Reducing system of parameters and the Cohen–Macaulay property

BJÖRN MÄURER and JÜRGEN STÜCKRAD

Fakultät für Mathematik und Informatik, Universität Leipzig, Augustus Platz 10/11, D-04109 Leipzig, Germany E-mail: bmp@gmx.de; stueckrad@math.uni-leipzig.de

MS received 20 September 2005; revised 26 June 2006

Abstract. Let *R* be a local ring and let $(x_1, ..., x_r)$ be part of a system of parameters of a finitely generated *R*-module *M*, where $r < \dim_R M$. We will show that if $(y_1, ..., y_r)$ is part of a reducing system of parameters of *M* with $(y_1, ..., y_r)M = (x_1, ..., x_r)M$ then $(x_1, ..., x_r)$ is already reducing. Moreover, there is such a part of a reducing system of parameters of *M* iff for all primes $P \in \text{Supp} M \cap V_R(x_1, ..., x_r)$ with $\dim_R R/P = \dim_R M - r$ the localization M_P of *M* at *P* is an *r*-dimensional Cohen–Macaulay module over R_P .

Furthermore, we will show that M is a Cohen–Macaulay module iff y_d is a non zero divisor on $M/(y_1, \ldots, y_{d-1})M$, where (y_1, \ldots, y_d) is a reducing system of parameters of M ($d := \dim_R M$).

Keywords. Systems of parameters; Cohen-Macaulay modules.

1. Preliminaries

In what follows, let *R* be a local ring with maximal ideal \mathfrak{m} and let *M* be a non zero finitely generated *R*-module of dimension *d*. Instead of dim_{*R*}, depth_{*R*}, Ass_{*R*}, Supp_{*R*}, ... we will write dim, depth, Ass, Supp, ... for short.

We note that $\text{Supp}M/XM = \text{Supp}M \cap V(X)$, where X is a subset of R and that for a prime ideal P of R we have $P \in \text{Ass}M$ iff $PR_P \in \text{Ass}M_P$. Moreover we define $\text{Assh}M := \{P \in \text{Ass}M \mid \dim R/P = d\}$.

For undefined terminology we refer to the standard literature (e.g. [E]).

DEFINITION 1.

A system of parameters $(x_1, ..., x_d)$ of *M* is called *reducing*, if for all i = 1, ..., d - 1 we have

 $x_i \notin P$ for all $P \in \operatorname{Ass} M/(x_1, \dots, x_{i-1})M$ with dim R/P = d - i.

Remark 2. Auslander and Buchsbaum defined in [AB] a system of parameters (x_1, \ldots, x_d) of *R* to be a reducing system of parameters of *M* if

$$e_M(x_1,\ldots,x_d) = \operatorname{length}(M/(x_1,\ldots,x_d)M)$$
$$-\operatorname{length}((x_1,\ldots,x_{d-1})M:x_d/(x_1,\ldots,x_{d-1})M).$$

160 Björn Mäurer and Jürgen Stückrad

This definition is equivalent to the definition given above if we pass from R to $\overline{R} := R / \operatorname{Ann}_R M$ and consider M as a \overline{R} -module in Definition 1 and use Corollary 4.8 in [AB]. Therefore it is clear that all definitions and results on reducing systems of parameters remain true in this more general context.

Remark 3. For every system of parameters (x_1, \ldots, x_d) of M there is a reducing system of parameters (y_1, \ldots, y_d) of M such that $(y_1, \ldots, y_d)R = (x_1, \ldots, x_d)R$, in particular, $(y_1, \ldots, y_d)M = (x_1, \ldots, x_d)M$ (see Proposition 4.9 in [AB]).

DEFINITION 4.

A sequence x_1, \ldots, x_r of elements of m is called *part of a* (*reducing*) system of parameters of *M*, if there are elements $x_{r+1}, \ldots, x_d \in \mathfrak{m}$ such that $(x_1, \ldots, x_r, x_{r+1}, \ldots, x_d)$ is a (reducing) system of parameters of *M*.

Remark 5.

