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1 Introduction

The natural generalization of a two-dimensional angle to higher dimensions is
called a solid angle. Given a pointed cone K ⊂ Rd, the solid angle at its apex
is the proportion of space that the cone K occupies. Alternatively, a solid
angle can be thought of as the volume of a spherical polytope. Ian Macdon-
ald initiated the systematic study of solid-angle sums in integral polytopes
with his 1971 paper [12] and currently there is a resurgence of activity on
solid angles; see, for example, [7], [15], and [16]. The theory of solid an-
gles of polyhedra, which parallels that of integer-point enumeration known
as Ehrhart theory, can be found in Chapter 11 of [4] by Beck and Robins.
Macdonald’s solid angle sums give us a new measure of discrete volume, and
they find applications in the Ehrhart theory of polytopes.

In this paper, we extend many theorems from [4], which hold true for
for rational polytopes, to results for real polytopes that also involve more
general solid angles. A rational polytope is a polytope whose vertices all have
rational coordinates, whereas a real polytope is a polytope whose vertices all
have arbitrary real coordinates. Our generalized solid angles are defined
using the lp-norm, and in particular include the l1-norm, which gives solid
angles that are themselves polyhedral and hence easily computable.

The proofs we give here rely on Harmonic Analysis and therefore do not
resemble the proofs in [4], which are combinatorial in nature. Furthermore,
it is the power of Harmonic Analysis that allows us to extend our results to
all real convex polytopes P and to all real dilations of P.
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We note that solid-angle theory for real polytopes is still in its infancy,
primarily due to the considerable increase in difficulty associated with the
study of polyhedra with irrational vertices. Precise enumeration theorems for
real polytopes are hard to come by, and thus the main contribution of this
paper to solid-angle theory is the extension of several fundamental theorems
to real polytopes.

2 Definitions and background material

A convex polytope P ⊆ Rd is the bounded intersection of finitely many
half-spaces and hyperplanes. If P is of dimension d, we call it a d-polytope.
A convex cone K ⊆ Rd is the intersection of finitely many half-spaces of the
form {x ∈ Rd| a · x ≤ b} whose corresponding hyperplanes {x ∈ Rd| a · x =
b} meet in at least one point. A cone is called pointed if the defining
hyperplanes meet in exactly one point. Throughout this paper, the word
cone will always refer to a pointed cone.

Suppose P ⊂ Rd is a convex d-polytope. Then the solid angle ωP(x) of
a point x (with respect to P) equals the proportion of a small ball centered
at x that is contained in P. Thus, for all positive ǫ sufficiently small,

ωP(x) =
vol(Bǫ(x) ∩ P)

volBǫ(x)
, (1)

where Bǫ(x) is the ball of radius ǫ centered at x. We now generalize our
definition of a solid angle by considering balls with respect to lp-norm for
any p ≥ 1. Given x = (x1, x2, . . . , xd) ∈ Rd, the lp-norm of x is defined by

‖x‖p = (| x1|p + | x2|p + · · ·+ | xd|p)1/p , for p ≥ 1.

The ball with respect to lp-norm of radius ǫ centered at x is the set

Bp, ǫ(x) := {y ∈ R
d : ‖x− y‖p < ǫ }.

For any convex d-polytope P ⊂ Rd, the lp-solid angle of a point x, denoted
by ωp,P(x), is the proportion of a small lp-ball centered at x that is contained
in P. That is

ωp,P(x) =
vol(Bp, ǫ(x) ∩ P)

volBp, ǫ(x)
, (2)

for all positive ǫ sufficiently small.
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Given a cone K ⊂ Rd, we also have the following integral definition of a
general solid angle with respect to K. For x ∈ Rd and p ≥ 1, the l

p-solid

angle of x with respect to K is given by

ωp,K(x) := lim
ǫ→0+

1

ǫd/p

∫

K
e

− c
ǫ
‖t−x‖ppdt (3)

= lim
ǫ→0+

1

ǫd/p

∫

K
e

− c
ǫ
(|t1−x1|p+|t2−x2|p+···+|td−xd|p)dt,

where c =
(

2 Γ
(

1
p
+ 1

))p

. This definition arises from centering at x a Gaus-

sian function with respect to the lp-norm that is normalized to have a total
mass of 1 and then integrating to calculate the proportion of mass contained
in K. This definition of ωp,K(x) is more analytic in nature, as opposed to
geometric, and it opens the door to the Harmonic Analysis techniques that
will be used below.

