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1 Introduction

The natural generalization of a two-dimensional angle to higher dimensions is
called a solid angle. Given a pointed cone K C RY, the solid angle at its apex
is the proportion of space that the cone K occupies. Alternatively, a solid
angle can be thought of as the volume of a spherical polytope. Ian Macdon-
ald initiated the systematic study of solid-angle sums in integral polytopes
with his 1971 paper [12] and currently there is a resurgence of activity on
solid angles; see, for example, [7], [15], and [16]. The theory of solid an-
gles of polyhedra, which parallels that of integer-point enumeration known
as Ehrhart theory, can be found in Chapter 11 of [4] by Beck and Robins.
Macdonald’s solid angle sums give us a new measure of discrete volume, and
they find applications in the Ehrhart theory of polytopes.

In this paper, we extend many theorems from [4], which hold true for
for rational polytopes, to results for real polytopes that also involve more
general solid angles. A rational polytope is a polytope whose vertices all have
rational coordinates, whereas a real polytope is a polytope whose vertices all
have arbitrary real coordinates. Our generalized solid angles are defined
using the [P-norm, and in particular include the /'-norm, which gives solid
angles that are themselves polyhedral and hence easily computable.

The proofs we give here rely on Harmonic Analysis and therefore do not
resemble the proofs in [4], which are combinatorial in nature. Furthermore,
it is the power of Harmonic Analysis that allows us to extend our results to
all real convex polytopes P and to all real dilations of P.
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We note that solid-angle theory for real polytopes is still in its infancy,
primarily due to the considerable increase in difficulty associated with the
study of polyhedra with irrational vertices. Precise enumeration theorems for
real polytopes are hard to come by, and thus the main contribution of this
paper to solid-angle theory is the extension of several fundamental theorems
to real polytopes.

2 Definitions and background material

A convex polytope P C R? is the bounded intersection of finitely many
half-spaces and hyperplanes. If P is of dimension d, we call it a d-polytope.
A convex cone K C R? is the intersection of finitely many half-spaces of the
form {x € R4 a-x < b} whose corresponding hyperplanes {x € R¥|a-x =
b} meet in at least one point. A cone is called pointed if the defining
hyperplanes meet in exactly one point. Throughout this paper, the word
cone will always refer to a pointed cone.

Suppose P C R is a convex d-polytope. Then the solid angle wp(x) of
a point x (with respect to P) equals the proportion of a small ball centered
at x that is contained in P. Thus, for all positive e sufficiently small,

w(x) = “ﬁg“)(; P) (1)

where B.(x) is the ball of radius € centered at x. We now generalize our
definition of a solid angle by considering balls with respect to [P-norm for
any p > 1. Given x = (21, Ty, ...,14) € R% the [P-norm of x is defined by

Ixllp = ([P + | 2ol + - + 2!, for p>1.
The ball with respect to [P-norm of radius € centered at x is the set

B, (x)={yeR": |x—yl,<e}

For any convex d-polytope P C R?, the IP-solid angle of a point x, denoted
by w, p(x), is the proportion of a small [P-ball centered at x that is contained

in P. That is
vol(Bp,(x) N P)

wp,p(x) = vol )pre(x) ’ (2)

for all positive e sufficiently small.



Given a cone K C R, we also have the following integral definition of a
general solid angle with respect to K. For x € R? and p > 1, the IP-solid
angle of x with respect to K is given by

D U T
wp,/C(X) = GE%M/KQ It prdt (3)
= lim [ el el taad?) gy
e—0t Ed/p K

p
where ¢ = (2 r (% + 1)) . This definition arises from centering at x a Gaus-

sian function with respect to the [P-norm that is normalized to have a total
mass of 1 and then integrating to calculate the proportion of mass contained
in IC. This definition of w), x(x) is more analytic in nature, as opposed to
geometric, and it opens the door to the Harmonic Analysis techniques that
will be used below.

