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The Mirage of w = −1

Eric V. Linder
Berkeley Lab, University of California, Berkeley, CA 94720, USA

We demonstrate that cosmic microwave background observations consistent with a cosmological
constant universe predict in a well-defined sense that lower redshift measures will nearly automati-
cally deliver w = −1 for the dark energy equation of state value unless they are sensitive to w(z).
Thus low redshift data pointing to w = −1 does not truly argue for a cosmological constant. Even
the simplest question of whether the equation of state of dark energy is equal to the cosmological
constant therefore requires experiments able to sensitively constrain time variation w(z) and not
merely a constant w. We also note a number of issues regarding parametrization of w(z), demon-
strating that the standard form w(z) = w0+waz/(1+z) is robust but use of high order polynomials
and cutting off the high redshift behavior can be pathological.

I. INTRODUCTION

Advances in observational cosmology have led to tight-
ening constraints on the properties of dark energy ac-
celerating the cosmic expansion. Combinations of cur-
rent data – Type Ia supernovae distances (SN) together
with cosmic microwave background (CMB) fluctuations
and galaxy surveys measuring baryon acoustic oscilla-
tion (BAO) scales – yield error bars on the effective pres-
sure to energy density, or equation of state (EOS) ra-
tio w ≈ −1 ± 0.1 (e.g. [1]). This represents significant
progress in a first step toward checking consistency with
a cosmological constant, possessing w = −1 at all red-
shifts.

The generation of experiments now and in the next few
years achieves constraints in terms of a time independent
EOS, which can also be thought of as an average over the
range of observations, a substantial fraction of a Hubble
expansion time. This article argues that such interpre-
tation is very limited in providing new insight into dark
energy, and will exhibit a definite tendency to deliver
w = −1 despite real time variation. Therefore we should
not consider experiments without specific sensitivity to
time variation w(z) as answering any questions about the
nature of the accelerating universe. Rather, they serve
crucial roles as technological and methodological devel-
opments, in particular for controlling systematic uncer-
tainties.

Section II shows how the tendency arises that if CMB
measurements of averaged dark energy influence implies
〈w〉 = −1 then low redshift measurements will almost
necessarily think w = −1. Since this does not imply that
w(z) = −1, §III examines the robustness of parameter-
izing the high redshift behavior of w(z). It is tempt-
ing to add more parameters to the EOS description, but
§IV points out several pitfalls and pathologies in this ap-
proach, as well as when it partially succeeds.

The main purpose of this article is pedagogical empha-
sis on and clarification of the degeneracies and comple-
mentarity of different distance measures, and the essen-
tial need for experiments capable of precision measure-
ments of the time variation of the equation of state, w(z),
before any real progress can be made in understanding

the accelerating universe.

II. MATCHING AND CROSSOVER

Distances, whether luminosity distances of SN or an-
gular distances of the CMB or BAO, involve integrals of
the Hubble parameter and its constituent energy densi-
ties and double integrals of the dark energy equation of
state. This implies these quantities are intimately related
and precise data in a distance will have implications for
the allowed cosmological model parameters and density-
redshift and EOS-redshift relations. More explicitly, one
can derive a chain of physical conditions, where matching
distances in two models (so as to agree with data) leads
to a convergence at certain redshifts in the behavior of
the energy densities and a crossover (equal values) in the
EOS.
For example, [2] noted that matching the reduced dis-

tance to CMB last scattering dlss led to a convergence of
the dark energy density ratio between two models and a
crossover in w(z) = w0 + waz/(1 + z) at a ≈ 0.7. Here
we derive these relations analytically and investigate the
implications for measurement of w.
Suppose we fix the distance to some redshift z to be

some value, say dlss to that of a concordance cosmological
constant (LCDM) cosmology with matter density Ωm =
0.234, in agreement with the analysis of [3]. If we also
hold the present matter density fixed (for the moment, we
address its variation later) then we can derive a quantity

