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Abstract. This article is an elaboration of a talk given at an international confer-
ence on Operator Theory, Quantum Probability, and Noncommutative Geometry held
during December 20–23, 2004, at the Indian Statistical Institute, Kolkata. The lecture
was meant for a general audience, and also prospective research students, the idea of
the quantum cohomology based on the Gromov–Witten invariants. Of course there are
many important aspects that are not discussed here.
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1. Introduction

Quantum cohomology is a new mathematical discipline influenced by the string theory
as a joint venture of physicists and mathematicians. The notion was first proposed by
Vafa [V], and developed by Witten [W] and others [B]. The theory consists of some new
approaches to the problem of constructing invariants of compact symplectic manifolds
and algebraic varieties. The approaches are related to the ideas of a(1+1)-dimensional
topological quantum field theory, which indicate that the general principle of constructing
invariants should be as follows: The invariants of a manifold M should be obtained by
integrating cohomology classes over certain moduli spaceM associated toM. In our case
the manifold is a symplectic manifold(M,ω), and the moduli spaceM is the space of
certainJ-holomorphic spheresσ : CP1 −→ M in a given homology classA∈ H2(M;Z).
The relevant cohomology classes onM are the pullbackse∗a of the cohomology classes
a ∈ H∗(M,Z) under the evaluation mapse: M −→ M given bye(σ) = σ(z) for fixed
z∈ CP1. Then the integration of a top dimensional product of such classes (or equiva-
lently, the evaluation of the top dimensional form on the fundamental class[M ]) gives
rise to the Gromov–Witten invariant

∫

M
e∗a1∧·· ·∧e∗ap = 〈e∗a1∧·· ·∧e∗ap, [M ]〉.

These invariants are independent of the choices ofz1, . . . ,zp in CP1 used in their defini-
tions, and can be interpreted as homomorphisms

ΦA: H∗(M,Z)⊗·· ·⊗H∗(M,Z) −→C

given by

ΦA(α1, . . . ,αp) =

∫

M
e∗a1∧·· ·∧e∗ap,
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wherea j is the Poincaré dual ofα j .



Gromov–Witten invariants and quantum cohomology 461

The invariantΦA counts the number of intersection points (with signs of their orienta-
tions) of the image of thep-fold evaluation mapσ 7→ (σ(z1), . . . ,σ(zp)) ∈ Mp with the
cycles representing theα j , where the dimension of the homology class

α1×·· ·×αp

is chosen so that if all the intersections were transversal,there would be only a finite
number of such points. This is simply the number ofJ-holomorphic spheres in the given
homology classA which meets the cycles representingα1, . . . ,αp.

The importance of theJ-holomorphic spheres and the Gromov–Witten invariants is that
they may be used to define a quantum deformation of the cup product in the cohomology
ring H∗(M) of a compact symplectic manifoldM making it a quantum cohomology ring
QH∗(M).

The description of the Gromov–Witten invariants can be given in terms of a general
Riemann surfaceΣ (see [RT]). However, we have made this expository introduction some-
what simpler by takingΣ = S2. The results that guided our approach are to be seen in the
work of MacDuff and Salamon [MS2].

2. JJJ-Holomorphic curves

A symplectic manifold(M,ω) is a smooth manifoldM of dimension 2n with a symplectic
structureω on it which is a closed differential 2-formω such that the volume formωn is
nowhere vanishing onM. The basic example is the Euclidean spaceR2n with the constant
symplectic form

ω0 = dx1∧dy1+dx2∧dy2+ · · ·+dxn∧dyn,

where(x1, . . . ,xn,y1, . . . ,yn) are coordinates inR2n. The next basic example is provided
by the phase space of a Hamiltonian system, that is, by the cotangent bundleT∗N of any
n-manifoldN with a symplectic structure which is locally the pullback ofthe structureω0

onR2n. A sympletic manifold cannot be odd dimensional.
A symplectic diffeomorphismφ : (M1,ω1)−→ (M2,ω2) between two symplectic man-

ifolds is a diffeomorphismφ : M1 −→ M2 such thatφ∗ω2 = ω1. Symplectic geometry is
quite different from Riemannian geometry, and also from Kählerian geometry. The Dar-
boux theorem says that locally any two symplectic manifoldsof the same dimension are
diffeomorphic. Therefore locally all symplectic manifolds are the same, and there is no
local invariant in symplectic geometry, like, for example,the curvature in Riemannian
geometry. The only possible invariants have to be global.

The Darboux theorem makes it difficult to study the global structure on a symplec-
tic manifold. Although variational techniques may be employed to tackle some global
problems, it is the theory ofJ-holomorphic curves of Gromov that applies to many
problems of symplectic manifolds. We have no other theory toinvestigate these global
questions.

An almost complex structure on a manifoldM is a complex structure on its tangent
bundleTM, that is, an endomorphismJ: TM −→ TM such thatJ2 =−Id. Then,J makes
TM a complex vector bundle, where the complex vector space structure on each fibre
TxM is given by(a+

√
−1b) · v = av+bJv. If M is already a complex manifold, which

is a manifold with holomorphic changes of coordinates, thenthe tangent bundleTM is a
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complex vector bundle, and its almost complex structureJ is just multiplication by
√
−1.

The standard almost complex structurej onR2n is given by

j(∂/∂xk) = ∂/∂yk, j(∂/∂yk) =−∂/∂xk,

wherezk = xk+
√
−1yk are the coordinates inCn.

An almost complex structureJ on a symplectic manifold(M,ω) is calledω-tamed if
ω(v,Jv)> 0 for every nonzero vectorv∈ TxM. This means that the restriction ofω to the
complex line inTxM spanned byv andJv verifies the same condition, and soω restricts
to a non-degenerate form on each such line. An almost complexstructureJ is calledω-
compatible if it isω-tamed, and

ω(Jv,Jw) = ω(v,w) for all v,w∈ TM.

