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Abstract. Let R be a local ring and let (x1, . . . ,xr ) be part of a system of parameters
of a finitely generatedR-moduleM, wherer < dimRM. We will show that if (y1, . . . ,yr )
is part of a reducing system of parameters ofM with (y1, . . . ,yr)M = (x1, . . . ,xr )M then
(x1, . . . ,xr) is already reducing. Moreover, there is such a part of a reducing system
of parameters ofM iff for all primes P ∈ SuppM ∩VR(x1, . . . ,xr) with dimRR/P =
dimRM − r the localizationMP of M atP is anr-dimensional Cohen–Macaulay module
overRP.

Furthermore, we will show thatM is a Cohen–Macaulay module iffyd is a non zero
divisor onM/(y1, . . . ,yd−1)M, where(y1, . . . ,yd) is a reducing system of parameters of
M (d := dimRM).
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1. Preliminaries

In what follows, letRbe a local ring with maximal idealm and letM be a non zero finitely
generatedR-module of dimensiond. Instead of dimR, depthR, AssR, SuppR, . . . we will
write dim,depth,Ass,Supp, . . . for short.

We note that SuppM/XM = SuppM ∩V(X), whereX is a subset ofR and that for a
prime idealP of R we haveP∈ AssM iff PRP ∈ AssMP. Moreover we define AsshM :=
{P∈ AssM | dimR/P= d}.

For undefined terminology we refer to the standard literature (e.g. [E]).

DEFINITION 1.

A system of parameters(x1, . . . ,xd) of M is calledreducing, if for all i = 1, . . . ,d−1 we
have

xi /∈ P for all P∈ AssM/(x1, . . . ,xi−1)M with dimR/P= d− i.

Remark2. Auslander and Buchsbaum defined in [AB] a system of parameters(x1, . . . ,xd)
of R to be a reducing system of parameters ofM if

eM(x1, . . . ,xd) = length(M/(x1, . . . ,xd)M)

− length((x1, . . . ,xd−1)M : xd/(x1, . . . ,xd−1)M).
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This definition is equivalent to the definition given above ifwe pass fromR to
R̄ := R/AnnRM and considerM as aR̄-module in Definition 1 and use Corollary 4.8 in
[AB]. Therefore it is clear that all definitions and results on reducing systems of parame-
ters remain true in this more general context.

Remark3. For every system of parameters(x1, . . . ,xd) of M there is a reducing sys-
tem of parameters(y1, . . . ,yd) of M such that(y1, . . . ,yd)R= (x1, . . . ,xd)R, in particular,
(y1, . . . ,yd)M = (x1, . . . ,xd)M (see Proposition 4.9 in [AB]).

DEFINITION 4.

A sequencex1, . . . ,xr of elements ofm is calledpart of a(reducing) system of parameters
of M, if there are elementsxr+1, . . . ,xd ∈m such that(x1, . . . ,xr ,xr+1, . . . ,xd) is a (reduc-
ing) system of parameters ofM.

Remark5.

(1) A sequence(x1, . . . ,xr) of elements ofm with r < d is part of a system of parameters
of M iff dim M/(x1, . . . ,xr)M = d− r.

(2) A sequence(x1, . . . ,xr) of elements ofm with r < d is part of a reducing sys-
tem of parameters ofM iff for all i = 1, . . . , r we have xi /∈ P for all P ∈
AssM/(x1, . . . ,xi−1)M with dimR/P≥ d− i.

(3) Every regular sequence onM is part of a reducing system of parameters ofM.

Remark6.

(1) We note that the following conditions are equivalent:

(i)M is a Cohen–Macaulay module, i.e. depthM = d.
(ii) Every system of parameters ofM is a regular sequence onM.
(iii)There exists a system of parameters ofM which is a regular sequence onM.

(2) Assume thatM is a Cohen–Macaulay module. If(x1, . . . ,xr) is part of a system of
parameters ofM thenM/(x1, . . . ,xr)M is unmixed, more precisely, dimR/P= d− r
for all P∈ AssM/(x1, . . . ,xr)M. Therefore for a sequence(x1, . . . ,xr) of elements of
m the following conditions are equivalent:

(i) (x1, . . . ,xr) is a regular sequence onM.
(ii) (x1, . . . ,xr) is part of a reducing system of parameters ofM.
(iii) (x1, . . . ,xr) is part of a system of parameters ofM.

Let x1, . . . ,xr ∈m. If (x1, . . . ,xr) is a regular sequence onM then(x1, . . . ,xr) is a regular
sequence onMP as well for all primesP∈ SuppM∩V(x1, . . . ,xr).