For e >0, p > 1, and t € R? we define

bu(t) = Gd% ==l (4)

Notice that ¢.(—t) = ¢.(t), by the properties of the [P-norm, so that the
integral in equation (3) becomes a convolution as follows:

wp k(x) = lim/}cgbe(t—x)dt

e—0

= lim/@(x—t)dt
K

e—0

= lim ].]C(t) ¢E(X — t)dt

e—0 R
= lim (1g * ¢¢) (x).
e—0
The last equality follows from the definition of the convolution. This fact

will be used a great deal, so we highlight it here:

Fact 1.
wp k(x) = 1in(1] (1 * ¢c) (x), for all x € R
e—



The integer-point transform of a polytope P C R¢, given by

op(z) = Z z", (5)

mePNZ4

is a multivariate generating function that lists all integer points in P as a
formal sum of monomials. This special format encodes information about
the integer points in a way that allows us to use both algebraic and analytic
techniques to study the discrete geometry of polyhedra. By analogy, we form
the solid-angle generating function for a polytope P

ap(z)i= 3 wplm)a™, (6)

me PN Z4

where wp(m) is the usual solid angle, defined by (1).
In order to employ the methods of Harmonic Analysis, we often need to
consider functions of a complex variable. For this reason, we redefine ap

using the substitution z, = e*™* for each k = 1,...,d, so 2™ = €™ and
we obtain
ap(s) == Z wp(m)e?™sm - for s € CY. (7)
mePNZI

This substitution will prove essential when we use the following Poisson sum-
mation formula: If f is a “sufficiently nice” function (for example, a function
which is L' and continuous, and has a Fourier transform which is also L?

and continuous), then )
Y fh= ) flm), (8)

lezd me 74

where f: R% — C is defined as

flo) = [ e oy

Using this technique will introduce sums of Fourier-Laplace transforms de-
fined over polyhedra and the complex variable will ensure convergence of such
sums. We note that while defined similarly, the Fourier-Laplace transform is
defined for the complex variable s € C?, while the Fourier transform is only
defined on R%.

We wish to point out that ap(s) is a finite sum for any polytope P C
R? and for all s € C? because the wp(m) = 0 for all m ¢ P. Therefore
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convergence is not an issue when dealing with polytopes. However, when we
consider the solid-angle generating function for a pointed cone C, convergence
does become a slight issue.

To discuss the convergence of ay(s), we need to define K*, the polar cone
associated with K. The polar cone K* is defined by

K*={xcR?: (x,y)<0,Yy €K}
Thus, ax(s) converges if s € C? such that —Im(s) € K*, because

—Im(s) € £*
= (=Im(s), m) <0, VmekKknz?
N }627r(—1m(8)7m>} <1, VmeknZz?
N ‘e2wi(s,m>‘ <1, VmeknZz.

We now further extend our definition of ap, by replacing wp(m) by the
generalized [P-solid angle measure w, p(m) defined by (3) and which we re-
state here:

1 —c p
Wy p(x) = lim —- /P e 1=l gy, 9)

e—0 ed/P

Thus, we will always assume that our solid angles wp(m) are in fact the
generalized (P-solid angles w, p(m), with a fixed real p > 1.

Recalling Fact 1, we can write wp(m) = lim.,o (1p * ¢) (m), with the
specific choice of ¢.(t) := ed% e Il> We see that the usual definition of a
solid angle is retrieved by setting p = 2. In general, for any p, our ¢. enjoys
the property that its Fourier-Laplace transform is rapidly decreasing. The
fact that ¢EE decreases rapidly at infinity assures us the absolute convergence
of all the series that ensue.

3 A functional equation for the generalized
solid-angle function ag(s) of a real cone K

We now show that the solid-angle generating function ay(s) obeys the fol-
lowing functional equation, also known as a reciprocity relation:



Theorem 3.1. Suppose K is a real, simple d-cone in R with vertex at the
origin and s € C%. Then

ax(=s) = (=1)%ax(s). (10)

Proof. For j =1,...,d, let w; be a generator of the simple cone K. By abuse
of notation, we denote the determinant of the matrix whose ;™ column is
the edge vector w; by det K. Then

ax(—s) = lim D (L % ge) (m)em == (11)
mezZd

= lm 3" (Lex6)(m — ) (12)
mezZd

= lim ZZ 1c(m — s)pe(m — s) (13)

(—2mi)~ | det K| bu(m —s) (14)

= lim y
0 mezd Hj:1<wj7 m— S>

The last equality uses the formula for 1, which is exercise 10.4 in [4]. We
used Poisson summation in the second equality, which is valid because the
convolution of 1x with ¢, is an integrable and continuous function whenever
¢, is integrable and continuous.

