every nonre-

cursive x, there is a measure which makes x random without concentrating

on x. We give several conditions on x equivalent to there being continuous

measure which makes x random. We show that for all but countably many

reals x these conditions apply, so there is a continuous measure which makes

x random. There is a meta-mathematical aspect of this investigation. As one

requires higher arithmetic levels in the degree of randomness, one must make

use of more iterates of the power set of the continuum to show that for all but

countably many x’s there is a continuous µ which makes x random to that

degree.

1. Introduction

Most studies on algorithmic randomness focus on reals random with respect to
the uniform distribution, i.e. the (1/2, 1/2)-Bernoulli measure, which is measure
theoretically isomorphic to Lebesgue measure on the unit interval. The theory of
uniform randomness, with all its ramifications (e.g. computable or Schnorr ran-
domness) has been well studied over the past decades and has led to an impressive
theory.

Recently, a lot of attention focused on the interaction of algorithmic randomness
with recursion theory: What are the computational properties of random reals? In
other words, which computational properties hold effectively for almost every real?
This has led to a number of interesting results, many of which will be covered in a
forthcoming book by Downey and Hirschfeldt [4].

While the understanding of “holds effectively” varied in these results (depending
on the underlying notion of randomness, such as computable, Schnorr, or weak
randomness, or various arithmetic levels of Martin-Löf randomness, to name only
a few), the meaning of “for almost every” was usually understood with respect
to Lebesgue measure. One reason for this can surely be seen in the fundamental
relation between uniform Martin-Löf tests and descriptive complexity in terms of
(prefix-free) Kolmogorov complexity: A real is not covered by any Martin-Löf test
(with respect to the uniform distribution) if and only if all of its initial segments
are incompressible (up to a constant additive factor).

However, one may ask what happens if one changes the underlying measure.
This question is virtually as old as the theory of randomness. Martin-Löf [15]
defined randomness not only for Lebesgue measure but also for arbitrary Bernoulli
distributions. Levin’s contributions in the 1970’s [24, 11, 12, 13] extended this to
arbitrary probability measures. He obtained a number of remarkable results and
principles such as the existence of uniform tests, conservation of randomness, and
the existence of neutral measures.
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In this paper we will survey a recent line of research by the authors which dealt
with the question for which reals x does there exist a probability measure which
makes x random without concentrating on x. We consider two kinds measures –
arbitrary probability measures, which may have atoms (reals other than x on which
the measure concentrates), and continuous measures, i.e. non-atomic measures.
The investigations exhibit an interesting, and quite unexpected, connection between
the randomness properties of a real and its logical complexity, in the sense of
recursion or set theoretic hierarchies. In the following we will try to describe this
connection in some detail. We will sketch proofs to provide some intuition, but
for a full account we have to refer the reader to the forthcoming research papers
[19, 20].

2. Measures and Randomness

In this section we introduce the basic notions of measure on the Cantor space
2ω and define randomness for arbitrary probability measures.

The Cantor space 2ω is the set of all infinite binary sequences, also called reals.
The topology generated by the cylinder sets

Nσ = {x : x ⌈n = σ},

where σ is a finite binary sequence, turns 2ω into a compact Polish space. We will
occasionally use the notation N(σ) in place of Nσ to avoid multiple subscripts. 2<ω

denotes the set of all finite binary sequences. If σ, τ ∈ 2<ω, we use ⊆ to denote the
usual prefix partial ordering. This extends in a natural way to 2<ω ∪ 2ω. Thus,
x ∈ Nσ if and only if σ ⊂ x. Finally, given U ⊆ 2<ω, we write NU to denote the
open set induced by U , i.e. NU =

⋃

σ∈U Nσ.

2.1. Probability measures. A probability measure on 2ω is a countably additive,
monotone function µ : F → [0, 1], where F ⊆ P(2ω) is σ-algebra and µ(2ω) = 1. µ
is called a Borel probability measure if F is the Borel σ-algebra of 2ω. It is a basic
result of measure theory that a probability measure is uniquely determined by the
values it takes on an algebra A ⊆ F that generates F. It is not hard to see that the
Borel sets are generated by the algebra of clopen sets, i.e. finite unions of basic open
cylinders. Normalized, monotone, countably additive set functions on the algebra
of clopen sets are induced by any function ρ : 2<ω → [0, 1] satisfying

ρ(ǫ) = 1 and ρ(σ) = ρ(σ⌢0) + ρ(σ⌢1) (2.1)

for all finite sequences σ. Then µ(Nσ) = ρ(σ) yields an monotone, additive function
on the clopen sets, which in turn uniquely extends to a Borel probability measure on
2ω. In the following, we will deal exclusively with Borel probability measures, and
hence we will identify such measures with the underlying function on cylinders sat-
isfying (2.1), and write, in slight abuse of notation, µ(σ) instead of µ(Nσ). Besides,
we will mostly speak of measures, understanding Borel probability measures.