The spaceJ (M,ω) of all ω-compatible almost complex structures on(M,ω) is non-
empty and contractible, because associated with the tangent bundleTM we have a bun-
dle J (M,ω) −→ M with contractible fibre Sp(2n,R)/U(n). SinceJ (M,ω) is path-
wise connected, the complex bundles(TM,J) are isomorphic for different choices of
J ∈ J (M,ω). Therefore the Chern classesci(M) of these bundles do not depend onJ.
The assertions also apply toω-tamed almost complex structures (in this case the associ-
ated bundle has fibreGL(2n,R)/U(n)).

A smooth mapφ : (M,J) −→ (M′,J′) between almost complex manifolds is called
(J,J′)-holomorphic if dφx: TxM −→Tφ(x)M

′ is complex linear, that is, dφx◦Jx= J′φ(x)◦dφx

for all x ∈ M. These conditions are exactly the Cauchy–Riemann equations in the case
when(M,J) and(M′,J′) are subsets ofCn. An almost complex structureJ onM is called
integrable if it arises from a complex structure onM; in other words, ifM admits an atlas
whose coordinate charts are(J, j)-holomorphic maps, wherej denotes the standard com-
plex structure onCn. If dim M = 2, a fundamental theorem says that any almost complex
structureJ onM is integrable. However, the theorem is not true in higher dimensions. The
non-integrability ofJ is measured by the Nijenhuis tensorNJ (see [MS1]).

A J-holomorphic curve in(M,J) is a (J0,J)-holomorphic mapσ : Σ −→ M, where
(Σ,J0) is a Riemann surface (complex manifold of dimension 1) with complex structure
J0. Very often we take(Σ,J0) as the Riemann sphereS2, and in this case aJ-holomorphic
curve is referred to as aJ-holomorphic sphere.

If σ is an embedding andC is the image ofσ , then σ is called aJ-holomorphic
parametrization ofC. In this caseC is 2-submanifold ofM with J-invariant tangent bundle
TC so that each tangent space is a complex line inTM. Conversely, any 2-submanifoldC
of M with a J-invariant tangent bundle has aJ-holomorphic parametrizationσ , because
the restriction ofJ to C is integrable.

For anω-tamed almost complex structureJ on a symplectic manifold(M,ω), the image
of J-holomorphic parametrization is a symplectic 2-submanifold of M with J-invariant
tangent spaces. Conversely, given an oriented 2-submanifold C of M, one can construct
anω-tamedJ such thatTC is J-invariant (first defineJ onTC and then extend it to TM).
One may contrast this situation with that in complex geometry where one often defines
a curve as the set of common zeros of a number of holomorphic polynomials. Such an
approach makes no sense in the case when the almost complex structure is non-integrable,
since there may not exist holomorphic functions(M,J)−→C whenJ is non-integrable.
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3. Moduli spaces

Let (M,J) be an almost complex manifold without boundary, andΣ be a Riemann surface
of genusg with complex structureJ0. Then a moduli spaceM (A,J) is the space of all
simple J-holomorphic curvesσ : (Σ,J0) −→ (M,J) which represent a given homology
classA∈ H2(M;Z) (i.e. σ∗[Σ] = A), with theCr -topology,r ≥ 0. Our first problem is to
provide a finite dimensional smooth structure on this space.

Note that a curveσ is simple, if it is not multiply-covered, that is, it is not a com-
position of a holomorphic branched covering(Σ,J0) −→ (Σ′,J′0) of degree> 1 and a
J-holomorphic mapΣ′ −→ M. We avoid multiply-covered curves because they may be
singular points in the moduli spaceM (A,J). Every simple curveσ has an injective point
z∈ Σ, which is a regular point ofσ (i.e. dσz 6= 0) such thatσ−1σ(z) = {z}. Moreover, the
set of injective points is open and dense inΣ [MS2].

The spaceS =C∞(Σ,M,A) of smooth mapsσ : Σ −→ M that are somewhere injective,
and representA ∈ H2(M;Z) may be looked upon as an infinite dimensional manifold
whose tangent space atσ ∈ S is given by

Tσ S =C∞(σ∗TM),

which is the vector space of all smooth vector fields ofM alongσ .
We can viewσ∗TM as a complex vector bundle. Therefore we have a splitting of the

space of 1-forms

Ω1(σ∗TM) = Ω1,0(σ∗TM)⊕Ω0,1(σ∗TM),

where Ω1,0 and Ω0,1 are respectively vector spaces ofJ-linear andJ-anti-linear 1-
forms with values inσ∗TM. Since dσ ∈ Ω1(σ∗TM), we can decompose dσ =
∂J(σ)+ ∂J(σ), where

∂J(σ) =
1
2
(dσ − J◦dσ ◦ J0),

∂ J(σ) =
1
2
(dσ + J◦dσ ◦ J0)

are respectivelyJ-linear andJ-anti-linear parts of dσ .
If E −→ S is the infinite dimensional vector bundle whose fibreEσ over σ ∈ S is

the spaceΩ0,1(σ∗TM), then∂ J is a section of the bundleE −→ S . Moreover, theJ-
holomorphic curves are the zeros of the section∂ J, that is, ifZ denotes the zero section
of the bundle, then

M (A,J) = (∂ J)
−1(Z).