For ǫ > 0, p ≥ 1, and t ∈ Rd we define

φǫ(t) :=
1

ǫd/p
e

− c
ǫ
‖t‖pp. (4)

Notice that φǫ(−t) = φǫ(t), by the properties of the lp-norm, so that the
integral in equation (3) becomes a convolution as follows:

ωp,K(x) = lim
ǫ→0

∫

K
φǫ(t− x)dt

= lim
ǫ→0

∫

K
φǫ(x− t)dt

= lim
ǫ→0

∫

Rd

1K(t)φǫ(x− t)dt

= lim
ǫ→0

(1K ∗ φǫ) (x).

The last equality follows from the definition of the convolution. This fact
will be used a great deal, so we highlight it here:

Fact 1.

ωp,K(x) = lim
ǫ→0

(1K ∗ φǫ) (x), for all x ∈ R
d.
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The integer-point transform of a polytope P ⊂ Rd, given by

σP(z) :=
∑

m∈P∩Zd

zm, (5)

is a multivariate generating function that lists all integer points in P as a
formal sum of monomials. This special format encodes information about
the integer points in a way that allows us to use both algebraic and analytic
techniques to study the discrete geometry of polyhedra. By analogy, we form
the solid-angle generating function for a polytope P

αP(z) :=
∑

m∈P∩Zd

ωP(m)zm, (6)

where ωP(m) is the usual solid angle, defined by (1).
In order to employ the methods of Harmonic Analysis, we often need to

consider functions of a complex variable. For this reason, we redefine αP
using the substitution zk = e2πisk for each k = 1, . . . , d, so zm = e2πi〈s,m〉 and
we obtain

αP(s) :=
∑

m∈P∩Zd

ωP(m)e2πi〈s,m〉, for s ∈ C
d. (7)

This substitution will prove essential when we use the following Poisson sum-
mation formula: If f is a “sufficiently nice” function (for example, a function
which is L1 and continuous, and has a Fourier transform which is also L1

and continuous), then
∑

l∈Zd

f(l) =
∑

m∈Zd

f̂(m), (8)

where f̂ : Rd → C is defined as

f̂(y) =

∫

Rd

e2πi〈x, y〉f(x)dx.

Using this technique will introduce sums of Fourier-Laplace transforms de-
fined over polyhedra and the complex variable will ensure convergence of such
sums. We note that while defined similarly, the Fourier-Laplace transform is
defined for the complex variable s ∈ Cd, while the Fourier transform is only
defined on Rd.

We wish to point out that αP(s) is a finite sum for any polytope P ⊂
Rd and for all s ∈ Cd because the ωP(m) = 0 for all m /∈ P. Therefore
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convergence is not an issue when dealing with polytopes. However, when we
consider the solid-angle generating function for a pointed coneK, convergence
does become a slight issue.

To discuss the convergence of αK(s), we need to define K∗, the polar cone
associated with K. The polar cone K∗ is defined by

K∗ = {x ∈ R
d : 〈 x, y〉 < 0, ∀ y ∈ K}.

Thus, αK(s) converges if s ∈ Cd such that −Im(s) ∈ K∗, because

−Im(s) ∈ K∗

⇒ 〈−Im( s), m〉 < 0, ∀ m ∈ K ∩ Z
d

⇔
∣

∣e2π〈−Im( s), m〉∣
∣ < 1, ∀ m ∈ K ∩ Z

d

⇔
∣

∣e2πi〈s,m〉∣
∣ < 1, ∀ m ∈ K ∩ Z

d.

We now further extend our definition of αP , by replacing ωP(m) by the
generalized lp-solid angle measure ωp,P(m) defined by (3) and which we re-
state here:

ωp,P(x) := lim
ǫ→0

1

ǫd/p

∫

P
e

− c
ǫ
‖t−x‖ppdt. (9)

Thus, we will always assume that our solid angles ωP(m) are in fact the
generalized lp-solid angles ωp,P(m), with a fixed real p ≥ 1.

Recalling Fact 1, we can write ωP(m) = limǫ→0 (1P ∗ φǫ) (m), with the

specific choice of φǫ(t) :=
1

ǫd/p
e

− c
ǫ
‖t‖pp . We see that the usual definition of a

solid angle is retrieved by setting p = 2. In general, for any p, our φǫ enjoys
the property that its Fourier-Laplace transform is rapidly decreasing. The
fact that φ̂ǫ decreases rapidly at infinity assures us the absolute convergence
of all the series that ensue.