Now we will use the fact that the lattice sum is invariant under the
substitution m = —n. Thus, we have

(—2mi)~ 4| det K| Qgg(—n—s) (15)

ag(—s) = lim y
0 nezé Hj:l <Wj7 -n - 8)

(—2mi)~ | det K| -

= <—1>dyg%ne2d Mo rs 09 09
= (1)l 3 Tln+ )l -+ ) (17)
= <-1>dg%”€ziame><n+s> (18)
= <—1>dy;%nez (L * 6) (m)e*™ o™ (19)
= <—1>da,c<:>6.2d (20)



~

In (16), we used the fact that, for all complex vectors z € C?, ¢ (—2) = ¢ (2).
This last remark holds because

Pc(—2)

_ / e27rz'(—z,x)¢e(x)dx
Rd

— / e27rz'(z,—:c)¢€(x>dx
R4

_ / e2wi(z,u>¢e(_u)du
Rd

_ / e27ri(z,u) qﬁe(u)du
R

d

= éE(z>‘

We now generalize the previous theorem to any real d-cone.

Theorem 3.2. Suppose K is a d-cone with its vertex at the origin, v € RY,
and s € CL. Then the solid-angle generating function oy xc(s) of the d-cone

v + K satisfies

avir(=s) = (=1)

Yo_yiic(s). (21)

Proof. Since solid angles are additive, it suffices to prove this theorem for
simple cones. Therefore, let w; for j = 1,...,d be the generators of the
simple cone KC. Then the cone v + K has generators v + w; and we have

avyr(=s) =

: 2mi{—s,m)
ll_rfol (Lytic * @) (m)e
meZd
lim (Lyaxc * @) (m — s) (22)
e—0
mezZd
ll_rfol 1v+K(m - 3)¢6(m - S)'
meZd

We used Poisson summation in the (22) above and we note that the formula
for the Fourier-Laplace transform of the shifted cone v + K is obtained from
that of IC, since 1yix = 1x - €¥™v:"). Thus



—271) "4 det 27i{v, m—s)
ayi(—s) = lim (=2mi)” 7| det K| e
e—0 d
mezd Hj:1<wj7 m—s)
(—27i)~ | det KC| e2mitvs —n=s)

d
0 nezd Hj=1<wj> —n—s)

—97i —d det 2mi(—v, nts)
_ (—1)d1imz( m?) d‘ i k] e de(n + s)
6_>0nezd Hj:l(wj7 n+ $>

= (~D)Mim > 1 i(n+s)de(n +s)
n€zd

(1w 3 (v 6+ 9
nezd

= (_1)d ll_rfol (1—V+IC * ¢6) (n)ezﬂ<sm>
n€ezZd

= (=1)avix(s).

We again used the fact that the lattice sum is invariant under the substitution
m = —n and that ¢.(—2) = ¢(2), for all z € C% O

(56(7” - S)

(56(_77' - S)

4 A Brion-type theorem for solid angles sums
over real polytopes

Here we state and prove the real analogue of Brion’s theorem for rational
polytopes, in terms of generalized solid angles. We note that the finite sum

ap(s) = Y wplm)erriom

me PN Z4

can be construed as a discrete volume measure of P, since ap(s) assigns to
each integer point in the interior of P a weight of 1 and to each boundary
integer point of P a weight between 0 and 1. The following theorem transfers
the computation of a finite sum over a polytope to a finite collection of the
infinite vertex tangent cone sums ax, ($).



Theorem 4.1. Suppose P is any real, convex d-polytope. Then we have the
following identity of meromorphic functions for s € C9:

ap(s) = Z ax, (s), (23)

Vv a vertex
of P

where Ky :=={v+ ANy —V):y € P, e Rso} is the vertex tangent cone of
P at the vertex v.