This will be a manifold if∂ J: S −→ E is transversal toZ, that is, the image of

d∂ J(σ): Tσ S −→ T(σ ,0)E

is complementary to the tangent space of the zero-sectionZ for everyσ ∈ M (A,J); in
other words, the linear operatorDσ = πσ ◦d∂ J(σ), where

πσ : T(σ ,0)E = TσS ⊕Eσ −→ Eσ

is the projection, is surjective for everyσ ∈ M (A,J).
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Explicit expression of the operator

Dσ : C∞(σ∗TM)−→ Ω0,1(σ∗TM),

can be obtained by differentiating the local expressions of∂ J(σ) in the direction of a
vector field alongσ . These expressions show that the first order terms make up theusual
Cauchy–Riemann operator for mapsC−→Cn =R2n. ThereforeDσ is a first-order elliptic
differential operator, and hence it is Fredholm. Recall that a bounded operatorF : X −→Y
between Banach spacesX andY is a Fredholm operator ifF has finite dimensional kernel
and cokernel, andF(X) is closed. The index ofF is defined by

indexF = dim kerF −dim cokerF.

These operators form an open subsetF (X,Y) of the space of bounded operatorsB(X,Y)
with the norm topology. The Fredholm index is constant on each connected component
of F (X,Y), and therefore indexF is not altered ifF varies continuously.

Although the domain and range of the Fredholm operatorDσ are complex vector
spaces,Dσ is not complex linear, becauseJ is not integrable. It will appear from the com-
putations forDσ mentioned above that the complex anti-linear part ofDσ has order 0.
Then, by multiplying the anti-linear part by a constant which tends to 0, we can find a
homotopy ofDσ through Fredholm operators. The final Fredholm operator of the homo-
topy commutes withJ, and is a Cauchy–Riemannian operator. It determines a holomor-
phic structure on the complex vector bundleσ∗TM. Therefore we have by the Riemann–
Roch theorem ([GH], p. 243)

indexDσ = n(2−2g)+2c1(σ∗TM)[Σ] = n(2−2g)+2c1(A),

wherec1 is the first Chern class of the complex bundle(TM,J), andc1(σ∗TM)[Σ] =
(σ∗c1)[Σ] = c1(σ∗[Σ]) = c1(A).

If the operatorDσ is surjective for everyσ ∈ M (A,J), then it follows from the infi-
nite dimensional implicit function theorem thatM (A,J) is a finite dimensional manifold
whose tangent space atσ is kerDσ .

We suppose that the space ofω-compatible almost complex structuresJ =J (M,ω)
has been endowed with theC∞-topology. LetJr be the subspace ofJ consisting of
those structuresJ for whichDσ is surjective for allσ ∈ M (A,J).

Theorem 3.1.

(a) If J ∈ Jr , thenM (A,J) is a smooth manifold with a natural orientation such that

dimM (A,J) = n(2−2g)+2c1(A).

(b) The subsetJr is residual inJ .

Recall that a subset of a topological spaceX is residual if it is the intersection of a
countable family of open dense subsets ofX. A point of X is called generic if it belongs
to some residual subset ofX.

Proof. Part (a) follows from the above discussion, except for the orientation. The orien-
tation follows from the fact that a Fredholm operatorD between complex Banach spaces
induces a canonical orientation on its determinant line

detD = Ωp(kerD)⊗Ωq(kerD∗),
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wherep = dimkerD andq = dimcokerD, providedD is complex linear. As described
above, we may suppose by using a homotopy of order 0 that our Fredholm operatorDσ
is complex linear with cokerDσ = 0. Therefore its determinant line, and hence kerDσ =
Tσ M (A,J), has a canonical orientation. These arguments are due to Ruan [R], also note
that earlier Donaldson [D] used similar arguments for the orientation of Yang–Mills mod-
uli spaces.

Part (b) uses an infinite dimensional version of Sard–Smale theorem which is due to
Smale [S]. A non-linear smooth mapf : X −→Y between Banach spaces is a Fredholm
map of indexk, if the derivative dfx: X −→ Y is a linear Fredholm operator of indexk
for eachx ∈ X. A point y ∈ Y is a regular value off if d fx is surjective for eachx ∈
f−1(y), otherwisey is called a critical value off . Then the Sard–Smale theorem says
that if f : X −→ Y is a Ck Fredholm map between seperable Banach spaces andk >
max(0, indexf ), then the set of regular values off is residual inY. The theorem remains
true if X andY are Banach manifolds, instead of Banach spaces. It follows from the
implicit function theorem for Banach spaces that ify∈Y is a regular value thenf−1(y) is
a smooth submanifold ofX. Moreover, if f−1(y) is finite dimensional, then its dimension
is equal to the Fredholm index off .

For the completion of the proof of the theorem, we need to refine the spaceS using
the SobolevWk,p-norm which is given by the sum of theLp-norms of all derivatives of
σ ∈ S up to orderk,

‖σ‖k,p = ∑
|r|≤k

Lp(∂ r σ),

where r is a multi-index and|r| is its order. It can be shown that the Sobolev space
Wk,p(Σ,M), which is the space consisting of all mapsΣ −→ M whosek-th order deriva-
tives are of classLp (and which represent the classA ∈ H2(M;Z)), is the completion
of the spaceS with respect to the SobolevWk,p-norm (see Appendix B in [MS2]). It
appears that we must assume the conditionkp> 2 in order for the spaceWk,p(Σ,M) to
be well-defined. Under this condition, the Sobolev embedding theorem says that there is
a continuous embedding ofWk,p(Σ,M) into the space of continuous mapsC0(Σ,M), and
the multiplication theorem says that the product of two mapsof classWk,p is again a map
of the same class.

At the same time we restrict the space of almost complex structuresJ (M,ω), intro-
duced earlier. LetJ ℓ, ℓ ≥ 1, be the space of all almost complex structures of classCℓ

which are compatible withω , with theCℓ topology. We shall chooseℓ later according to
our requirement.

ThenJ ℓ is a smooth separable Banach manifold. Let End(TM,J,ω) −→ M be the
bundle whose fibre overp ∈ M is the space of linear endomorphismsX: TpM −→ TpM
such that

XJ+ JX= 0, ω(Xv,w)+ω(v,Xw) = 0, for v,w∈ TpM.