3 A functional equation for the generalized

solid-angle function αK(s) of a real cone K

We now show that the solid-angle generating function αK(s) obeys the fol-
lowing functional equation, also known as a reciprocity relation:
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Theorem 3.1. Suppose K is a real, simple d-cone in Rd with vertex at the

origin and s ∈ Cd. Then

αK(−s) = (−1)dαK(s). (10)

Proof. For j = 1, . . . , d, let wj be a generator of the simple cone K. By abuse
of notation, we denote the determinant of the matrix whose jth column is
the edge vector wj by detK. Then

αK(−s) = lim
ǫ→0

∑

m∈Zd

(1K ∗ φǫ) (m)e2πi〈−s,m〉 (11)

= lim
ǫ→0

∑

m∈Zd

̂(1K ∗ φǫ)(m− s) (12)

= lim
ǫ→0

∑

m∈Zd

1̂K(m− s)φ̂ǫ(m− s) (13)

= lim
ǫ→0

∑

m∈Zd

(−2πi)− d| detK|
∏d

j=1〈wj , m− s〉
φ̂ǫ(m− s) (14)

The last equality uses the formula for 1̂K, which is exercise 10.4 in [4]. We
used Poisson summation in the second equality, which is valid because the
convolution of 1K with φǫ is an integrable and continuous function whenever
φǫ is integrable and continuous.

Now we will use the fact that the lattice sum is invariant under the
substitution m = −n. Thus, we have

αK(−s) = lim
ǫ→0

∑

n∈Zd

(−2πi)− d| detK|
∏d

j=1〈wj,−n− s〉
φ̂ǫ(−n− s) (15)

= (−1)d lim
ǫ→0

∑

n∈Zd

(−2πi)− d| detK|
∏d

j=1〈wj, n+ s〉
φ̂ǫ(n + s) (16)

= (−1)d lim
ǫ→0

∑

n∈Zd

1̂K(n+ s)φ̂ǫ(n + s) (17)

= (−1)d lim
ǫ→0

∑

n∈Zd

̂(1K ∗ φǫ)(n+ s) (18)

= (−1)d lim
ǫ→0

∑

n∈Zd

(1K ∗ φǫ) (n)e
2πi〈s,n〉 (19)

= (−1)dαK(s). (20)
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In (16), we used the fact that, for all complex vectors z ∈ Cd, φ̂ǫ(−z) = φ̂ǫ(z).
This last remark holds because

φ̂ǫ(−z) =

∫

Rd

e2πi〈−z,x〉φǫ(x)dx

=

∫

Rd

e2πi〈z,−x〉φǫ(x)dx

=

∫

Rd

e2πi〈z,u〉φǫ(−u)du

=

∫

Rd

e2πi〈z,u〉φǫ(u)du

= φ̂ǫ(z).

We now generalize the previous theorem to any real d-cone.

Theorem 3.2. Suppose K is a d-cone with its vertex at the origin, v ∈ Rd,

and s ∈ Cd. Then the solid-angle generating function α
v+K(s) of the d-cone

v +K satisfies

α
v+K(−s) = (−1)dα−v+K(s). (21)

Proof. Since solid angles are additive, it suffices to prove this theorem for
simple cones. Therefore, let wj for j = 1, . . . , d be the generators of the
simple cone K. Then the cone v +K has generators v +wj and we have

α
v+K(−s) = lim

ǫ→0

∑

m∈Zd

(1
v+K ∗ φǫ) (m)e2πi〈−s,m〉

= lim
ǫ→0

∑

m∈Zd

̂(1
v+K ∗ φǫ)(m− s) (22)

= lim
ǫ→0

∑

m∈Zd

1̂
v+K(m− s)φ̂ǫ(m− s).