The Lebesgue measure L on 2ω is obtained by distributing a unit mass uniformly
along the paths of 2ω, i.e. by setting L(σ) = 2−|σ|. A Dirac measure, on the other
hand, is defined by putting a unit mass on a single real, i.e. for x ∈ 2ω, let

δx(σ) =

{

1 if σ ⊂ x,

0 otherwise.
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If, for a measure µ and x ∈ 2ω, µ({x}) > 0, then x is called an atom of µ. Obviously,
x is an atom of δx. A measure that does not have any atoms is called continuous.

3. Martin-Löf Randomness

It was Martin-Löf’s fundamental idea to define randomness by choosing a count-
able family of nullsets. For any non-trivial measure, the complement of the union
of these sets will have positive measure, and any point in this set will be consid-
ered random. There are of course many possible ways to pick a countable family
of nullsets. In this regard, it is very benefiting to use the framework of recursion
theory and effective descriptive set theory.

3.1. Nullsets. Before we go on to define Martin-Löf randomness formally, we note
that every nullset is contained in a Gδ-nullset.

Proposition 3.1. Suppose µ is a measure. Then a set A ⊆ 2ω is µ-null if and
only if there exists a set U ⊆ N× 2<ω such that for all n,

A ⊆ N(Un) and
∑

σ∈Un

µ(Nσ) ≤ 2−n, (3.1)

where Un = {σ : (n, σ) ∈ U}.

Of course, the Gδ-cover of A is given by
⋂

n Un.

3.2. Martin-Löf tests and randomness. Essentially, a Martin-Löf test is an
effectively presented Gδ nullset (relative to some parameter z).

Definition 3.2. Suppose z ∈ 2ω is a real. A test relative to z, or simply a z-test, is
a set W ⊆ N× 2<ω which is recursively enumerable in z. Given a natural number
n ≥ 1, an n-test is a test which r.e. in ∅(n−1), the (n − 1)st Turing jump of the
empty set. A real x passes a test W if x 6∈

⋂

n N(Wn).

Passing a test W means not being contained in the Gδ set given by W . The
condition ‘r.e. in z’ implies that the open sets given by the sets Wn form a uniform
sequence of Σ0

1(z) sets, and the set
⋂

n N(Wn) is a Π0
2(z) subset of 2

ω.
To test for randomness with respect to a measure, we have to ensure two things:

First that a test W actually describes a nullset. Second, that the information
present in a measure is available to the test. Te first criterion we call correctness.

Definition 3.3. Suppose µ is a measure on 2ω. A test W is correct for µ if
∑

σ∈Wn

µ(Nσ) ≤ 2−n. (3.2)

To incorporate measures into an effective test for randomness we have to repre-
sent it in a form that makes it accessible for recursion theoretic methods. Essen-
tially, this means to code a measure via an infinite binary sequence or a function
f : N → N. Unfortunately, there are many possible such representations. Hence,
strictly speaking, we will deal with randomness with respect to a representation of
a measure, not the measure itself. However, we will see that for one of our main
topics, randomness for continuous measures, representational issues can be resolved
quite elegantly.

The most straightforward representation of a measure is the following.
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Definition 3.4. Given a measure µ, define its rational representation rρ by letting,
for all σ ∈ 2<ω, q1, q2 ∈ Q,

〈σ, q1, q2〉 ∈ rρ ⇔ q1 < ρ(σ) < q2. (3.3)

The rational representation does not reflect the topological properties of the
space of probability measures on 2ω. The space of probability measures P on 2ω is
a compact polish space (see Parthasarathy [17]). The topology is the weak topology,
which can be metrized by the Prokhorov metric, for instance. There is an effective
dense subset, given as follows: Let Q be the set of all reals of the form σ⌢0ω.
Given q̄ = (q1, . . . , qn) ∈ Q<ω and non-negative rational numbers α1, . . . , αn such
that

∑

αi = 1, let

δq̄ =

n
∑

k=1

αkδqk ,

where δx denotes the Dirac point measure for x. Then the set of measures of the
form δq̄ is dense in P .