- (1) A sequence $(x_1, ..., x_r)$ of elements of \mathfrak{m} with r < d is part of a system of parameters of M iff dim $M/(x_1, ..., x_r)M = d r$.
- (2) A sequence $(x_1,...,x_r)$ of elements of \mathfrak{m} with r < d is part of a reducing system of parameters of M iff for all i = 1,...,r we have $x_i \notin P$ for all $P \in Ass M/(x_1,...,x_{i-1})M$ with dim $R/P \ge d-i$.
- (3) Every regular sequence on M is part of a reducing system of parameters of M.

Remark 6.

- (1) We note that the following conditions are equivalent:
 - (i) *M* is a Cohen–Macaulay module, i.e. depth M = d.
 - (ii) Every system of parameters of *M* is a regular sequence on *M*.
 - (iii) There exists a system of parameters of M which is a regular sequence on M.
- (2) Assume that *M* is a Cohen–Macaulay module. If (x₁,...,x_r) is part of a system of parameters of *M* then *M*/(x₁,...,x_r)*M* is unmixed, more precisely, dim *R*/*P* = *d* − *r* for all *P* ∈ Ass*M*/(x₁,...,x_r)*M*. Therefore for a sequence (x₁,...,x_r) of elements of m the following conditions are equivalent:
 - (i) (x_1, \ldots, x_r) is a regular sequence on *M*.
 - (ii) (x_1, \ldots, x_r) is part of a reducing system of parameters of *M*.
 - (iii) (x_1, \ldots, x_r) is part of a system of parameters of *M*.

Let $x_1, \ldots, x_r \in \mathfrak{m}$. If (x_1, \ldots, x_r) is a regular sequence on M then (x_1, \ldots, x_r) is a regular sequence on M_P as well for all primes $P \in \operatorname{Supp} M \cap V(x_1, \ldots, x_r)$.

Lemma 7. Let $(x_1, ..., x_r)$ be part of a (reducing) system of parameters of M. Then $(x_1, ..., x_r)$ is part of a (reducing) system of parameters of M_P for all primes $P \in \text{Supp} M \cap V(x_1, ..., x_r)$ with dimR/P + dim $M_P = d$.

Proof. Let $P \in \text{Supp} M \cap V(x_1, ..., x_r)$ with $\dim R/P + \dim M_P = d$. An easy induction argument (induction on *r*) shows that we can restrict ourselves to the case r = 1 (and $\dim M_P \ge 2$).

Let $\mathfrak{q} \in \operatorname{Ass} M_P$ with $\dim R_P/\mathfrak{q} = \dim M_P(\dim R_P/\mathfrak{q} \ge \dim M_P - 1)$. Then $\mathfrak{q} = QR_P$ with $Q \in \operatorname{Ass} M$, $Q \subseteq P$, and we obtain

$$\dim R/Q \ge \dim R/P + \dim (R/Q)_P = \dim R/P + \dim R_P/\mathfrak{q}$$
$$= \dim R/P + \dim M_P = d$$
$$(\ge \dim R/P + \dim M_P - 1 = d - 1).$$

Therefore $x_1 \notin Q$ by our assumption. But then $x_1 \notin q$, i.e. (x_1) is part of a (reducing) system of parameters of M_P .

Lemma 8. If $x \in R$ is a zero divisor on M, then $P \in Ass M/xM$ for all minimal primes $P \in Ass M \cap V(x)$.

Proof. Let $P \in \operatorname{Ass} M \cap V(x)$ be minimal. Since $P \in \operatorname{Ass} M/xM$ iff $PR_P \in \operatorname{Ass} M_P/xM_P$ we may assume by localizing at P that $P = \mathfrak{m}$. Then $x \notin Q$ for all $Q \in \operatorname{Ass} M \setminus \{\mathfrak{m}\}$. Since R is noetherian there is an $i \in \mathbb{N}^+$ such that $0:_M x^i = 0:_M x^j$ for all $j \ge i$. Let $U := 0:_M x^i$. Then $U \neq 0$ (otherwise x would be a non zero divisor on M, contradicting our assumption).