We used Poisson summation in the (22) above and we note that the formula
for the Fourier-Laplace transform of the shifted cone v+K is obtained from
that of K, since 1̂

v+K = 1̂K · e2πi〈v, · 〉. Thus
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α
v+K(−s) = lim

ǫ→0

∑

m∈Zd

(−2πi)− d| detK| e2πi〈v, m−s〉
∏d

j=1〈wj, m− s〉
φ̂ǫ(m− s)

= lim
ǫ→0

∑

n∈Zd

(−2πi)− d| detK| e2πi〈v, −n−s〉
∏d

j=1〈wj,−n− s〉
φ̂ǫ(−n− s)

= (−1)d lim
ǫ→0

∑

n∈Zd

(−2πi)− d| detK| e2πi〈−v, n+s〉
∏d

j=1〈wj, n+ s〉
φ̂ǫ(n+ s)

= (−1)d lim
ǫ→0

∑

n∈Zd

1̂−v+K(n+ s)φ̂ǫ(n + s)

= (−1)d lim
ǫ→0

∑

n∈Zd

̂(1−v+K ∗ φǫ)(n+ s)

= (−1)d lim
ǫ→0

∑

n∈Zd

(1−v+K ∗ φǫ) (n)e
2πi〈s,n〉

= (−1)dα−v+K(s).

We again used the fact that the lattice sum is invariant under the substitution
m = −n and that φ̂ǫ(−z) = φ̂ǫ(z), for all z ∈ Cd.

4 A Brion-type theorem for solid angles sums

over real polytopes

Here we state and prove the real analogue of Brion’s theorem for rational
polytopes, in terms of generalized solid angles. We note that the finite sum

αP(s) =
∑

m∈P∩Zd

ωP(m)e2πi〈s,m〉

can be construed as a discrete volume measure of P, since αP(s) assigns to
each integer point in the interior of P a weight of 1 and to each boundary
integer point of P a weight between 0 and 1. The following theorem transfers
the computation of a finite sum over a polytope to a finite collection of the
infinite vertex tangent cone sums αKv

(s).

8



Theorem 4.1. Suppose P is any real, convex d-polytope. Then we have the

following identity of meromorphic functions for s ∈ Cd:

αP(s) =
∑

v a vertex
of P

αKv
(s), (23)

where K
v
:= {v + λ(y − v) : y ∈ P, λ ∈ R≥0} is the vertex tangent cone of

P at the vertex v.

Proof. We begin with the Brianchon-Gram identity [4]:

1P(x) =
∑

F⊆P
(−1)dimF1KF

(x), (24)

where the sum is taken over all nonempty faces F of P and KF is the tangent
cone attached to F defined by KF := {x+λ(y−x) : x ∈ F ,y ∈ P, λ ∈ R≥0}.
Next, we take the convolution of both sides with φǫ, then multiply by zm,
and finally, sum over all m ∈ Zd to obtain

∑

m∈Zd

(1P ∗ φǫ)(m)zm =
∑

m∈Zd

∑

F⊆P
(−1)dimF(1KF

∗ φǫ)(m)zm. (25)

We wish to take the limit as ǫ → 0 of both sides of equation (25), but we
first note that the infinite lattice sums are absolutely convergent due to the
presence of the damping function φǫ and hence we can take the limit inside
the sum. Thus, we obtain
∑

m∈Zd

ωP(m)zm =
∑

m∈Zd

∑

F⊆P
(−1)dimFωKF

(m)zm

=
∑

v a vertex
of P

∑

m∈Zd

ωKv
(m)zm +

∑

F⊆P
dimF> 0

(−1)dimF
∑

m∈Zd

ωKF
(m)zm.

With the substitution zm = e2πi〈s,m〉, we have shown that

αP(s) =
∑

v a vertex
of P

αKv
(s) +

∑

F⊆P
dimF> 0

(−1)dimFαKF
(s). (26)

Therefore, it remains to show that αKF
(s) = 0 for every face F of P with

dimF > 0. To this end, consider such a αKF
(s). Since KF is also a cone, we

can write KF as the disjoint union of its relative open faces G◦ and obtain
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αKF
(s) =

∑

m∈Zd

ωKF
(m)zm =

∑

G⊆F

∑

m∈Zd∩G◦

ωKF
(m)zm. (27)

Since ωKF
(m) is constant on the relative interior of each face G of F , we

denote ωKF
(m) by ωG when m ∈ G◦. Then we have

αKF
(s) =

∑

G⊆F
ωG

∑

m∈Zd∩G◦

zm. (28)

Recall that dimF > 0, and so dim G > 0 for every face G of F . Therefore,
G◦ contains a line and by theorem 3.1 in [3]

∑

m∈Zd∩G◦

zm = 0. (29)

Thus, by equation (28), αKF
(s)= 0 for every face F of P with dimF > 0.