Proof. We begin with the Brianchon-Gram identity [4]:

Lp(x) = Y (=) 1, (x), (24)

FCP

where the sum is taken over all nonempty faces F of P and Kz is the tangent
cone attached to F defined by Kz := {x+A(y—x) : x € F,y € P, A € R>}.
Next, we take the convolution of both sides with ¢., then multiply by 2™,
and finally, sum over all m € Z? to obtain

Y (Upxdd(m)" = Y (D)W (L, * ) (m)=". (25)

meZd meZd FCP

We wish to take the limit as ¢ — 0 of both sides of equation (25), but we
first note that the infinite lattice sums are absolutely convergent due to the
presence of the damping function ¢. and hence we can take the limit inside
the sum. Thus, we obtain

ZwP(m)zm = Z Z DA F e (m)z™

meZzZd mezZd FCP
= D D wameEm+ Y ()T Y w(m)
v ao\%e{)tex mezZ4 FCP meZd

dim F>0

With the substitution 2™ = e2™*™ we have shown that

ap(s) = Y ax(s)+ D (=) ag,(s). (26)

Vv a vertex FCPpP
of P -
dim F>0

Therefore, it remains to show that ax.(s) = 0 for every face F of P with
dim F > 0. To this end, consider such a aj,(s). Since r is also a cone, we
can write Iz as the disjoint union of its relative open faces G° and obtain

9



ak,(s) = Z wic,(m)z™ = Z Z wic(m)z™. (27)

mezZd GC F mezZinge

Since wi,(m) is constant on the relative interior of each face G of F, we
denote wy,(m) by wg when m € G°. Then we have

ax,(s) = Z wg Z 2™, (28)
GCF  mezinge

Recall that dim F > 0, and so dim G > 0 for every face G of F. Therefore,
G° contains a line and by theorem 3.1 in [3]

d am=o. (29)
mezZinge

Thus, by equation (28), ax,(s)= 0 for every face F of P with dim F > 0. O

5 Solid Angle Reciprocity for Real Polytopes

We now introduce a measure of discrete volume:

Ap(t) =) wip(m), (30)

mezZ4

where wyp(m) is the generalized solid angle measure at m € Z4 N tP defined
in (9). Our next theorem is a generalization of the solid angle analogue of
Macdonald’s reciprocity, which states that

Ap(t) = (1) P Ap(-1), (31)

for t € Z and for rational convex polytopes P [4]. First, we define a general-
ized function for s € C¢ by

Ap(t,s) =Y wip(m)e?™m s, (32)
mezZd

I. G. Macdonald introduced the notation Ap(t) to denote the solid angle
measure of a polytope. We can relate his notation to our solid angle sum
agp by noting that Ap(t,s) = ayp(s). For the remainder of this paper, we
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use Macdonald’s notation to emphasize the independent variable ¢, which we
extend from ¢t € Z to any t € R.

We will show that Ap(t, s) is a real analytic function of ¢ which satisfies
the reciprocity relation Ap(—t,s) = (—=1)%"P Ap(t, —s). Furthermore, the
following proof extends Macdonald’s reciprocity to all real convex polytopes
via Ap(t) = lim,0 Ap(t, s), and to all real dilations t.

Theorem 5.1 (Generalized Macdonald’s Reciprocity). Suppose P is a
real convex d-polytope in R?. Then

(1) Fort € R and s € C4, Ap(t,s) satisfies
Ap(=t,s) = (=1)"Ap(t, —s). (33)

(2) Furthermore, if P is a simple d-polytope, t € R and s € C¢, then the
continuation of Ap(t,s) to a real analytic function of t is given by

Z | det IC(v)] Z exp(2mit(v, m + s)) ¢>E(m—|—s)

Ap(t,s) = lim
#lb:9) 2 2 I w (vt s)

e—0
v a vertex
of P

(34)

Proof. Since solid angles are additive and we can assume a triangulation of
a polytope, it suffices to prove this theorem for a real simplex P. We will
use the fact that

wep(m) = lim (1gp * o) (m), (35)

for an appropriate choice of ¢, with ¢.(—z) = ¢.(x). Then we have

Ap(t,s) = 3 wip(m)etions (36)
meZd
= lim Z Lip * @) (m)e?™im: ) (37)
0 mezZd
= lim »  (Lp*gc)(m+s) (38)
meZd
= 11_%1 Z; Lip(m + s)pe(m + s). (39)
meZd
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We used Poisson summation in the (38). Next, we use an extension of Brion’s
theorem for real polytopes due to Barvinok [1] to obtain