A =

∫ Y

1

dy
ln y

(Ωmy3 + 1− Ωm)3/2

/

∫ Y

1

dy
ln y + y−1 − 1

(Ωmy3 + 1− Ωm)3/2
, (1)

where Y = 1+ z. The dark energy density of the model,
Ωw(z), will cross the curve of the fiducial dark energy
density, e.g. ΩΛ(z), at a crossover scale factor aΩ solving

1− aΩ
ln aΩ

= A−1 − 1. (2)

Moreover, the dark energy EOS will cross w = −1 at
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a crossover scale factor

aw = 1−A−1. (3)

We see there is a definite relation between aΩ and aw.
The w = −1 crossover is very robust. If we change the
fiducial value of Ωm from 0.2 to 0.35 then aw ranges from
0.707 to 0.733, while aΩ goes from 0.476 to 0.518.
Thus a high redshift distance measurement consistent

with LCDM virtually forces (within the picture so far)
the value w(z ≈ 0.4) = −1, irrespective of true time vari-
ation. However, low redshift measurements insufficiently
sensitive to time variation measure only an averaged EOS
that corresponds strongly to the value at a sweet spot or
“pivot” redshift with the pivot near z ≈ 0.4. That is,
the averaged EOS will necessarily appear to be w ≈ −1,
despite the presence of varying w(z). Not only is no new
insight provided, but failing to recognize that the CMB
and low redshift experiments are measuring essentially
the same quantity could lead to the mistaken belief that
strong evidence for w = −1 has been obtained and the
nature of dark energy determined.
Figure 1 demonstrates an example of how the CMB

distance to last scattering forces low redshift experiments
to measure w = −1. While the crossover in w between
the LCDM fiducial case and the time varying models is
not perfect, it is well within the precision of current and
imminent experiments. Such experiments insensitive to
time variation essentially measure a constant w given by
its pivot value, hence w ≈ −1. The deviations in low
redshift distances between the models are less than 2%.
Conversely, note that Eq. (3) implies that to match

LCDM for some model with current EOS w0 one has
wa = −A(1 + w0). For |1 + w0| < 0.2, the family of
models generated in this way will all have the same dlss
to within 0.2%, better than the anticipated accuracy of
the Planck CMB experiment. Also see Fig. 2 where the
matching carries through to Ωm(z) and the growth of
structure.
One further implication of the matching-crossover re-

lation for dark energy experiments is that there are un-
fortunately restrictions to the complementarity between
different probes. While techniques may probe the ex-
pansion history at various redshifts, hypothetically be-
tween z = 0 and ∞, there remain degeneracies despite
this range. Measurements of the expansion history (and
growth history) depend on the Hubble parameter H(z),
or matter density Ωm(z). Figure 3 shows lines of con-
stant H(z) in the dark energy EOS parameter space. We
see that even for measurements at z = 0 and at z = ∞
there is no true orthogonality. This cannot be avoided
for techniques involving the Hubble expansion in a simple
way (including growth techniques, see [4]). Theoretically
one can achieve full orthogonality, i.e. have a degeneracy
direction running between upper right and lower left, by
measuring distance ratios (e.g. via strong gravitational
lensing [5]) but this is undone by other degeneracies and
systematic uncertainties.
Now let us relax the assumptions employed so far. If we

FIG. 1: Matching the distance to CMB last scattering be-
tween dark energy models leads to convergence and crossover
behaviors in other cosmological quantities. The top panel il-
lustrates the convergence in the distance-redshift relation for
models with w0 ranging from −0.8 to −1.2 and correspond-
ing wa, relative to the ΛCDM case. The bottom panel shows
how this necessarily leads to a crossover with w = −1 at
the key redshift for sensitivity of low redshift experiments.
The crossover in w(z), and its uniqueness, is impelled by the
physics not the functional form. Here we fix Ωm; the text
discusses robustness to allowing it to vary.

consider a family of models with present matter densities
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FIG. 2: As Fig. 1, showing how matching dlss leads to con-
vergence and crossover conditions on the dark energy density.
This has implications for growth of structure; see [2].