5 Solid Angle Reciprocity for Real Polytopes

We now introduce a measure of discrete volume:

AP(t) :=
∑

m∈Zd

ωtP(m), (30)

where ωtP(m) is the generalized solid angle measure at m ∈ Zd ∩ tP defined
in (9). Our next theorem is a generalization of the solid angle analogue of
Macdonald’s reciprocity, which states that

AP(t) = (−1)dimPAP(−t), (31)

for t ∈ Z and for rational convex polytopes P [4]. First, we define a general-
ized function for s ∈ Cd by

AP(t, s) :=
∑

m∈Zd

ωtP(m)e2πi〈m, s〉. (32)

I. G. Macdonald introduced the notation AP(t) to denote the solid angle

measure of a polytope. We can relate his notation to our solid angle sum
αtP by noting that AP(t, s) = αtP(s). For the remainder of this paper, we
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use Macdonald’s notation to emphasize the independent variable t, which we
extend from t ∈ Z to any t ∈ R.

We will show that AP(t, s) is a real analytic function of t which satisfies
the reciprocity relation AP(−t, s) = (−1)dimPAP(t,−s). Furthermore, the
following proof extends Macdonald’s reciprocity to all real convex polytopes
via AP(t) = lims→0AP(t, s), and to all real dilations t.

Theorem 5.1 (Generalized Macdonald’s Reciprocity). Suppose P is a

real convex d-polytope in Rd. Then

(1) For t ∈ R and s ∈ Cd, AP(t, s) satisfies

AP(−t, s) = (−1)dAP(t,−s). (33)

(2) Furthermore, if P is a simple d-polytope, t ∈ R and s ∈ Cd, then the

continuation of AP(t, s) to a real analytic function of t is given by

AP(t, s) = lim
ǫ→0

∑

v a vertex
of P

| detK(v)|
(−2πi)d

∑

m∈Zd

exp(2πi t〈v, m+ s〉) φ̂ǫ(m+ s)
∏d

j=1〈wj(v), m+ s〉
.

(34)

Proof. Since solid angles are additive and we can assume a triangulation of
a polytope, it suffices to prove this theorem for a real simplex P. We will
use the fact that

ωtP(m) = lim
ǫ→0

(1tP ∗ φǫ) (m), (35)

for an appropriate choice of φǫ with φǫ(−x) = φǫ(x). Then we have

AP(t, s) :=
∑

m∈Zd

ωtP(m)e2πi〈m, s〉 (36)

= lim
ǫ→0

∑

m∈Zd

(1tP ∗ φǫ) (m)e2πi〈m, s〉 (37)

= lim
ǫ→0

∑

m∈Zd

̂(1tP ∗ φǫ)(m+ s) (38)

= lim
ǫ→0

∑

m∈Zd

1̂tP(m+ s)φ̂ǫ(m+ s). (39)

11



We used Poisson summation in the (38). Next, we use an extension of Brion’s
theorem for real polytopes due to Barvinok [1] to obtain

AP(t, s) = lim
ǫ→0

∑

m∈Zd







∑

v a vertex
of P

1̂tv+K(v)(m+ s)






φ̂ǫ(m+ s). (40)

Barvinok’s theorem [1] allows us to write 1̂tP as the sum of Fourier-Laplace
transforms over the tangent cones at the vertices of tP. Therefore, if v+K(v)
is the tangent cone at the vertex v of P, where K(v) is a simple cone with
apex at the origin, then t(v +K(v)) = tv +K(v) is the tangent cone at the
vertex tv of tP, since a cone whose apex is the origin does not change under
dilation. Using the formula for the Fourier-Laplace transform of a simple
cone

AP(t, s) = lim
ǫ→0

∑

m∈Zd









∑

v a
vertex
of P

| detK(v)| exp(2πi〈 tv, m+ s〉)
(−2πi)d

∏d
j=1〈wj(v), m+ s〉









φ̂ǫ(m+ s) (41)

= lim
ǫ→0

∑

v a
vertex
of P

| detK(v)|
(−2πi)d

∑

m∈Zd

exp(2πit〈v, m+ s〉)φ̂ǫ(m+ s)
∏d

j=1〈wj(v), m+ s〉
. (42)

We note that the only place a t appears in this last equation is in the exponent
of an exponential. Hence, AP(t, s) is a real analytic function of t, because
we can differentiate inside the summation sign due to the rapid convergence
provided by φ̂ǫ. This proves part (2).