Lemma7. Let (x1, . . . ,xr) be part of a (reducing) system of parameters of M. Then
(x1, . . . ,xr) is part of a (reducing) system of parameters of MP for all primes P∈
SuppM∩V(x1, . . . ,xr) with dimR/P+dimMP = d.

Proof. Let P ∈ SuppM ∩V(x1, . . . ,xr) with dimR/P+ dimMP = d. An easy induction
argument (induction onr) shows that we can restrict ourselves to the caser = 1 (and
dimMP ≥ 2).
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Let q ∈ AssMP with dimRP/q = dimMP(dimRP/q ≥ dimMP − 1). Thenq = QRP

with Q∈ AssM, Q⊆ P, and we obtain

dimR/Q≥ dimR/P+dim(R/Q)P = dimR/P+dimRP/q

= dimR/P+dimMP = d

(≥ dimR/P+dimMP−1= d−1).

Thereforex1 /∈ Q by our assumption. But thenx1 /∈ q, i.e. (x1) is part of a (reducing)
system of parameters ofMP. �

Lemma8. If x ∈ R is a zero divisor on M, then P∈ AssM/xM for all minimal primes
P∈ AssM∩V(x).

Proof. LetP∈AssM∩V(x) be minimal. SinceP∈AssM/xM iff PRP ∈AssMP/xMP we
may assume by localizing atP thatP=m. Thenx /∈ Q for all Q∈ AssM\{m}. SinceR is
noetherian there is ani ∈N

+ such that 0 :M xi = 0 :M x j for all j ≥ i. LetU := 0 :M xi . Then
U 6= 0 (otherwisex would be a non zero divisor onM, contradicting our assumption).

Let Q∈ SuppM\{m}. Since AssMQ = {Q′RQ|Q′ ∈ AssM,Q′ ⊆ Q}, we havex /∈ q for
all q ∈ AssMQ. ThereforeUQ = 0 :MQ xi = 0 for all Q∈ SuppM\{m}, i.e. SuppU = {m}.
Moreover,

U :M x= 0 :M xi+1 = 0 :M xi =U.

Let ϕ : U → M/xM be the inclusionU ⊆ M followed by the canonical epimorphism
MM/xM. Since

kerϕ =U ∩xM = x(U :M x) = xU,

ϕ induces a monomorphismU/xU → M/xM. Now U/xU 6= 0 by Nakayama’s lemma.
Therefore /06= AssU/xU ⊆ AssU = {m}, that means AssU/xU = {m}. This gives us the
existence of a monomorphismR/m→U/xU → M/xM. Thusm ∈ AssM/xM. �

Lemma9. Let Q∈ SuppM and assume that there is an x∈m with x /∈ Q. Then there is a
P∈ SuppM such that x∈ P, Q⊂ P anddimR/P= dimR/Q−1.

Proof. Since(x) is part of a system of parameters ofR/Q, there is aP ∈ Supp(R/Q)/
x(R/Q) = SuppR/(Q+ xR) = V(Q+ xR) ⊂ V(Q) with dimR/P = dimR/(Q+ xR) =
dimR/Q−1. Since 06= MQ

∼= (MP)QRP we haveMP 6= 0, i.e.P∈ SuppM.
�

COROLLARY 10.

Let Q∈ SuppM and let x1, . . . ,xr ∈ m. Then there is a P∈ SuppM ∩V(x1, . . . ,xr) such
that Q⊆ P anddimR/P≥ dimR/Q− r.

The proof follows immediately from Lemma 9 by induction onr.

2. Main results

Theorem 11. Let (y1, . . . ,yd) be a reducing system of parameters of M. M is a Cohen–
Macaulay module iff yd is a non zero divisor on M/(y1, . . . ,yd−1)M.
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Proof. The implication ‘⇒’ is clear, since every system of parameters in a Cohen–
Macaulay module is a regular sequence (see Remark 6(1)).

We will prove the opposite implication by induction ond, where the cased= 1 is clear.
Let d ≥ 2 and assume that the statement is true for modules with a dimension strictly less
thand.

Assume thatyd is a non zero divisor onM/(y1, . . . ,yd−1)M. By our induction hypoth-
esis,M/y1M is a Cohen–Macaulay module and therefore it remains to show thaty1 is a
non zero divisor onM. Suppose this is not the case. LetP be minimal in AssM∩V(y1).
Since(y1) is part of a reducing system of parameters ofM, we have dimR/P ≤ d− 2.
By Lemma 8,P∈ AssM/y1M and therefore dimR/P= dimM/y1M = d−1 (see Remark
6(2)), a contradiction. �

Lemma12. Let (x) be part of a system of parameters of M. If d≥ 2, the following condi-
tions are equivalent:

(i) (x) is part of a reducing system of parameters of M.
(ii) MP is a one-dimensional Cohen–Macaulay module over RP for all P ∈ SuppM ∩

V(x) satisfyingdimR/P= d−1.
(iii) There is a y∈ m such that(y) is part of a reducing system of parameters of M and

yM = xM.
(iv) There is a y∈ m such that(y) is part of a reducing system of parameters of M and

SuppM∩V(x)⊆V(y).