Then the tangent spaceTJJ ℓ at J is the space of sections of this bundle.
It can be proved by elliptic bootstrapping methods (see [MS2], Appendix B for details)

that if J ∈ J ℓ with ℓ ≥ 1, then aJ-holomorphic curveσ : Σ −→ M of classWℓ,p with
p > 2 is also of classWℓ+1,p. In particular, ifJ is smooth andσ is of classCℓ, thenσ
is also smooth. Thus ifk ≤ ℓ+1 andJ ∈ J ℓ, then the moduli space ofJ-holomorphic
curves of classWk,p does not depend onk.
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In the context of the Sobolev space ofWk,p-mapsσ : Σ −→ M for some fixedp > 2,
we have the Banach space bundleE p −→Wk,p(Σ,M) whose fibre overσ ∈ Wk,p(Σ,M)
is the space

E p
σ = Lp(Λ0,1T∗Σ⊗J σ∗TM)

of complex anti-linear 1-forms onΣ of classLp taking values inσ∗TM. The non-linear
Cauchy–Riemann equations determine a section∂ J of this bundle, and the derivative of
∂ J atσ gives rise to the operator

Dσ : Wk,p(σ∗TM)−→Wk−1,p(Λ0,1T∗Σ⊗J σ∗TM).

The explicit formula forDσ is given by

Dσ ξ =
1
2
(∇ξ + J(σ)∇ξ ◦ J0)+

1
8

NJ(∂J(σ),ξ ),

where∇ is the Hermitian connection onM, andNJ is the Nijenhuis tensor (see [M1]).
The first part has order 1 and commutes withJ, while the second has order 0 and anti-
commutes withJ.

The ellipticity ofDσ can be established from the estimate

‖ξ‖W1,p ≤ c0(‖Dσ ξ‖Lp + ‖ξ‖Lp),

which follows from theLp-estimate for Laplace operator (the Calderson–Zygmund
inequality) (see Appendix B in [MS2]). ThereforeDσ is a Fredholm operator of positive
index, by a previous argument in a similar situation.

The following space is also a smooth Banach manifold

M ℓ(A,J ℓ) = {(σ ,J) ∈Wk,p(Σ,M)×J ℓ|∂ J(σ) = 0}.

The tangent spaceT(σ ,J) M ℓ(A,J ℓ) is the space of all pairs(X,Y) such that

Dσ X+
1
2

Y(σ)◦dσ ◦ J0 = 0.

Let π : M ℓ(A,J ℓ) −→ J ℓ be the projection. Thenπ−1(J) = M ℓ(A,J), and the
derivative ofπ at (σ ,J),

dπ(σ ,J): T(σ ,J)M
ℓ(A,J ℓ)−→ TJJ

ℓ

is just the projection(X,Y) 7→Y. It follows that dπ(σ ,J) is a Fredholm operator having
the same index asDσ . Moreover, a regular valueJ of π is an almost complex structure
such thatDσ is surjective for allJ-holomorphic spheresσ ∈ π−1(J).

We denote the set of regular values ofπ by J ℓ
r . By the Sard–Smale theorem (stated

earlier), the setJ ℓ
r is residual inJ ℓ with respect to theCℓ topology wheneverℓ−2≥

indexDσ = indexπ , becauseπ is of classCℓ−1.
Let λ be a positive number, andJ ℓ

r,λ be the set of almost complex structuresJ∈ J =

J (M,ω) such thatDσ is surjective for everyJ-holomorphic sphereσ with ‖σ‖L∞ ≤ λ .
Clearly, the intersection of the setsJ ℓ

r,λ over all λ > 0 is the setJr of part (b) of the
theorem.

The setJr is residual, because eachJ ℓ
r,λ is open and dense inJ with respect to the

C∞ topology. We omit the details which may be found in§3.4 of [MS2]. ✷
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The above theorem can be extended further in order to understand how the manifolds
M (A,J) depend onJ ∈ Jr . Two almost complex structuresJ0 andJ1 in Jr are called
smoothly homotopic if there is a smooth path[0,1]−→ J , t 7→ Jt , from J0 to J1.

Theorem 3.2. LetJ be path-connected, and J0, J1 ∈Jr . LetJ (J0,J1) be the space of
all smooth homotopies from J0 to J1. Then there is a dense set

Jr(J0,J1)⊂ J (J0,J1)

such that for every{Jt} ∈ Jr(J0,J1), the space

M (A,{Jt}t∈[0,1]) = {(t,σ)|σ ∈ M (A,Jt)}

is a smooth manifold of dimension n(2−2g)+2c1(A)+1 with a natural orientation and
with a smooth boundary which is given by

∂M (A,{Jt}t∈[0,1]) = M (A,J1)−M (A,J0),

where the negative sign indicates the reversed orientation.

Thus moduli spacesM (A,J0) andM (A,J1) are oriented cobordant. We may call the
elements of the setJr(J0,J!) regular homotopies.

4. Compactness

The manifoldM (A,J) will not serve any purpose unless some kind of compactness is
established for it.

For simplification we suppose thatM (A,J) is the moduli space ofJ-holomorphic
spheres. The Rellich’s theorem says that the inclusion map

Wk+1,p(S2,M)−→Wk,p(S2,M)

is compact for allk and p (this means that a sequence{σn} which is bounded in
the domainWk+1,p(S2,M) possesses a subsequence which is convergent in the range
Wk,p(S2,M)). Moreover, ifk−2/p> m+α where 0< α < 1, thenWk,p(S2,M) embeds
compactly into the Hölder spaceCm+α(S2,M). Using this one gets the main elliptic
regularity theorem, which contains a result of compactness.

Theorem 4.1. If k ≥ 1, p> 2, andσ ∈Wk,p(S2,M) with ∂ Jσ = 0, thenσ ∈C∞(S2,M).

Moreover, for every integer m> 0, every subset of∂ J
−1
(0) which is bounded in

Wk,p(S2,M) has compact closure in Cm(S2,M).