FIG. 3: Contours of constant expansion history H(z) span a
limited area of the dark energy equation of state plane w0-wa,
even as redshift varies over z = 0−∞. Here we hold Ωm fixed
so the lines also represent contours of constant Ωm(z). Any
point along a given z∗ line represents a dark energy model
with the same H(z∗) as the ΛCDM model.

different from the fiducial, then the value of w where the
models cross upon matching to dlss, say, does differ from
−1. We find that the crossover remains at very close to
the previous scale factor aw = 0.7 but the EOS value at
the crossover adjusts to wp given by

1 + wp =
2

3(Ω−1
m − 1)

[

∫ Y

1

dy {[y3 +Ω−1

m − 1]−1/2

−[y3 + Ω̄−1

m − 1]−1/2}
]

/

∫ Y

1

dy ln y (y3 +Ω−1

m − 1)−3/2, (4)

where Ω̄m is the matter density in the fiducial LCDM
model and Ωm = Ω̄m + ∆Ωm is the model being con-
sidered. This formula matches dlss between models with
|∆Ωm| < 0.1 to 0.1%. A good approximation is to take

1 + wp = 3.6∆Ωm. (5)

(See also Eq. (2) of [6], and note we can apply our formula
not just to constant w but to the crossover value of the
time varying EOS.)
We can also relax the condition that the CMB mea-

surements tell us precisely the distance to z = 1089.
Planck data (temperature plus polarization) may provide
a measurement of the reduced distance to last scattering
of 0.4%. Allowing for errors in dlss, so models need not
exactly match the LCDM fiducial best fit, introduces a
scatter of

σ(wp) ≈ (+0.01,−0.02)
|1 + w0|

0.1

δd/d

0.4%
. (6)

The pivot scale factor stays near a = 0.7.
Thus, generalization of the CMB constraints to allow

for uncertainty in the matter density and the last scatter-
ing distance measurement still preserves the implication
that (so long as CMB data are consistent with a cosmo-
logical constant and – a crucial point – the uncertainty
in the matter density is not too great) low redshift data
will be driven to show w ≈ −1. Despite this apparent
confirmation of a cosmological constant, the dark energy
models considered in Fig. 1 actually have substantial true
time variation, up to |wa| ≈ 1. Therefore measurements
of w = −1 ± 0.05, say, by ongoing and near term ex-
periments do not provide real support for a cosmological

constant . Within the dark energy picture presented here,
almost no answer other than w = −1 could have been ex-
pected. Only future measurements directly sensitive to
time variation can truly add to knowledge of whether
w = −1 or not.

III. ROBUST PARAMETRIZATION

One possible loophole in the picture presented is if
the dark energy behavior differs substantially from the
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parametrization for w(z) we adopted. However we em-
phasize that the form w(z) = w0 +waz/(1 + z) does not
force models to cross and certainly does not force them
all to cross at the same scale factor. They are impelled to
do so by the physics not the form. Nevertheless, we want
to ensure that this parametrization is a robust descrip-
tion of a wide range of dark energy behaviors, especially
at high redshift. This has been addressed in a number
of articles, e.g. [7, 8], but here we concentrate on testing
high redshift and deviations from a linear dependence on
scale factor a.
One model specifically designed to consider dark en-

ergy influence at high redshift is the bending model of
[9], with

w(z) = w0 [1 + b ln(1 + z)]−2. (7)

The bending parameter b is directly related to the early
dark energy density Ωe = Ωw(z ≫ 1). We consider
w0 = −0.9 and b = 0.415, corresponding to Ωe = 0.02,
close to the maximum allowed by data. Note that in
contrast ΩΛ(z = 1089) ≈ 10−9. While the w0-wa model
was not designed to fit early dark energy, it does an ad-
mirable job. The model (w0, wa) = (−0.9, 0.7) can match
SN distances in the bending model to better than 0.004
magnitudes out to z = 2 and agrees on w(z) out to z = 2
to 2%, while dlss is within 0.4%.
Suppose we want to investigate dark energy with a

more rapid evolution than apparent from the wa model,
and are willing to include a third parameter. Consider
model 3.1 of [10],

w(a) = w0 + wa(1− ab), (8)