Proof. The implications (i)⇒ (iii) and (iii) ⇒ (iv) are obvious.
(iv) ⇒ (ii): Let (y) be part of a reducing system of parameters ofM with SuppM ∩

V(x)⊆V(y) and letP∈ SuppM∩V(x) with dimR/P= d−1. Theny∈ P. Nowy /∈ Q for
all Q ∈ AssM with dimR/Q≥ d−1 by our assumption. ThusP /∈ AssM and therefore
PRP /∈ AssMP (6= /0) from which

0< depthMP ≤ dimMP ≤ dimM−dimR/P= 1,

i.e. depthMP = dimMP = 1.
(ii) ⇒ (i): Let P∈ AssM with dimR/P≥ d−1. If dimR/P= d, thenx /∈ P since(x) is

part of a system of parameters ofM. Let dimR/P= d−1. If x∈ P, thenMP is a Cohen–
Macaulay module overRP with dimMP = 1. ThereforePRP /∈ AssMP contradictingP∈
AssM.

Thusx /∈ P for all P∈ AssM with dimR/P≥ d−1, i.e.(x) is part of a reducing system
of parameters ofM by Remark 5(2). �

Remark13. Letx1, . . . ,xr , y1, . . . ,yr be elements ofm with

SuppM∩V(x1, . . . ,xr)⊆V(y1, . . . ,yr)

(which is equivalent to SuppM/(x1, . . . ,xr)M ⊆ SuppM/(y1, . . . ,yr)M).

(a) If (y1, . . . ,yr) is part of a system of parameters ofM then the same is true for
(x1, . . . ,xr). This follows immediately from Remark 5(1).

(b) If (y1, . . . ,yr) is a regular sequence onM then the same is true for(x1, . . . ,xr). This
follows from Corollary 2 of [PSS].



Reducing system of parameters 163

The equivalence (i)⇔ (iv) of our next theorem shows that a similar statement holdsfor
parts of reducing systems of parameters ofM, providedr < d. (For r = d this is not true
in general, see Remark 3.)

Theorem 14. Let (x1, . . . ,xr) be part of a system of parameters of M, where0≤ r < d.
Then the following conditions are equivalent:

(i) (x1, . . . ,xr) is part of a reducing system of parameters of M.
(ii) MP is an r-dimensional Cohen–Macaulay module over RP for all P ∈ SuppM ∩

V(x1, . . . ,xr) satisfyingdimR/P= dimM − r.
(iii) There is a part(y1, . . . ,yr) of a reducing system of parameters of M such that

(y1, . . . ,yr)M = (x1, . . . ,xr)M.
(iv) There is a part(y1, . . . ,yr) of a reducing system of parameters of M such that

SuppM∩V(x1, . . . ,xr)⊆V(y1, . . . ,yr).

Proof. We use induction onr. For r = 0, there is nothing to show and forr = 1 the
statement follows from Lemma 12. So letr ≥ 2.

The implications (i)⇒ (iii) and (iii) ⇒ (iv) are obvious.
(iv) ⇒ (ii): Let M̄ :=M/y1M. TakeP∈SuppM∩V(x1, . . . ,xr)⊆SuppM∩V(y1, . . . ,yr)

with dimR/P= d− r. Since dimM̄ = d− 1, M̄P
∼= MP/y1MP is an (r − 1)-dimensional

Cohen–Macaulay module (overRP) by the induction hypothesis ((i)⇒ (ii)). Therefore it
is sufficient to show thaty1 is a non zero divisor onMP.

Suppose this is not the case. Then by Lemma 8 there is aq ∈ AssMP with q ∈ AssM̄P.
Therefore dimRP/q= r−1 by Remark 6(2). Nowq=QRP with Q∈ SuppM̄ =SuppM∩
V(y1) andQ⊆ P. ThenQ∈ AssM and we have

dimR/Q≥ dimR/P+dim(R/Q)P = dimR/P+dimRP/q= d−1.

Thereforey1 /∈ Q (since(y1, . . . ,yr) is part of a reducing system of parameters ofM), a
contradiction.