Now for the proof of part (1), we evaluate the continuation of AP(t, s) at
−t to obtain

AP(−t, s) = lim
ǫ→0

∑

v a vertex
of P

| detK(v)|
(−2πi)d

∑

m∈Zd

e2πi(−t)〈 v, m+s〉φ̂ǫ(m+ s)
∏d

j=1〈wj(v), m+ s〉
(43)

= lim
ǫ→0

∑

v a vertex
of P

| detK(v)|
(−2πi)d

∑

n∈Zd

e2πit〈v, n−s〉φ̂ǫ(−n + s)
∏d

j=1〈wj(v),−n+ s〉
(44)

= (−1)d lim
ǫ→0

∑

v a vertex
of P

| detK(v)|
(−2πi)d

∑

n∈Zd

e2πit〈v, n−s〉φ̂ǫ(n− s)
∏d

j=1〈wj(v), n− s〉
(45)

= (−1)dAP(t,−s). (46)
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We again used the fact that the lattice sum is invariant under the substitution
m = −n and that φ̂ǫ(−z) = φ̂ǫ(z), for all z ∈ Cd.

Corollary 5.2. Suppose P is a real convex d-polytope in Rd with d odd.

Then

AP(0, 0) = 0.

Proof. By Theorem 5.1, we have

AP(0, 0) = (−1)dAP(0, 0) = −AP(0, 0).

We pause for a moment to discuss the subtlety involved in computing
AP(t) using the previous theorem. We know that AP(t) is a real analytic
function of t and in fact is a quasi-polynomial in t ∈ Z when P is a ratio-
nal polytope [12]. The introduction of the complex parameter s in AP(t, s)
prevents the denominators of 1̂

v+K(v) from being zero. So one might wonder
if AP(t) = lims→0AP(t, s) even exists. It is Barvinok’s extension of Brion’s
theorem that tells us that when we add up 1̂

v+K(v)(m+ s) at every vertex v,
magically all of the singularities in s ∈ Cd cancel.

To compute AP(t) from (34), we write all of the rational functions on the
right-hand side over one denominator and use L’Hôpital’s rule to compute
the limit as s → 0. The following example will illustrate this procedure.

Example 5.1. Let P be the triangle in R2 with vertices v1 = (0, 0),v2 =
(0, 1) and v3 = (

√
3, 0).

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

v1 = (0, 0)

v2 = (0, 1)

v3 = (
√
3, 0)

Figure 1: The triangle P.
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To calculate AP(t), we use equation (34) in Theorem 5.1 and we begin by
evaluating the determinant of the tangent cone at each vertex. We have

| detK(v1)| = det

(

1 0
0 1

)

= 1,

| detK(v2)| = det

(

0
√
3

−1 −1

)

=
√
3,

and | detK(v3)| = det

(

−
√
3 −1

1 0

)

= 1.

We also need to evaluate

e2πit〈v, m+s〉
∏2

j=1〈wj(v), m+ s〉
, (47)

for each of the vertex cones K
v1
,K

v2
, and K

v3
. Then (47) equals

1

(m1 + s1)(m2 + s2)
,

−e2πit(m2+s2)

(m2 + s2)(
√
3(m1 + s1)−m2 − s2)

, and

e2πit
√
3(m1+s1)

(m1 + s1)(
√
3(m1 + s1)−m2 − s2)

, for v1,v2, and v3 respectively.

Thus

AP(t, s) = lim
ǫ→0

∑

v a vertex
of P

| detK(v)|
(−2πi)2

∑

m∈Z2

e2πit〈v, m+s〉 φ̂ǫ(m+ s)
∏2

j=1〈wj(v), m+ s〉

= lim
ǫ→0

1

−4π2

∑

(m1,m2)∈Z2

φ̂ǫ(m+ s)

(

1

(m1 + s1)(m2 + s2)

−
√
3e2πit(m2+s2)

(m2 + s2)(
√
3(m1 + s1)−m2 − s2)

+
e2πit

√
3(m1+s1)

(m1 + s1)(
√
3(m1 + s1)−m2 − s2)

)

= lim
ǫ→0

1

−4π2

∑

(m1,m2)∈Z2

φ̂ǫ(m+ s) · f(t, s)
g(t, s)

,

where

f(t, s)

g(t, s)
=

√
3(m1 + s1)−m2 − s2 −

√
3(m1 + s1)e

2πit(m2+s2) + (m2 + s2)e
2πit

√
3(m1+s1)

(m1 + s1)(m2 + s2)(
√
3(m1 + s1)−m2 − s2)

.