The recursive dense subset {δq̄} and the effectiveness of the metric d between
measures of the form δq̄ suggests that the representation reflects the topology ef-
fectively, i.e. the set of representations should be Π0

1. However, this is not true
for the set of rational representations of probability measures. Instead, we have
to resort to other representations in metric spaces, such as Cauchy sequences. Us-
ing the framework of effective descriptive set theory, as for example presented in
Moschovakis [16], one can obtain the following.

Theorem 3.5. There is a recursive surjection

π : 2ω → P

and a Π0
1 subset P of 2ω such that π ⌈P is one-one and π(P ) = P.

In the following sections, we will always assume that a measure is either rep-
resented by its rational representation or via the the set P ⊆ 2ω of the previous
theorem. The definition of randomness, however, works for any representation.

Definition 3.6. Suppose µ is a probability measure on 2ω, ρµ ∈ 2ω is a represen-
tation of µ, and z ∈ 2ω is a real. A real is Martin-Löf n-random for µ relative to
ρµ and z, or simply (n, z)-random for ρµ if it passes all (ρµ ⊕ z)(n−1)-tests which
are correct for µ.

If the representation is clear from the context, we speak of (n, z)-randomness for
µ. If µ is Lebesgue measure L, we drop reference to the measure and simply say
“x is (n, z)-random”. We also drop the index 1 in case of (1, z)-randomness and
simply speak of “randomness relative to z” or z-randomness.

Since there are only countably many Martin-Löf n-tests, it follows from countable
additivity that the set of Martin-Löf n-random reals for µ has µ-measure 1. Hence
there always exist (n, z)-random reals for any measure µ.

3.3. Image measures and conservation of randomness. One can obtain new
measures from given measures by transforming them with respect to a sufficiently
regular function. Let f : 2ω → 2ω be a Borel (measurable) function, i.e. for every
Borel set A, f−1(A) is Borel, too. If µ is a measure on 2ω and f is Borel, then the
image measure µf is defined by

µf (A) = µ(f−1(A)).
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It can be shown that every probability measure can be obtained from Lebesgue
measure L by means of a measurable transformation.

Theorem 3.7 (folklore, see e.g. Billingsley [1]). If µ is a Borel probability measure
on 2ω, then there exists a measurable f : 2ω → 2ω such that µ = Lf .

If the transformation of L is effective, then f maps an L-random real to a Lf -
random real. This principle is called conservation of randomness, first introduced
by Levin. We can use it to construct measures for which a given real is random, as
we will see in the next sections.

4. Randomness of Non-Recursive Reals

If x is an atom of some probability measure µ, it is trivially µ-random. Interest-
ingly, the recursive reals are exactly those for which this is the only way to become
random.

Theorem 4.1 (Reimann and Slaman [20]). For any real x, the following are equiv-
alent.

(i) There exists a (representation of a) probability measure µ such that µ({x}) = 0
and x is µ-random.

(ii) x is not recursive.

Proof sketch. If x is recursive and µ is a measure with µ({x}) = 0, then we can
obviously construct a µ-test that covers x, by computing (recursively in µ) the
measure of initial segments of x, which tends to 0.

Now assume x is not recursive. A fundamental result by Kučera [10] ensures
that every Turing degree above ∅′ contains a L-random real. This result relativizes.
Hence one can combine it with the Posner-Robinson Theorem [18], which says that
for every non-recursive real x there exists a z such that x⊕ z =T z′. This way we
obtain a real R which is

(1) L-random relative to some z ∈ 2ω, and
(2) T(z)-equivalent to x.

There are Turing functionals Φ and Ψ recursive in z such that

Φ(R) = x and Ψ(x) = R.

We can use the functionals to define a class of measures that are possible candidates
to render x random. Given σ ∈ 2ω, define the set Pre(σ) to be the set of minimal
elements of

{τ ∈ 2<ω : Φ(τ) ⊇ σ and Ψ(σ) ⊆ τ}.

We define a set of measures M by requiring that µ ∈ M if and only if

∀σ[L(Pre(σ)) ≤ µ(σ) ≤ L(Ψ(σ))]. (4.1)

The first inequality ensures that µ dominates an image measure induced by Φ. This
will ensure that any Martin-Löf random real is mapped by Φ to a µ-random real.
The second inequality guarantees that µ is non-atomic on the domain of Ψ.