The details are in [M2].
An ω-tamed almost complex structureJ determines a Riemannian metric onM,

〈v,w〉J =
1
2
[ω(v,Jw)+ω(w,Jv)].

The energy of aJ-holomorphic sphereσ : S2 −→ M with respect to this metric is

E(σ) =

∫

S2
|dσ |2J.



468 Amiya Mukherjee

The groupG= PSL(2,C) acts onC∪{∞} = C∞ by Möbius transformationsφL: C∞ −→
C∞,

φL(z) =
az+b
cz+d

, L =

(
a b
c d

)
∈ SL(2,C).

We may identifyS2 with CP1 ≃C∞ by a stereographic projectionπ , and different choices
of π correspond to the action ofSO(3)≃ SU(2)/{±Id} ⊂ PSL(2,C) = G onCP1 = C∞.
Then aJ-holomorphic sphereS2 −→ M gets identified with a smoothJ-holomorphic
curveσ : C −→ M such that the mapC−{0} −→ M given byz 7→ σ(1/z) extends to a
smooth mapC−→ M. The space of such maps remain invariant under composition with
Möbius transformationsφL: C∞ −→ C∞. We say that a sequence of suchJ-holomorphic
curvesσn: C−→ M converges onC∞ if both the sequences{σn(z)} and{σn(1/z)} con-
verge uniformly with all derivatives on compact subsets ofC.

It can be shown that

E(σ) =
∫

C

σ∗ω = ω(A)

for all J-holomorphic curvesσ : C −→ M (J is ω-tamed), whereω is considered as an
integral valued form. Thus theL2-norm of the derivative ofσ satisfies a uniform bound
which depends only on the homology classA represented byσ . This does not imply
compactness of the moduli space by the Sobolev estimate, because herep= 2 (a uniform
bound on theLp-norms of dσ with p> 2 would guarantee the compactness).

It may be noted that the spaceM (A,J) can never be both compact and non-empty,
unlessA= 0 in which case allσ are constant maps. Because, the groupG= PSL(2,C) of
holomorphic mapsS2 −→ S2 is non-compact and it acts onS2 by reparametrizationσ 7→
σ ◦φ , φ ∈ G, and so anyσ ∈ M (A,J) has a non-compact orbit. However, it is possible to
compactify the quotientM (A,J)/G sometimes, ifA satisfies a certain condition.

One can show that ifσn is a sequence inM (A,J) without any limit point inM (A,J),
then there is a pointz∈ S2 such that the derivatives dσn(z) are unbounded. This implies
after passing to a subsequence that there is a decreasing sequence of neighbourhoodsUn

of z in S2 such that the imagesσn(Un) converge to aJ-holomorphic sphere. IfB is the
homology class of this sphere, then eitherω(B) = ω(A), or else 0< ω(B) < ω(A). In
the first case, the mapsσn can be reparametrized so that they converge inM (A,J). The
second case is referred to as the phenomenon of ‘bubbling off’. Here one must proceed
with more care. The phenomenon was discovered by Sacks and Uhlenbeck [SU] in the
context of minimal surfaces.

The following theorem gives a criterion for the moduli spaceM (A,J)/G to be com-
pact. This is the simplest version of Gromov’s compactness theorem.

A homology classB ∈ H2(M,Z) is called spherical if it lies in the image of the
Hurewicz homomorphismπ2(M) −→ H2(M,Z). It is customary to writeB∈ π2(M) if B
is a spherical homology class.

Theorem 4.2. If there is no spherical homology class B∈ H2(M;Z) such that
0< ω(B)< ω(A), then the moduli spaceM (A,J)/G is compact.

The proof consists of showing that ifσn: C ∪ {∞} −→ M is a sequence ofJ-
holomorphicA-spheres, then there is a sequence of matricesLn ∈ SL(2,C) such that
the sequenceσn ◦ φLn has a convergent subsequence. Therefore ifω(A) is already the
smallest positive value taken byω , then the moduli space is compact.
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If the criterion of the theorem is not satisfied, it is still possible sometimes to compactify
M (A,J)/G by adding suitable pieces. This we shall explain in the next section in a more
general context.

5. Evaluation maps

The Gromov–Witten invariants are constructed from the evaluation map

M (A,J)×S2 −→ M

given by (σ ,z) 7→ σ(z). The groupG = PSL(2,C) acts on the spaceM (A,J)×S2 by
φ · (σ ,z) = (σ ◦φ−1,φ(z)). Therefore we get a map by passing to the quotient

e= eJ: W (A,J) = M (A,J)×G S2 −→ M.

For example, suppose thatM = CP1 ×V with a product symplectic form, andA =
[CP1 ×{point}]. If π2(V) = 0, thenA generates a spherical 2-class inM, and soω(A)
is necessarily the smallest value assumed byω on the spherical classes. Therefore by
Theorems 3.1 and 4.2, the spaceW (A,J) is a compact manifold for genericJ. Since
c1(A) = 2, dimW (A,J) = 2n which is the dimension ofM. It can be shown that different
choices ofJ give rise to cobordant mapseJ. Since the cobordant maps have the same
degree, degeJ is independent of all choices. In the case whenJ = J0 × J′ is a product,
whereJ0 is the standard complex structure onCP1, it can be seen that the elements of
M (A,J) have the formσ(z) = (φ(z),v0), wherev0 ∈ V andφ ∈ G. It follows that the
mapeJ has degree 1 for this choice ofJ and hence for everyJ.

In general, we have ap-fold evaluation map

ep: W (A,J, p) = M (A,J)×G (CP1)p −→ Mp

defined by

ep(σ ,z1, . . . ,zp) = (σ(z1), . . . ,σ(zp)).

Here, for a spaceX, Xp denotes thep-fold productX×·· ·×X.
For a generic almost complex structureJ, the spaceW (A,J, p) is a manifold with

dim W (A,J, p) = 2n+2c1(A)+2p−6.