Let $Q \in \text{Supp} M \setminus \{\mathfrak{m}\}$. Since $\text{Ass} M_Q = \{Q'R_Q | Q' \in \text{Ass} M, Q' \subseteq Q\}$, we have $x \notin \mathfrak{q}$ for all $\mathfrak{q} \in \text{Ass} M_Q$. Therefore $U_Q = 0 :_{M_Q} x^i = 0$ for all $Q \in \text{Supp} M \setminus \{\mathfrak{m}\}$, i.e. $\text{Supp} U = \{\mathfrak{m}\}$. Moreover,

$$U:_M x = 0:_M x^{i+1} = 0:_M x^i = U.$$

Let $\varphi: U \to M/xM$ be the inclusion $U \subseteq M$ followed by the canonical epimorphism MM/xM. Since

$$\ker \varphi = U \cap xM = x(U:_M x) = xU,$$

 φ induces a monomorphism $U/xU \to M/xM$. Now $U/xU \neq 0$ by Nakayama's lemma. Therefore $\emptyset \neq \operatorname{Ass} U/xU \subseteq \operatorname{Ass} U = \{\mathfrak{m}\}$, that means $\operatorname{Ass} U/xU = \{\mathfrak{m}\}$. This gives us the existence of a monomorphism $R/\mathfrak{m} \to U/xU \to M/xM$. Thus $\mathfrak{m} \in \operatorname{Ass} M/xM$.

Lemma 9. *Let* $Q \in \text{Supp} M$ *and assume that there is an* $x \in \mathfrak{m}$ *with* $x \notin Q$ *. Then there is a* $P \in \text{Supp} M$ *such that* $x \in P$, $Q \subset P$ *and* $\dim R/P = \dim R/Q - 1$.

Proof. Since (*x*) is part of a system of parameters of R/Q, there is a $P \in \text{Supp}(R/Q)/x(R/Q) = \text{Supp}R/(Q + xR) = V(Q + xR) \subset V(Q)$ with $\dim R/P = \dim R/(Q + xR) = \dim R/Q - 1$. Since $0 \neq M_Q \cong (M_P)_{QR_P}$ we have $M_P \neq 0$, i.e. $P \in \text{Supp}M$.

COROLLARY 10.

Let $Q \in \text{Supp} M$ and let $x_1, \ldots, x_r \in \mathfrak{m}$. Then there is a $P \in \text{Supp} M \cap V(x_1, \ldots, x_r)$ such that $Q \subseteq P$ and $\dim R/P \ge \dim R/Q - r$.

The proof follows immediately from Lemma 9 by induction on r.

2. Main results

Theorem 11. Let (y_1, \ldots, y_d) be a reducing system of parameters of M. M is a Cohen-Macaulay module iff y_d is a non zero divisor on $M/(y_1, \ldots, y_{d-1})M$.

Proof. The implication ' \Rightarrow ' is clear, since every system of parameters in a Cohen-Macaulay module is a regular sequence (see Remark 6(1)).

We will prove the opposite implication by induction on *d*, where the case d = 1 is clear. Let $d \ge 2$ and assume that the statement is true for modules with a dimension strictly less than *d*.

Assume that y_d is a non zero divisor on $M/(y_1, \ldots, y_{d-1})M$. By our induction hypothesis, M/y_1M is a Cohen–Macaulay module and therefore it remains to show that y_1 is a non zero divisor on M. Suppose this is not the case. Let P be minimal in $\operatorname{Ass} M \cap V(y_1)$. Since (y_1) is part of a reducing system of parameters of M, we have $\dim R/P \le d-2$. By Lemma 8, $P \in \operatorname{Ass} M/y_1M$ and therefore $\dim R/P = \dim M/y_1M = d-1$ (see Remark 6(2)), a contradiction.