Ap(t,s) = lim > sk (m+s) | glm+s).  (40)
mezZa Vao\%e,}")tex

Barvinok’s theorem [1] allows us to write 1;p as the sum of Fourier-Laplace
transforms over the tangent cones at the vertices of tP. Therefore, if v+(v)
is the tangent cone at the vertex v of P, where K(v) is a simple cone with
apex at the origin, then (v + IC(v)) = tv + K(v) is the tangent cone at the
vertex tv of tP, since a cone whose apex is the origin does not change under
dilation. Using the formula for the Fourier-Laplace transform of a simple
cone

| det K(v)| exp(2mi(tv, m+s)) | » .
S0 | S (=2mi) [T (w(v), m + s) pc(m—+s) (41)

iy 3 LK O] g~ exp(@mit(v, m ot 9)6m +5)
E Z (=2mi)’ "Zz:d H;l (wi(v), m+ s) - (42)

e—0
va

vertex
of

We note that the only place a t appears in this last equation is in the exponent
of an exponential. Hence, Ap(t,s) is a real analytic function of ¢, because
we can differentiate inside the summation sign due to the rapid convergence
provided by ¢.. This proves part (2).

Now for the proof of part (1), we evaluate the continuation of Ap(t,s) at
—t to obtain

d tIC 27r2 (v, m+s) .
Ap(~t,s)= lim > [det K(v)| Yy - Gelm +5) (43)
6_)Ov aox%ogox ( 27TZ mezZa g 1<Wj(v)7m+8>
27rzt (v, n—s I\
_ lim Z |detIC |Z g (—n + s) (14)
6_>0vavortox 27”' 7j=1 W]( ) —n+ S)
of P
2mt (v, n—s I\ _
= (-1)%im Y |de“C ) S Odns) )
6_)Ova\%e%tex 27TZ nezd H] 1 WJ( ) n-— S>
= (=1)'Ap(t, —s). (46)
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We again used the fact that the lattice sum is invariant under the substitution
m = —n and that ¢.(—z) = ¢.(2), for all z € C%. O

Corollary 5.2. Suppose P is a real convex d-polytope in R? with d odd.
Then
Ap(0,0) =0.

Proof. By Theorem 5.1, we have
AP(Ouo) = (_1)dA’P(070) = —A’/)(0,0)
O

We pause for a moment to discuss the subtlety involved in computing
Ap(t) using the previous theorem. We know that Ap(t) is a real analytic
function of ¢ and in fact is a quasi-polynomial in ¢ € Z when P is a ratio-
nal polytope [12]. The introduction of the complex parameter s in Ap(t,s)
prevents the denominators of iquV) from being zero. So one might wonder
if Ap(t) = lim,;_0Ap(t,s) even exists. It is Barvinok’s extension of Brion’s
theorem that tells us that when we add up 1y () (m + s) at every vertex v,
magically all of the singularities in s € C¢ cancel.

To compute Ap(t) from (34), we write all of the rational functions on the
right-hand side over one denominator and use L’Hopital’s rule to compute
the limit as s — 0. The following example will illustrate this procedure.

Example 5.1. Let P be the triangle in R? with vertices v; = (0,0), vy =
(0,1) and v3 = (+/3,0).
Vo = (O, 1)

v = (0,0) vz = (V3,0)

Figure 1: The triangle P.
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To calculate Ap(t), we use equation (34) in Theorem 5.1 and we begin by
evaluating the determinant of the tangent cone at each vertex. We have

10
| det IC(vy)| = det ( 01 ) =1,

|det/qv2)|:det< 0 ﬁ) — V3,

-1 -1

and | det K(v3)| = det < _1/§ _01 ) = 1.