This manifold is not compact in general. However, in many cases the image

X (A,J, p) = ep(W (A,J, p))⊂ Mp

can be compactified by adding suitable pieces of dimensions at most equal to dimW (A,J, p)−
2. These pieces are called cusp-curves (the terminology is due to Gromov [G]), and
they are connected unions of certainJ-holomorphic spheres. By the Gromov compact-
ness theorem (which is a convergence theorem leading to compactness, see [MS2]),
the closure ofX (A,J, p) contains points that lie on some cusp-curves representing the
classA in a sense that we shall describe in a moment little later. Therefore in order to
compactifyX (A,J, p) we must add all simple cusp-curves in the classA to the moduli
spaceM (A,J). The compactification is important because we wantX (A,J, p) to carry
a fundamental homology class. We describe below some features of a cusp-curve.
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A cusp-curveσ in (M,ω), which represents the homology classA, is a collection
σ = (σ1, . . . ,σN) of J-holomorphic spheresσi : CP1 −→ M such thatC1 ∪ ·· · ∪CN is a
connected set, whereCi = σi(CP1) andA= A1+ · · ·+AN, Ai being the homology class
represented byσi . Theσi are called the components ofσ . A cusp-curveσ is called simple
if its componentsσi are simpleJ-holomorphic spheres such thatσi 6= σ j ◦φ for i 6= j and
any φ ∈ G. Any cusp-curve can be simplified to a simple cusp-curve by replacing each
multiply covered component by its underlying simple curve.Of course this operation will
change the homology classA, but not the set of points that lie on the curve. Also one can
order the components ofσ so thatC1 ∪ ·· · ∪Ck is connected for allk ≤ N. This means
that there exist integersj2, . . . , jN with 1≤ j i < i such that eachCi must intersect some
Cj i , that is, there existwi , zi ∈CP1 such thatσ j i (wi) = σi(zi).

A framing or intersection patternD of an ordered simple cusp-curve

σ = (σ1, . . . ,σN)

is a collection

D = {A1, . . . ,AN, j2, . . . , jN},

whereAi = [Ci ] ∈ Hi(M,Z) and j i are integers with 1≤ j i ≤ i − 1 chosen so thatCi

intersectsCj i (i.e.Ci ∩Cj i 6= /0). Thenω(Ai)≤ ω(A), and so there are only a finite number
framingsD associated toσ .

For a fixed framingD = {A1, . . . ,AN, j2, . . . , jN}, and aJ ∈ J (M,ω), let

M (A1, . . . ,AN,J) = M (A1,J)×·· ·×M (AN,J).

Let M (D,J) be the moduli space

M (D,J)⊂ M (A1, . . . ,AN,J)× (CP1)2N−2

consisting of all(σ ,w,z) whereσ = (σ1, . . . ,σN), σi ∈ M (Ai ,J),

w= (w2, . . . ,wN) ∈ (CP1)N−1 and z= (z2, . . . ,zN) ∈ (CP1)N−1,

such thatσ is a simple cusp-curve withσ j i (wi) = σi(zi) for i = 2, . . . ,N.
For a genericJ, M (D,J) will be an oriented manifold of dimension

2
N

∑
j=1

c1(A j)+2n+4(N−1).

The proof uses the extended evaluation map

eD: M (A1, . . . ,AN,J)× (CP1)2N−2 −→ M2N−2

given by

eD(σ ,w,z) = (σ j2(w2),σ2(z2), . . . ,σ jN(wN),σN(zN)).

The mapeD is transversal to the multi-diagonal set

∆N = {(x2,y2, . . . ,xN,yN) ∈ M2N−2|x j = y j},
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and therefore the inverse imagee−1
D (∆N)=M (D,J) is a manifold of the above dimension.

The groupGN = G×·· ·×G acts freely onM (D,J) by

φ · (σ j ,wi ,zi) = (σ j ◦φ−1
j ,φ j i (wi),φi(zi)), φ = (φ1, . . . ,φN) ∈ GN.

The quotient spaceM (D,J)/GN for a genericJ is a manifold of dimension

2c1(A1+ · · ·+AN)+2n−2N−4.

This is precisely our previous moduli spaceM (A,J)/G whenN = 1 andA1 = A.
Let T denote a function{1, . . . , p} 7→ {1, . . . ,N}. This function will indicate which

of the N components ofC = C1 ∪ ·· · ∪CN will be evaluated to get a point ofMp.
Define

W (D,T,J, p) = M (D,J)×GN (CP1)p,

where thejth component ofφ = (φ1, . . . ,φN) ∈ GN acts onM (D,J) as above, and it acts
on theith factor of(CP1)p if and only if T(i) = j. ThenW (D,T,J, p) will be a manifold
of dimension

2
N

∑
j=1

c1(A j)+2n+2p−2N−4.

We have an evaluation mapeD,T : W (D,T,J, p)−→ Mp defined by

eD,T(σ ,w,z,ξ ) = (σT(1)(ξ1), . . . ,σT(p)(ξp)),

where(σ ,w,z) ∈ M (D,J) andξ = (ξ1, . . . ,ξp) ∈ (CP1)p.
We shall now chooseJ suitably so thatX (A,J, p) has a fundamental homology class.
A manifold (M,ω) is weakly monotone if every spherical homology classB ∈

H2(M,Z) with ω(B) > 0 andc1(B) < 0 must satisfy the conditionc1(B) ≤ 2−n. Here
c1 is the first Chern class of the complex bundle(TM,J). This means that there are
no J-holomorphic spheres in homology classes with negative first Chern number. The
manifold (M,ω) is monotone if there is aλ > 0 such thatω(B) = λc1(B) for every
sphericalB∈ H2(M,Z). It can be shown that a monotone manifold is weakly monotone,
and conversely.