Lemma 12. *Let* (*x*) *be part of a system of parameters of M*. *If* $d \ge 2$, *the following conditions are equivalent:*

- (i) (x) is part of a reducing system of parameters of M.
- (ii) M_P is a one-dimensional Cohen–Macaulay module over R_P for all $P \in \text{Supp} M \cap V(x)$ satisfying dim R/P = d 1.
- (iii) There is a $y \in \mathfrak{m}$ such that (y) is part of a reducing system of parameters of M and yM = xM.
- (iv) There is a $y \in \mathfrak{m}$ such that (y) is part of a reducing system of parameters of M and $\operatorname{Supp} M \cap V(x) \subseteq V(y)$.

Proof. The implications (i) \Rightarrow (iii) and (iii) \Rightarrow (iv) are obvious.

(iv) \Rightarrow (ii): Let (*y*) be part of a reducing system of parameters of *M* with $\text{Supp} M \cap V(x) \subseteq V(y)$ and let $P \in \text{Supp} M \cap V(x)$ with $\dim R/P = d - 1$. Then $y \in P$. Now $y \notin Q$ for all $Q \in \text{Ass } M$ with $\dim R/Q \ge d - 1$ by our assumption. Thus $P \notin \text{Ass } M$ and therefore $PR_P \notin \text{Ass } M_P (\neq \emptyset)$ from which

 $0 < \operatorname{depth} M_P \le \operatorname{dim} M_P \le \operatorname{dim} M - \operatorname{dim} R/P = 1,$

i.e. depth $M_P = \dim M_P = 1$.

(ii) \Rightarrow (i): Let $P \in \operatorname{Ass} M$ with $\dim R/P \ge d - 1$. If $\dim R/P = d$, then $x \notin P$ since (x) is part of a system of parameters of M. Let $\dim R/P = d - 1$. If $x \in P$, then M_P is a Cohen–Macaulay module over R_P with $\dim M_P = 1$. Therefore $PR_P \notin \operatorname{Ass} M_P$ contradicting $P \in \operatorname{Ass} M$.

Thus $x \notin P$ for all $P \in Ass M$ with dim $R/P \ge d-1$, i.e. (x) is part of a reducing system of parameters of M by Remark 5(2).

Remark 13. Let $x_1, \ldots, x_r, y_1, \ldots, y_r$ be elements of m with

 $\operatorname{Supp} M \cap V(x_1, \ldots, x_r) \subseteq V(y_1, \ldots, y_r)$

(which is equivalent to $\operatorname{Supp} M/(x_1, \ldots, x_r)M \subseteq \operatorname{Supp} M/(y_1, \ldots, y_r)M$).

- (a) If (y₁,...,y_r) is part of a system of parameters of *M* then the same is true for (x₁,...,x_r). This follows immediately from Remark 5(1).
- (b) If (y₁,...,y_r) is a regular sequence on *M* then the same is true for (x₁,...,x_r). This follows from Corollary 2 of [PSS].

The equivalence (i) \Leftrightarrow (iv) of our next theorem shows that a similar statement holds for parts of reducing systems of parameters of *M*, provided r < d. (For r = d this is not true in general, see Remark 3.)

Theorem 14. Let $(x_1, ..., x_r)$ be part of a system of parameters of M, where $0 \le r < d$. Then the following conditions are equivalent:

- (i) (x_1, \ldots, x_r) is part of a reducing system of parameters of M.
- (ii) M_P is an r-dimensional Cohen–Macaulay module over R_P for all $P \in \text{Supp} M \cap V(x_1, \dots, x_r)$ satisfying dim $R/P = \dim M r$.
- (iii) There is a part $(y_1, ..., y_r)$ of a reducing system of parameters of M such that $(y_1, ..., y_r)M = (x_1, ..., x_r)M$.
- (iv) There is a part $(y_1, ..., y_r)$ of a reducing system of parameters of M such that $\operatorname{Supp} M \cap V(x_1, ..., x_r) \subseteq V(y_1, ..., y_r)$.

Proof. We use induction on *r*. For r = 0, there is nothing to show and for r = 1 the statement follows from Lemma 12. So let $r \ge 2$.