14



All that remains is to use L’Hôpital’s rule to calculate

lim
s→0

f(t, s)

g(t, s)
.

In order to take the derivative with respect to s, we first let s = σ(x1, x2) for
some fixed (x1, x2) 6= 0 and then take the derivative with respect to σ. Since
t appears in an exponential in the numerator, each iteration of L’Hôpital’s
rule will produce a factor of t in the numerator. It is known that for a
rational d-polytope, AP(t) is a quasi-polynomial in t of degree d. Therefore,
in general, one must apply L’Hôpital’s rule d times for a d-polytope. Thus

lim
s→0

f(t, s)

g(t, s)
= lim

σ→0

f(t, σ)

g(t, σ)

= lim
σ→0

f ′(t, σ)

g′(t, σ)

= lim
σ→0

f ′′(t, σ)

g′′(t, σ)

=
f ′′(t, 0)

g′′(t, 0)

=
−6π2m2x

2
1t

2e2πit
√
3m1 + 2πi

√
3x1x2t(e

2πit
√
3m1 − e2πitm2) + 2π2

√
3m1x

2
2t

2e2πitm2

−x2(2m2x1 +m1x2) +
√
3x1(m2x1 + 2m1x2)

,

where we used Mathematica in these last steps. We can now choose (x1, x2)
to be any non-zero vector as long as the denominator is never zero. Therefore,
we let (x1, x2) = (1, 1) and we have

AP(t) = lim
s→0

AP(t, s)

= lim
ǫ→0

1

−4π2

∑

(m1,m2)∈Z2

φ̂ǫ(m) · f
′′(t, 0)

g′′(t, 0)

= lim
ǫ→0

1

−4π2

∑

(m1,m2)∈Z2

φ̂ǫ(m) ·

−6π2m2t
2e2πit

√
3m1 + 2πi

√
3t(e2πit

√
3m1 − e2πitm2) + 2π2

√
3m1t

2e2πitm2

−2m2 −m1 +
√
3(m2 + 2m1)

.
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When

φǫ(s) = ǫ−
d
2 exp

(−π

ǫ
〈s, s〉

)

= ǫ−1 exp

(−π

ǫ

(

s21 + s22
)

)

, (48)

it follows that

φ̂ǫ(m1, m2) = ǫ−
1

2 exp
(

−πǫ
(

m2
1 +m2

2

))

. (49)

Since φ̂ǫ(m1, m2) provides absolute convergence, we can break up the series
for AP(t) and use equation (49) to obtain the following:

AP(t) = t2



lim
ǫ→0

ǫ−
1

2

−4π2

∑

(m1,m2)∈Z2

(

2π2
√
3m1e

2πitm2 − 6π2m2e
2πit

√
3m1

)

e−πǫ(m2

1
+m2

2)

−2m2 −m1 +
√
3(m2 + 2m1)





+ t



lim
ǫ→0

ǫ−
1

2

−4π2

∑

(m1,m2)∈Z2

2πi
√
3(e2πit

√
3m1 − e2πitm2)e−πǫ(m2

1
+m2

2)

−2m2 −m1 +
√
3(m2 + 2m1)



 .

In the previous example, we note that AP(0) = 0 and the dimension,
d = 2, is even. This leads to the following conjecture:

Conjecture 1. Suppose P is a real convex d-polytope for any dimension d.
Then

AP(0, 0) = 0.

To summarize, we have extended Macdonald’s solid angle function AP(t)
to all real polytopes P and all real dilations t, using AP(t, s). It now becomes
an interesting question to look for special values of the discrete volume func-
tion AP(t, s) for various values of t and s.
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topes. (English summary), Beiträge Algebra Geom. 47 (2006), no. 2,
447–462.

[8] Diaz, R. and Robins, S., The Ehrhart polynomial of a lattice polytope,
Ann. Math. 145 (1997) 503–518.

[9] Ehrhart, E., Sur un problème de géométrie diophantienne linéaire II, J.
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