Let Rbe a positive number. Then anω-compatible almost complex structureJ is called
R-semi-positive if for everyJ-holomorphic sphereσ : CP1 −→ M with energyE(σ)≤ R
has Chern number

∫
CP1 σ∗c1 ≥ 0. Let J+(M,ω ,R) be the set of allω-compatibleR-

semi-positiveJ. This set may be empty. However, if(M,ω) is a weakly monotone com-
pact symplectic manifold, thenJ+(M,ω ,R) is a path connected open dense set for
everyR.

Theorem 5.1. Let (M,ω) be a weakly monotone compact symplectic manifold, and A∈
H2(M,Z).

(a) For every J∈ J (M,ω) there is a finite number of evaluation maps

eD,T : W (D,T,J, p)−→ Mp
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such that
⋂

ep(W (A,J, p)−K)⊂
⋃

D,T

eD,T(W (D,T,J, p)),

where the intersection is over all compact subsets K inW (A,J, p), and the union is
over all effective framings D and all functions T: {1, . . . , p} −→ {1, . . . ,N}.

(b) There is a residual subsetJr in J (M,ω) such that for every J∈ Jr , the spaces
W (D,T,J, p) are smooth orientedσ -compact manifolds with

dim W (D,T,J, p) = 2n+2c1(D)+2p−2N−4.

(c) Suppose that A is not a multiple classλB where λ > 1 and c1(B) = 0. If
J ∈ J+(M,ω ,R)∩Jr , then

dim W (D,T,J, p)≤ dim W (A,J, p)−2.

Recall that a manifold isσ -compact if it is the union of a countable family of compact
sets.

The proof may be found in [MS2]. To understand the essence of the theorem, we need
to look at some facts about pseudo-cycles.

If a subsetX of a manifoldM is within the image of a smooth mapg: V −→ M defined
on a smooth manifoldV of dimensionk, thenX is said to be of dimension at mostk. The
boundary of the setg(V), denoted byg(V∞), is defined to be the set

g(V∞) =
⋂

g(V −K),

where the intersection is over all compact subsetsK of V. This is the set of all limit points
of sequences{g(xn)} where{xn} has no convergent subsequence inV.

A k-pseudo-cycle inM is a smooth mapf : W −→ M defined on a smooth manifold
W of dimensionk such that dimf (W∞)≤ k−1. Twok-pseudo-cyclesf0: W0 −→ M and
f1: W1 −→ M are bordant if there is a(k+ 1)-pseudo-cycleF: W −→ M with ∂W =
W1−W0 such that

F|W0 = f0, F |W1 = f1, and dimF(W∞)≤ k−1.

Every singular homology classα ∈ Hk(M) can be represented by ak-pseudo-cycle
f : W−→M. This can be seen in the following way. First representα by a mapf : X −→M
defined on a finite orientedk-simplicial complexX without boundary so thatα = f∗[X],
where[X] is the fundamental class. Then approximatef by a map which is smooth on
each simplex ofX. Finally, consider the union of thek- and(k−1)-faces ofX as a smooth
manifoldW of dimensionk and approximatef by a map that is smooth across the(k−1)-
simplexes.

It also follows that bordantk-pseudo-cycles are in the same homology class. However,
two pseudo-cycles representing the same homology class maynot be bordant.

Theorem 5.1 says that the evaluation mapep: W (A,J, p)−→Mp is a pseudo-cycle, and
that the boundary of its image can be covered by the sets

eD,T(W (D,T,J, p)).

Therefore the image ofep carries a fundamental homology class. It can be shown that
this class is independent of the choice of the pointz∈ (CP1)p and the almost complex
structureJ.



Gromov–Witten invariants and quantum cohomology 473

6. Gromov–Witten invariants and quantum cohomology

For the definition of the quantum cohomology, the symplecticmanifold(M,ω) is required
to satisfy the following (mutually exclusive) conditions:

(a) M is monotone, that is,〈ω ,A〉 = λ 〈c1,A〉 for everyA ∈ π2(M), whereλ > 0 and
c1 = c1(TM,J).

(b) 〈c1,A〉= 0 for everyA∈ π2(M), or 〈ω ,A〉= 0 for everyA∈ π2(M).
(c) The minimal Chern numberN, defined by〈c1,π2(M)〉 = NZ whereN ≥ 0, is greater

than or equal ton−2.

It can be shown that a manifold(M,ω) is weakly monotone if and only if one of the
above conditions is satisfied.

Let (M,ω) be a weakly monotone compact symplectic manifold with a fixedA ∈
H2(M,Z). Then thep-fold evaluation map

ep: W (A,J, p)−→ Mp

represents a well-defined homology class inMp, which is independent ofJ.
If A is a spherical homology class, andp≥ 1, then define a homomorphism

ΦA,p: Hd(M
p,Z)−→ Z,

whered = 2np−dimW (A,J, p), in the following way. Letα ∈ Hd(Mp,Z) so thatα =
α1×·· ·×αp, whereα j ∈ Hd j (M,Z) with d1+ · · ·+dp = d. One can find a cycle repre-
senting the homology classα, which is denoted by the same notationα, such that it inter-
sects the imageX (A,J, p) of the mapep transversely in a finite number of points. Then
the Gromov–Witten invariantΦA(α1, . . . ,αp) is the intersection numberep ·α, which is
the number of intersection points counted with signs according to their orientations. This
is the number ofJ-holomorphic spheresσ in the homology classA which intersect each
of the cyclesα1, . . . ,αp. If the dimension condition ford is not satisfied, then one sets
ΦA(α1, . . . ,αp) = 0.

The quantum cohomology is obtained by defining a quantum deformation of the cup
product on the cohomology of a symplectic manifold(M,ω). Before going into this, let
us review the ordinary cup product in singular cohomology.