We also need to evaluate

e27rit<v, m+s)

[T (Wi (v),m + s)’

for each of the vertex cones Ky, , Ky,, and Ky,. Then (47) equals

(47)

1 _e2m’t(m2 +52)
and

(ml + 31)(m2 + 32)’ (mg + 52)(\/§(m1 + 81) — My — 82)7

627rit\/§(m1+81)
, for vi, vy, and vj3 respectively.
(m1 + 81)(\/5(7711 + 81) — Mo — 82)
Thus
d t’C 27rzt (v, m+s) 7
Ap(ts) = lim 3 AWl g e T O + )
6_>0vavortox ( 27TZ meZ?2 Jj= 1 ( ) m + $>
of P
1 A 1
= lim (m+s
e—0 —47‘(‘2 Z ¢ ( ) <(m1 + 81)(m2 + 82)
(m1,mo)€Z2
\/5627rit(m2+82) 627rit\/§(m1+51)
(mg + 82)(\/3(7711 + 81) mo — 82) (m1 + 81)(\/5(7711 + 81) — My — 82)
1 n f(tv )
- ll—r}é —47'('2 Z ¢E(m+ ) g(t,s)’
(m1,meo)€Z?
where
Ft,s)  V3B(ma+ 1) — ma — 82— V/3(my + 51)e2THMm2F52) 4 (1 4 s,)e2TVE0MF1)
g(t,s) (mq + s1)(ma + 52)(\/5(7”1 + 51) — My — 59) .
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All that remains is to use L’Hopital’s rule to calculate

f(t,s)
Sli% g(t’ S) .

In order to take the derivative with respect to s, we first let s = o (1, x9) for
some fixed (z1,x2) # 0 and then take the derivative with respect to o. Since
t appears in an exponential in the numerator, each iteration of L’Hopital’s
rule will produce a factor of ¢ in the numerator. It is known that for a
rational d-polytope, Ap(t) is a quasi-polynomial in ¢ of degree d. Therefore,
in general, one must apply L’Hopital’s rule d times for a d-polytope. Thus

L) f(to)
5—0 g(t, 3) o—0 g(t, a’)
/
L o)
oc—0 g/(t7 0')
o o)
U—>O g ( )
f"(t,0)
/l(t’ O)
_67T2m2x%t2627rit\/§m1 + 2m\/§xlx2t(e2mt\/§m1 _ eZm’tmg) + 2W2\/§mlx%t262mtm2

—1’2(277121'1 + mll'g) + \/3!13’1 (mgl'l + lel'g)

Y

where we used Mathematica in these last steps. We can now choose (1, x2)
to be any non-zero vector as long as the denominator is never zero. Therefore,
we let (1, 22) = (1,1) and we have

Ap(t) = llmAp(t S)

s—0
B 1 ~ f"(t,0)
N 11—{% — 472 Z Pelm) g"(t,0)
(m1,meo)€Z2
1 .
= lm—— > d(m):

(m1,m2)€Z?
—67r2m2t262“t\/§m1 + 2m\/§t(62mt\/§m1 _ e27ritm2) + 272 \/§m1t262mm2
—2m2 —mq + \/g(mg + le) ‘
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When

o) = o (o) = e (T 4] @9

€

it follows that

~

Ge(my,my) = €2 exp (=me (m} +m3)) . (49)

Since (ﬁe(ml, ms) provides absolute convergence, we can break up the series
for Ap(t) and use equation (49) to obtain the following:

(27T2\/§m162mtm2 _ 67T2m2627rit\/§m1> o~ me(mi+m3)

—2m2 —mq + \/g(mg + 2m1)

1
€2
Arlt) = iy =5 D
(m1,m2)€Z?

1
. € 2
+ ¢ 11—% —472 Z

(m1,m2)€Z?

2m~\/§(62mt\/§m1 _ ezmtmg)e—ne(mermg)
—2m2 —mq + \/g(m2 + 2m1)

O

In the previous example, we note that Ap(0) = 0 and the dimension,
d = 2, is even. This leads to the following conjecture:

Conjecture 1. Suppose P is a real convexr d-polytope for any dimension d.
Then
Ap(0,0) =0.

To summarize, we have extended Macdonald’s solid angle function Ap(t)
to all real polytopes P and all real dilations ¢, using Ap (¢, s). It now becomes
an interesting question to look for special values of the discrete volume func-
tion Ap(t,s) for various values of ¢ and s.
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