where the usual wa model corresponds to b = 1. Figure 4
shows the diverse time variation as we adjust b. Despite
this, the standard wa model can successfully fit varia-
tions that are not too extreme, b <∼ 2, to good accuracy.
Taking a fairly substantial time evolution, from w0 = −1
to w(z ≫ 1) = −0.5, we find that the pure wa model
fits w(z) to 0.6%, 1.6% (2%, 4.5%) accuracy compared
to the cases with b = 0.5, 1.5 at z = 0.5 (z = 2), and SN
distances to 0.005 mag out to z = 2 and dlss to 0.07%.
Only very rapid variations, with b > 2, corresponding to
dw/dz > 1 today, will cause problems for the standard
wa parametrization.
One could also alter the time characterizing when the

EOS variation occurs, with a third parameter as in the
extension model of [11],

w(z) =
w∞z + w0zt

z + zt
, (9)

where w∞ = w(z ≫ 1) and this form reduces to the wa

model for a transition redshift zt = 1. The impact of such
variation on the EOS is shown in Fig. 5, with smaller zt
causing a more rapid transition in the recent universe.
Again, the usual wa model can encompass this behavior,
reproducing w(z) even in the substantially time varying
case of w0 = −1, w∞ = −0.5 to within 1%, 4% (4%, 8%)

FIG. 4: Equation of state as a function of scale factor for
the form w(a) = w0 + wa(1 − ab), with curves labeled by
b. Increasing b gives more rapid time variation recently. The
standard w0-wa form provides a robust fit for equation of state
and distances for all cases b <

∼
2, corresponding to wa

<
∼

1.

for zt = 2, 0.5 at z = 0.5 (z = 2). Distances agree to
within 0.013 mag out to z = 2 and to 0.002% for dlss.
Only very rapid variations, with zt < 0.5, corresponding
to dw/dz > 1 today, will cause problems for the standard
wa parametrization.

Note that in none of the three forms we have considered
have we applied an optimization for the wa fit utilizing
the distance matching-crossover physics discussed in §II,
i.e. we have not deliberately matched distances. These
cases demonstrate that the standard w0-wa parametriza-
tion has substantial robustness, even for fairly rapidly
varying EOS behavior or dark energy with significant
presence at high redshifts. The wa robustness is not
perfect, of course; very rapid variation, with wa > 1,
or significant nonmonotonic behavior in w(z) will cause
the parametrization to break down. However, for a large
variety of behavior, and in particular behavior where an
averaged EOS w might be thought to hold insight, the
wa parametrization is robust and the conclusions of §II
regarding the appearance of w = −1 are not in jeopardy.

It is interesting to go one step further, and consider
the growth history as an observable. Recall that [2, 12]
showed there exists (within general relativity) a close re-
lation between the distance to CMB last scattering and
the linear growth factor of density perturbations. We il-
lustrate this relation in Fig. 6 for the ratio of growth fac-
tors g(a = 0.35)/g(a = 1) identified in [12]. We can also
ask what a measurement of the absolute linear growth
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FIG. 5: Equation of state as a function of redshift for the
form w(z) = (w∞z + w0zt)/(z + zt), with curves labeled by
zt. Decreasing zt gives more rapid time variation recently.
The standard w0-wa form provides a robust fit for equation
of state and distances for all cases zt >

∼
0.5, corresponding to

wa
<
∼

1.

factor at, say, z = 2 can teach us about the high redshift
dark energy behavior. Fixing the characteristics of the
low redshift universe, say Ωm = 0.28 and w0 = −1, if the
growth at z = 2 agrees with the LCDM model to 5% then
within the wa model (which, recall, works well for early
dark energy) we can limit wa < 0.6 or w(z = 2) < −0.6.