(ii) ⇒ (i): Let M̄ := M/x1M and takeP ∈ SuppM̄ ∩ V(x2, . . . ,xr) = SuppM ∩
V(x1, . . . ,xr) with dimR/P= dimM̄ − (r −1) = dimM − r. ThenMP is anr-dimensional
Cohen–Macaulay module (overRP) by our assumption and(x1, . . . ,xr) is a system
of parameters ofMP and hence a regular sequence onMP by Remark 6(1). But then
M̄P

∼= MP/x1MP is an (r −1)-dimensional Cohen–Macaulay module (overRP).
By the induction hypothesis(x2, . . . ,xr) is part of a reducing system of parameters of

M̄ and therefore it remains to show thatx1 /∈ Q for all Q∈ AssM with dimR/Q= d−1.
Suppose this is not the case. ChooseQ∈ AssM with dimR/Q= d−1 andx1 ∈ Q. By

Corollary 10 there is a primeP∈ SuppM∩V(x2, . . . ,xr) such thatQ⊆ P and dimR/P≥
d−1− (r −1)= d− r. But thenP∈ SuppM∩V(x1, . . . ,xr) (sincex1 ∈ Q⊆ P) and there-
fore dimR/P≤ d− r, i.e. dimR/P= d− r. By our assumption,MP is anr-dimensional
Cohen–Macaulay module. SinceQRP ∈ AssMP we therefore have

r = dimMP = dimRP/QRP = dim(R/Q)P

≤ dimR/Q−dimR/P= d−1− (d− r)

= r −1

(see Remark 6(2)), a contradiction. �
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COROLLARY 15.

Let (x1, . . . ,xr) be part of a reducing system of parameters of M. If r< d, then
(xπ(1), . . . ,xπ(r)) is part of a reducing system of parameters of M for any permutation π
of {1, . . . , r}.

We note that the statement of this corollary is not true in general if r = d, see the
following Example 16.

Example16. LetR := K [[X,Y,Z]], whereK is a field andX,Y,Z are indeterminates. For

M := R/(XY,XZ)R and x1 :=Y, x2 := X+Y+Z,

(x1,x2) is a system of parameters ofM, but not a reducing system of parameters.(x2,x1)
is a reducing system of parameters ofM (not a regular sequence ofM).

Finally we define the following.

DEFINITION 17.

CM (M) := {P∈ SuppM|dimR/P+dimMP = d and MP is

a Cohen–Macaulay module overRP}

(thestrong Cohen–Macaulay locus ofSuppM) and for 0≤ r ≤ d

CM r(M) := {P∈ CM (M)|dimMP = r}.

Remark18.

(1) We have

(i) CM 0(M) = AsshM and, ifd ≥ 1,
(ii) CM 1(M) = {P∈ SuppM|dimR/P= d−1} \AssM,
(iii) CM (M) =

⋃d
r=0CM r(M).

(2) The following conditions are equivalent

(i) M is a Cohen–Macaulay module,
(ii) CM (M) = SuppM,
(iii) m ∈ CM (M).

(3) If SuppM is equidimensional and catenarian thenCM (M) coincides with the ordi-
nary Cohen–Macaulay locus of SuppM. This is the case, for example, when dimM ≤
1 or whenR is an epimorphic image of a local Cohen–Macaulay ring andM is
equidimensional.

PROPOSITION 19.

For r ∈ N, r < d, we have

CM r(M) = {P|P∈ AssM/(x1, . . . ,xr)M, dimR/P= d− r,

(x1, . . . ,xr) part of a reducing system of parameters of M}.

Proof. By Theorem 14 we have ‘⊇’ and equality holds (trivially) forr = 0. Therefore it
remains to verify the validity of the inclusion ‘⊆’ for r ≥ 1.
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Let P∈ CM r(M). SinceMP is a Cohen–Macaulay module with dimMP = r ≥ 1, we
havePRP /∈ AssMP and henceP /∈ AssM. Moreover, dimR/P= d−dimMP = d− r.

Let Q ∈ AssM with dimR/Q ≥ d− 1. ThenP 6⊆ Q sinceP = Q is impossible (P /∈
AssM) andP⊂ Q would imply dimR/P= d contradicting again ‘P /∈ AssM’. Therefore
we can find anx1 ∈ P with x1 /∈ Q for all Q∈ AssM with dimR/Q≥ d−1. By construc-
tion, (x1) is part of a reducing system of parameters ofM and a regular sequence onMP

by Lemma 7 and Remark 6(2).
If r > 1 we continue this procedure by passing toM/x1M and we can construct elements

x1, . . . ,xr ∈ P inductively onr such that(x1, . . . ,xr) forms a part of a reducing system
of parameters ofM and a regular sequence onMP. Let M̄ := M/(x1, . . . ,xr)M. Since
dimM̄P = dimMP/(x1, . . . ,xr)MP = dimMP− r = 0,P is minimal in SuppM̄ and therefore
P∈ AssM̄. �
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