The implications (i) \Rightarrow (iii) and (iii) \Rightarrow (iv) are obvious.

(iv) \Rightarrow (ii): Let $\overline{M} := M/y_1 M$. Take $P \in \text{Supp} M \cap V(x_1, \dots, x_r) \subseteq \text{Supp} M \cap V(y_1, \dots, y_r)$ with dim R/P = d - r. Since dim $\overline{M} = d - 1$, $\overline{M}_P \cong M_P/y_1 M_P$ is an (r - 1)-dimensional Cohen–Macaulay module (over R_P) by the induction hypothesis ((i) \Rightarrow (ii)). Therefore it is sufficient to show that y_1 is a non zero divisor on M_P .

Suppose this is not the case. Then by Lemma 8 there is a $\mathfrak{q} \in \operatorname{Ass} M_P$ with $\mathfrak{q} \in \operatorname{Ass} \overline{M}_P$. Therefore dim $R_P/\mathfrak{q} = r - 1$ by Remark 6(2). Now $\mathfrak{q} = QR_P$ with $Q \in \operatorname{Supp} \overline{M} = \operatorname{Supp} M \cap V(y_1)$ and $Q \subseteq P$. Then $Q \in \operatorname{Ass} M$ and we have

$$\dim R/Q \ge \dim R/P + \dim (R/Q)_P = \dim R/P + \dim R_P/\mathfrak{q} = d-1$$

Therefore $y_1 \notin Q$ (since (y_1, \ldots, y_r) is part of a reducing system of parameters of *M*), a contradiction.

(ii) \Rightarrow (i): Let $\overline{M} := M/x_1M$ and take $P \in \text{Supp}\overline{M} \cap V(x_2, \dots, x_r) = \text{Supp}M \cap V(x_1, \dots, x_r)$ with $\dim R/P = \dim \overline{M} - (r-1) = \dim M - r$. Then M_P is an *r*-dimensional Cohen–Macaulay module (over R_P) by our assumption and (x_1, \dots, x_r) is a system of parameters of M_P and hence a regular sequence on M_P by Remark 6(1). But then $\overline{M}_P \cong M_P/x_1M_P$ is an (r-1)-dimensional Cohen–Macaulay module (over R_P).

By the induction hypothesis $(x_2, ..., x_r)$ is part of a reducing system of parameters of \overline{M} and therefore it remains to show that $x_1 \notin Q$ for all $Q \in \operatorname{Ass} M$ with dimR/Q = d - 1.

Suppose this is not the case. Choose $Q \in Ass M$ with $\dim R/Q = d - 1$ and $x_1 \in Q$. By Corollary 10 there is a prime $P \in \text{Supp} M \cap V(x_2, \dots, x_r)$ such that $Q \subseteq P$ and $\dim R/P \ge d - 1 - (r-1) = d - r$. But then $P \in \text{Supp} M \cap V(x_1, \dots, x_r)$ (since $x_1 \in Q \subseteq P$) and therefore $\dim R/P \le d - r$, i.e. $\dim R/P = d - r$. By our assumption, M_P is an *r*-dimensional Cohen–Macaulay module. Since $QR_P \in \text{Ass} M_P$ we therefore have

$$r = \dim M_P = \dim R_P / QR_P = \dim (R/Q)_P$$
$$\leq \dim R / Q - \dim R / P = d - 1 - (d - r)$$
$$= r - 1$$

(see Remark 6(2)), a contradiction.

COROLLARY 15.

Let $(x_1,...,x_r)$ be part of a reducing system of parameters of M. If r < d, then $(x_{\pi(1)},...,x_{\pi(r)})$ is part of a reducing system of parameters of M for any permutation π of $\{1,...,r\}$.

We note that the statement of this corollary is not true in general if r = d, see the following Example 16.

Example 16. Let R := K[X, Y, Z], where K is a field and X, Y, Z are indeterminates. For

M := R/(XY, XZ)R and $x_1 := Y, x_2 := X + Y + Z$,

 (x_1, x_2) is a system of parameters of M, but not a reducing system of parameters. (x_2, x_1) is a reducing system of parameters of M (not a regular sequence of M).