One can show the topological representations of the measures in M (Theorem
3.5) form a non-empty Π0

1 class M in 2ω relative to z.
In order to apply conservation of randomness, we have to know that one of

the measures in M , when given as an additional information to a L-test, will not
destroy the randomness of R. This is ensured by the following basis result for Π0

1

sets regarding relative randomness (essentially a consequence of compactness). �
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Theorem 4.2 (Reimann and Slaman [20], Downey, Hirschfeldt, Miller, and Nies
[3]). Let S be Π0

1(z). If R is L-random relative to z, then there exists y ∈ S such
that R is L-random relative to y ⊕ z.

5. Randomness for continuous measures

A natural question arising in the context Theorem 4.1 is whether the measure
making a real random can be ensured to have certain regularity properties; in
particular, can it be chosen continuous?

Reimann and Slaman [20] gave an explicit construction of a non-recursive real
not random with respect to any continuous measure. Call such reals 1-ncr. In
general, let NCRn be the set of reals which are not n-random with respect to any
continuous measure.

Kjos-Hanssen and Montalban [8] observed that any member of a countable Π0
1

class is an element of NCR1.

Proposition 5.1. If A ⊆ 2ω is Π0
1 and countable, then no member of A can be in

NCR1.

Proof idea. If µ is a continuous measure, then obviously µ(A) = 0. One can use a
recursive tree T such that [T ] = A to obtain a µ-test for A. �

It follows from results of Cenzer, Clote, Smith, Soare, and Wainer [2] that mem-
bers of NCR1 can be found throughout the hyperarithmetical hierarchy of ∆1

1,
whereas Kreisel [9] had shown earlier that each member of a countable Π0

1 class is
in fact hyperarithmetical.

Quite surprisingly, ∆1
1 turned out to be the precise upper bound for NCR1. An

analysis of the proof of Theorem 4.1 shows that if x is truth-table equivalent to
a L-random real, then the “pull-back” procedure used to devise a measure for x
yields a continuous measure. More generally, we have the following.

Theorem 5.2 (Reimann and Slaman [20]). Let x be a real. For any z ∈ 2ω and
any n ≥ 1, the following are equivalent.

(i) x is (n, z)-random for a continuous measure µ recursive in z.
(ii) x is (n, z)-random for a continuous dyadic measure ν recursive in z.
(iii) There exists a functional Φ recursive in z which is an order-preserving home-

omorphism of 2ω such that Φ(x) is (n, z)-random.
(iv) x is truth-table equivalent relative to z to a (n, z)-random real.

Here dyadic measure means that the values of µ on the open cylinders are of the
form µ(σ) = m/2n with m,n ∈ N. The theorem can be seen as an effective version
of the classical isomorphism theorem for continuous probability measures (see for
instance Kechris [7]).1

Woodin [23], using a variation on Prikry forcing, was able to prove that if x ∈ 2ω

is not hyperarithmetic, then there is a z ∈ 2ω such that x⊕ z ≡tt(z) z
′, i.e. outside

∆1
1 the Posner-Robinson theorem holds with truth-table equivalence. Hence we can

infer the following result.

Theorem 5.3 (Reimann and Slaman [20]). If a real x is not ∆1
1, then there exists

a continuous measure µ such that x is µ-random.

1The theorem suggests that for continuous randomness representational issues do not really

arise, since there is always a measure with a computationally minimal representation.
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It is on the other hand an open problem whether every real in NCR1 is a member
of a countable Π0

1 class.

One may ask how the complexity and size of NCRn grows with n. It turned out
all levels of NCR are countable.

Theorem 5.4 (Reimann and Slaman [19]). For all n, NCRn is countable.

Proof idea. The first step is to use Borel determinacy to show that the complement
of NCRn contains an upper Turing cone. This follows from the fact that the
complement of NCRn contains a Turing invariant and cofinal (in the Turing degrees)
Borel set, which can be seen as follows.

If for two reals x, y, x ≡T(z) y, then x ≡tt(z′) y. Suppose x ≡T(z) R where R is
(n + 1)-random relative to z. Then, since R is n-random relative to z′, it follows
from Theorem 5.2 that x is random with respect to some continuous measure.

So if we let B ⊆ 2ω be the set

{x ∈ 2ω : ∃z ∃R (x ≡T z ⊕R & R is (n+ 1)-random relative to z)},

B is a Turing invariant Borel set cofinal in the Turing degrees. It follows from Borel
Determinacy [14] that B contains an upper cone in the Turing degrees.