We denote byH∗(M) the free part ofH∗(M,Z). We may considerH∗(M) as de Rham
cohomology consisting of classes which take integral values on all cycles:

H∗(M) = H∗
DR(M,Z).

Next, we let H∗(M) denoteH∗(M,Z)/Torsion. Then we can identifyHk(M) with
Hom(Hk(M),Z) by the pairing ofa∈ Hk(M) andβ ∈ Hk(M) given by

a(β ) =
∫

β
a.

In the same way, the intersection pairingα ·β of α ∈H2n−k(M) andβ ∈ Hk(M) gives rise
to the homomorphism

PD: H2n−k(M) −→ Hk(M),



474 Amiya Mukherjee

where PD(α) = a if

a(β ) =
∫

β
a= α ·β for β ∈ Hk(M).

The Poincaré duality theorem says that PD is an isomorphism. Then the cup product
a∪b∈ Hk+ℓ(M) of a∈ Hk(M) andb∈ Hℓ(M) is defined by the triple intersection

∫

γ
a∪b= α ·β · γ, for γ ∈ Hk+ℓ(M),

whereα = PD−1(a) ∈ H2n−k(M) andβ = PD−1(b) ∈ H2n−ℓ(M). This is well-defined,
because if the cycles representingα andβ are in general position, then they intersect a
pseudo-cycle of codimensionk+ ℓ.

Next note that by our assumption(M,ω) is monotone with minimal Chern number
N ≥ 2.

The quantum multiplicationa∗ b of classesa ∈ Hk(M) andb ∈ Hℓ(M) is defined as
follows. Let α = PD(a) and β = PD(b) denote the Poincaré duals ofa andb so that
deg(α) = 2n− k and deg(β ) = 2n− ℓ. Thena∗b is the formal sum

a∗b= ∑
A

(a∗b)A ·qc1(A)/N,

whereq is an auxiliary variable supposed to be of degree 2N, and the cohomology class
(a∗b)A ∈ Hk+ℓ−2c1(A)(M) is defined in terms of the Gromov–Witten invariantΦA by

∫

γ
(a∗b)A = ΦA(α,β ,γ),

for γ ∈ Hk+ℓ−2c1(A)(M). Hereα, β , γ satisfy the following dimension condition required
for the definition of the invariantΦA,

2c1(A)+deg(α)+deg(β )+deg(γ) = 4n.

The condition shows that 0≤ c1(A) ≤ 2n, and therefore only finitely many powers ofq
occur in the above sum defininga∗b. SinceM is monotone, the classesA which contribute
to the coefficient ofqd satisfy ω(A) = c1(A)/N = d, and therefore only finitely many
can be represented byJ-holomorphic spheres. Therefore the sum is finite. Since only
nonnegative powers ofq occur in the sum, it follows thata∗b is an element of the group

Q̃H
∗
(M) = H∗(M)⊗Z[q],

whereZ[q] is the polynomial ring in the variableq of degree 2N. Then we get a multipli-
cation by linear extension

Q̃H
∗
(M)⊗ Q̃H

∗
(M) −→ Q̃H

∗
(M).

The quantum cup product is skew-commutative in the sense that

a∗b= (−1)dega·degbb∗a
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for a,b ∈ QH∗(M). Moreover, the product is distributive over the sum, and associative.
The skew-symmetry and the distributive properties follow easily. But the associative prop-
erty is a bit complicated and depends on a certain gluing argument forJ-holomorphic
spheres.

The quantum cohomologỹQH
k
(M) vanish fork ≤ 0, and are periodic with period 2N

for k≥ 2n. To get the full periodicity, we consider the group

QH∗(M) = H∗(M)⊗Z[q,q−1],

whereZ[q,q−1] is the ring of Laurent polynomials, which consists of polynomials in the
variablesq, q−1 with the obvious relationq · q−1 = 1. With this definitionQHk(M) is
non-zero for positive and negative values ofk, and there is a natural isomorphism

QHk(M)−→ QHk+2N(M)

given by multiplication withq, for everyk∈ Z.
If A= 0, then allJ-holomorphic spheres in the classA are constant. It follows then that

ΦA(α,β ,γ) is just the usual triple intersectionα · β · γ. Sinceω(A) > 0 for all otherA
which have theJ-holomorphic representatives, the constant term ina∗b is just the usual
cup product.

The product inQH∗(M) is also distributive over the sum, and skew-commutative. It
commutes with the action ofZ[q,q−1]. If a∈ H0(M) or H1(M), thena∗b= a∪b for all
b∈ H∗(M). Also the canonical generator1∈ H0(M) is the unit in quantum cohomology.

As an example, letM be the complex projectiven-spaceCPn with the standard Kähler
form. LetL be the standard generator ofH2(CP1) represented by the lineCP1. Then the
first Chern class ofCPn is given byc1(L) = n+1. Therefore, by the dimension condition,
the invariantΦmL(α,β ,γ) is non-zero only whenm= 0 and 1. Clearly, the casem= 0
corresponds to constant curves, and gives the ordinary cup product. Since the minimal
Chern number isN = n+1, the quantum cohomology groups are given byQHk(M)≃ Z

whenk is even, andQHk(M) = 0 whenk is odd.
Next, leta∈ Hℓ(M) andb∈ Hk(M). If ℓ+k≤ 2n, then the quantum cup product is the

same as the ordinary cup producta∗b= a∪b. So consider the case whena is the standard
generatorp of H2(M) defined byp(L) = 1, andb= pn ∈ H2n(M). Then the quantum cup
productp∗ pn is the generatorq of QH2n+2(M), because

∫

pt
(p∗ pn)L = ΦL([CPn−1], pt, pt) = 1,

where[CPn−1] = PD(p) andpt = PD(pn), and all other classes(p∗ pn)A vanish. There-
fore the quantum cohomology ofCPn is given by

Q̃H
∗
(CPn) =

Z[p,q]
(pn+1 = q)

.
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