Finally we define the following.

DEFINITION 17.

$$\mathscr{CM}(M) := \{P \in \operatorname{Supp} M | \dim R/P + \dim M_P = d \text{ and } M_P \text{ is}\}$$

a Cohen–Macaulay module over R_P

(the strong Cohen–Macaulay locus of Supp *M*) and for $0 \le r \le d$

$$\mathscr{CM}_r(M) := \{ P \in \mathscr{CM}(M) | \dim M_P = r \}.$$

Remark 18.

(1) We have

(i) $\mathscr{CM}_0(M) = \operatorname{Assh} M$ and, if $d \ge 1$, (ii) $\mathscr{CM}_1(M) = \{P \in \operatorname{Supp} M | \dim R/P = d-1\} \setminus \operatorname{Ass} M$, (iii) $\mathscr{CM}(M) = \bigcup_{r=0}^d \mathscr{CM}_r(M)$.

(2) The following conditions are equivalent

(i) *M* is a Cohen–Macaulay module,
(ii) *CM*(*M*) = Supp*M*,
(iii) m ∈ *CM*(*M*).

(3) If Supp *M* is equidimensional and catenarian then $\mathcal{CM}(M)$ coincides with the ordinary Cohen–Macaulay locus of Supp *M*. This is the case, for example, when dim $M \leq 1$ or when *R* is an epimorphic image of a local Cohen–Macaulay ring and *M* is equidimensional.

PROPOSITION 19.

For $r \in \mathbb{N}$ *,* r < d*, we have*

$$\mathscr{CM}_r(M) = \{P | P \in \operatorname{Ass} M/(x_1, \dots, x_r)M, \dim R/P = d - r, \\ (x_1, \dots, x_r) \text{ part of a reducing system of parameters of } M\}.$$

Proof. By Theorem 14 we have ' \supseteq ' and equality holds (trivially) for r = 0. Therefore it remains to verify the validity of the inclusion ' \subseteq ' for $r \ge 1$.

Let $P \in \mathscr{CM}_r(M)$. Since M_P is a Cohen–Macaulay module with dim $M_P = r \ge 1$, we have $PR_P \notin \operatorname{Ass} M_P$ and hence $P \notin \operatorname{Ass} M$. Moreover, dim $R/P = d - \dim M_P = d - r$.

Let $Q \in \operatorname{Ass} M$ with $\dim R/Q \ge d-1$. Then $P \not\subseteq Q$ since P = Q is impossible ($P \notin \operatorname{Ass} M$) and $P \subset Q$ would imply $\dim R/P = d$ contradicting again ' $P \notin \operatorname{Ass} M$ '. Therefore we can find an $x_1 \in P$ with $x_1 \notin Q$ for all $Q \in \operatorname{Ass} M$ with $\dim R/Q \ge d-1$. By construction, (x_1) is part of a reducing system of parameters of M and a regular sequence on M_P by Lemma 7 and Remark 6(2).

If r > 1 we continue this procedure by passing to M/x_1M and we can construct elements $x_1, \ldots, x_r \in P$ inductively on r such that (x_1, \ldots, x_r) forms a part of a reducing system of parameters of M and a regular sequence on M_P . Let $\overline{M} := M/(x_1, \ldots, x_r)M$. Since $\dim \overline{M}_P = \dim M_P/(x_1, \ldots, x_r)M_P = \dim M_P - r = 0$, P is minimal in Supp \overline{M} and therefore $P \in \operatorname{Ass} \overline{M}$.

References

- [AB] Auslander M and Buchsbaum D A, Codimension and multiplicity, Ann. Math. 68 (1958) 625–657
- [E] Eisenbud D, Commutative algebra with a view toward algebraic geometry (New York: Springer-Verlag) (1995)
- [PSS] Patil D P, Storch U and Stückrad J, A criterion for regular sequences, Proc. Indian Acad. Sci. (Math. Sci.) 114 (2004) 103–106