IV. PROBLEMS IN PARAMETRIZATION

Despite the success of the w0-wa model, one might
be tempted to extend it to more parameters, such as
the three parameter models discussed in §III, or more
general high order polynomial fits. However, the number
of EOS parameters that can be accurately fit by even the
combination of next generation data has been shown to
be limited to two [10]. Nevertheless, let us explore this
slightly further.
One might wish to consider more parameters and sim-

ply marginalize over the extra parameters beyond two.
If this works, i.e. does not strongly degrade the main two
parameters’ estimation, then this effectively allows more
freedom in the functional form.
Consider the “ab” form of Eq. (8). Next generation

SN+CMB data cannot fit the third parameter and in-
cluding b weakens estimation of w0 and wa by more than
an order of magnitude. Further addition of next gen-

FIG. 6: Matching the CMB distance to last scattering is
closely related to matching the particular linear growth factor
ratio g(a = 0.35)/g(a = 1) of [12]. Here we show the simi-
larity of degeneracy directions in the dark energy equation of
state plane, with Ωm = 0.234.

eration weak lensing data does not help. However, we
find that if we place a prior on the third parameter, then
while the third parameter is not better determined than
our input prior, the first two EOS parameters are not
strongly degraded when the prior satisfies

σb <
1

3 ∼ 10

1

wa
. (10)

For the coefficient 1/3 (1/10), the degradation in wa is
15-20% (∼2%), in w0 is less than 1%, and in the always
more unstable pivot value wp is 60-130% (10-30%). When
wa < 0 then the required prior is weaker, with the 1/3
coefficient acting as strongly as the 1/10 coefficient does
for positive wa.
The main effect of a constrained third, marginalized

parameter is therefore a thickening of the confidence con-
tour (greater covariance) rather than an elongation of the
confidence interval of the parameter values. In this sense,
it acts substantially like a systematic uncertainty, but
here the prior or limit on the uncertainty, e.g. σb, is likely
arbitrary. So exploration of a third parameter can enlarge
the freedom of the functional form of w(z), but within
arbitrary limits. It also weakens the main parameter es-
timation. That penalty will be most severe when consid-
ering “figures of merit” based on the area σ(wp)·σ(wa) of
the confidence region, but relatively benign if the main
physical questions involve σ(w0) or σ(wa) as discussed
by [7].
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To check these results, we also considered the wext form
of Eq. (9). This leads to very similar conclusions, that to
avoid degradation of the main two EOS parameters one
needs a prior on the third parameter zt of order

σzt <
1

3wa
, (11)

where wa = w∞−w0. Note that [11] considered marginal-
ization over zt with a prior of 0.5 and wa ≈ 0.6. In both
the ab and ext cases one can understand the required
magnitude of the prior, Eqs. (10)-(11), by studying the
form of the Hubble parameter.
While these instances of adding EOS parameters be-

yond two are fairly benign under the given conditions, us-
ing many parameter forms can be not only useless (since
only two parameters can be fruitfully constrained) but
dangerous. For example, consider a general fourth order
polynomial

w(z) = w0 +
4

∑

i=1

wi [ln(1 + z)]i, (12)

as discussed in [13]. Attempting to fit five EOS parame-
ters does not yield useful information even with the com-
bination of next generation data, as mentioned above.
However, its implementation does create pathologies, bi-
asing the results.
Consider the bending case of Eq. (7) that is adept

at describing early dark energy. We saw that the wa

parametrization could match this to high accuracy. How-
ever, the polynomial form of Eq. (12) is unbounded at
high redshift and so must be cut off. In [13] and in its
use for projection of a next generation dark energy mis-
sion, the convention is to fix w = −1 for z > 2. Let us
examine the consequences of this.
Suppose we could tune the fourth order polynomial to

match exactly at z ≤ 2 the EOS in the bending case of
w0 = −0.9, b = 0.415 considered in §III. Then due to
the cutoff it will misestimate the distance to CMB last
scattering by 2.2%, greater than not only Planck pre-
cision but current WMAP precision. Instead let us ad-
just the polynomial coefficients to match dlss and w(z) at
z = 0, 0.4, 0.8, and 1.2. One might think that this would
provide excellent approximation to the EOS and the dis-
tances – after all, one is matching many more quantities
than the mere two of w0, wa. However, the result, shown
in Fig. 7, is that the fourth order polynomial wildly oscil-
lates. This form misestimates SN distances by 0.075 mag
(recall that wa succeeded to within 0.004 mag, almost 20
times better).
This pathology can be traced to the cutoff at z > 2.