The next step is to show that the elements of NCRn show up at a countable level
of the constructible universe L. It holds that NCRn ⊆ Lβn

, where βn is the least
ordinal such that

Lβn
|= ZFC

−
n ,

where ZFC−
n is ZFC with the power set axiom replaced by the existence of n iterates

of the power set of ω. Note that Lβn
is the level of constructibility capturing

Martin’s construction of a winning strategy in a Σ0
n-game.

Given x 6∈ Lβn
, construct a set G such that Lβn

[G] is a model of ZFC−
n , and for all

y ∈ Lβn
[G]∩2ω, y ≤T x⊕G. G is constructed by Kumabe-Slaman forcing (see [22]).

This notion of forcing provides a method to extend the Posner-Robsinson Theorem
to higher levels of the jump and beyond. The existence of G allows to conclude: If x
is not in Lβn

, it will belong to every cone with base in Lβn
[G]. In particular, it will

belong to the cone given by the Borel Turing determinacy argument (relativized
to G, here one has to use absoluteness), i.e. the cone avoiding NCRn. Hence x is
random relative to G for some continuous µ, an thus in particular µ-random. �

The proof of the countability of NCRn makes essential use of Borel determinacy.
It is known from a result by Friedman [5] that the use of ω1-many iterates of
the power set of ω are necessary to prove Borel determinacy. In the simplest
case, Friedman showed that ZFC− does not prove the statement “All Σ0

5-games on
countable trees are determined.” The proof works by showing that there is a model
of ZFC− for which Σ0

5-determinacy does not hold. This model is just Lβ0
. The

analysis extends to higher levels of the Borel hierarchy, applying to more and more
iterates of the power set.

The question suggests itself whether the proof of the countability of NCRn re-
quires a similar set theoretic complexity.

Theorem 5.5 (Reimann and Slaman [19]). For every k, the statement

For every n, NCRn is countable.

cannot be proven in ZFC
−
k .
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Proof sketch. We show that for every fixed k, some NCRn is cofinal in the Turing
degrees of Lβk

. In fact, Jensen’smaster codes [6] for L, the universe of constructible
sets, are the cofinal set.

L is generated by transfinite recursion in which the recursion steps are closing
under first order definability and forming unions. The master codes represent the
initial segments of L and are generated by iterating the Turing jump and taking
L-least representations of direct limits. In short, a master code is either definable
relative to an earlier master code or is the code for the well-founded limit of struc-
tures each of which is coded by an earlier master code. The number of iterates
of the power set present in the initial segment of L which is being coded is linked
to the complexity of describing the direct limit used to form its master code. For
α less than βk, there is a fixed bound on this complexity. We let Mα denote the
master code for Lβ.

Neither of these cases is consistent with randomness, as indicated by the following
lemmas.

Lemma 5.6. Suppose that n ≥ 2, y ∈ 2ω, and x is n-random for µ. If i < n, y is
recursive in (x ⊕ µ) and recursive in µ(i), then y is recursive in µ.

Lemma 5.7. Suppose that x is (n+5)-random for µ, ≺ is a linear ordering that is
∆0

n+1 relative to µ, and I is the largest initial segment of ≺ which is well-founded.

If i < n and I is Σ0
i in (x ⊕ µ), then I is recursive in µ.

Suppose α less than βk and a continuous measure µ are given so that Mα is
random relative to µ. Heuristically, we argue as follows. We proceed by induction on
β ≤ α to prove that Mβ is recursive in µ. If β is a successor, then Mβ is arithmetic
in some earlier master code, with a uniform upper bound on the complexity of the
definition depending on k. Then, Mβ is uniformly arithmetic in µ and recursive in
Mα, Lemma 5.6 applies. Otherwise,Mβ is the well-founded direct limit of structures
recursive in µ and recursive in in Mα, so Lemma 5.7 applies. In either case, Mβ

is recursive in µ. By induction, Mα is itself recursive in µ and not µ-random, a
contradiction. �
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[10] A. Kučera. Measure, Π0
1-classes and complete extensions of PA. In Recursion

theory week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math., pages
245–259. Springer, Berlin, 1985.

[11] L. A. Levin. The concept of a random sequence. Dokl. Akad. Nauk SSSR, 212:
548–550, 1973.

[12] L. A. Levin. Laws on the conservation (zero increase) of information, and ques-
tions on the foundations of probability theory. Problemy Peredači Informacii,
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