As with spline fits, the freedom in the form often leads
to spurious wiggles, especially if the boundary conditions
are not carefully chosen. Even thawing dark energy mod-
els, which indeed approach w(z ≫ 1) = −1, are not well
fit by the fourth order polynomial form. Taking a simple
PNGB dark energy model w(z) = −1+(1+w0)(1+z)−F

with w0 = −0.8 and F = 1.5 yields the results in Fig. 8.

FIG. 7: The fourth order polynomial form (12) for w(z) ex-
hibits pathological behavior and poor fit to equation of state
and distances even when fixed to the true w(z) at four red-
shifts and matched to give the correct dlss. Here the true
model is the bending form (7) for early dark energy.

In fact, in seeking a nonpathological fit one is driven to
w2 = w3 = w4 = 0, back to a two parameter form such
as w0, wa so successfully demonstrates.
One can ameliorate considerably the problems of the

fourth order polynomial by instead choosing w(z > 2) =
w(z = 2), or more generally

w(z > zcut) = w(z = zcut). (13)

This delivers much better results: the distances out to
z = 2 in the bending case are now within 0.002 mag of
the true values (also see Fig. 9). However, this merely
fixed a problem that should never have arisen: the data
can actually fit no more than two EOS parameters so
there is no point in considering high order polynomials.

V. CONCLUSION

Given accurate measurement of the distance to CMB
last scattering consistent with LCDM, interpreting low
redshift distance data leading to w = −1 as evidence for
a cosmological constant considerably overstates the case.
By the nature of z <

∼ 1.5 observations with insufficient
accuracy to recognize time variation in the equation of
state, they essentially measure an averaged w or equiv-
alent constant w just where the CMB data and the cos-
mological relation between distance and EOS ineluctably
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FIG. 8: As Fig. 7, but for the PNGB thawing dark energy
model, showing that the pathology in the fourth order poly-
nomial persists even for models that approach w = −1 at high
redshift.

FIG. 9: As Fig. 7, but we remove the condition w(z > 2) =
−1 and instead use w(z > 2) = w(z = 2). This tames the
spurious oscillations considerably. However, note that the
form (12) using five parameters still has difficulties fitting a
two parameter equation of state model.

predict that constant w = −1 to a few percent accuracy1.

Even models with time variation wa ≈ 1 can appear to
show w = −1 when viewed by these experiments. Such
measurements of w ≈ −1 induce a false sense of secu-
rity in Λ. To achieve true insight into the nature of dark
energy, even as to simply whether or not it is a cosmolog-
ical constant, requires measurements capable of directly
probing the time variation with significant sensitivity.
Current and near term experiments serve a valuable and
necessary role in developing techniques and tightening
controls on systematic uncertainties.

These conclusions arise within a parametrization of
the dark energy behavior, at least over the range where
it significantly affects the distance-redshift relation, of
w(z) = w0 +waz/(1 + z). Checking this assumption, we
find this form provides an excellent, robust approxima-
tion to a wide variety of behaviors, even fairly rapidly
evolving ones wa

<
∼ 1 (though we have not considered

nonmonotonic behaviors, which are not expected from
single field models traced over the age of the universe,
and as seen can easily be spurious, from noise or im-
proper fits).

Apart from the issue of w = −1, attempting to fit the
equation of state with more than two parameters is not
only fruitless (if significant accuracy is desired) but can
lead to pathologies. We have demonstrated this in the
case of a proposed fourth order polynomial. One can
also attempt to marginalize over a third parameter, to
expand the functional freedom, but it is unclear what this
gains (since w0-wa does a good job fitting these forms on
its own) and it requires an arbitrary prior on the third
parameter to prevent bloating of the confidence regions
of the other parameters.

Even for the basic question of whether the dark energy
is Einstein’s cosmological constant, there do not appear
to be any short cuts before a carefully designed exper-
iment to constrain accurately the time evolution of the
dark energy equation of state, w(z) not merely w.
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1 Since reasonable bounds on the matter density Ωm play an im-
portant role in this, this highlights the value of obtaining ac-
curate measurements of the Hubble constant to combine with

constraints on Ωmh2, as [14] has so eloquently argued.
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