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Abstract

We demonstrate the consistency of cross validation for comparing multiple density
estimators using simple inequalities on the likelihood ratio. In nonparametric prob-
lems, the splitting of data does not require the domination of test data over the
training/estimation data, contrary to Shao (1993). The result is complementary to
that of Yang (2005) and Yang (2006).
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1 Introduction

Cross validation (CV) is a common procedure used for smoothing parameter
estimation or model selection. When multiple procedures are being compared,
it is customary to choose the one that obtains the smallest “loss”, which is
defined specifically to the problem at hand. If both the procedure used to
obtain the estimate and the computation of the loss are based on the same set
of data, it is a well-known effect that the estimated loss is biased due to the
double use of the same observations. In order to obtain an unbiased estimate,
one approach is to use a penalty term that takes into account the complexity
of the model. This approach includes AIC, BIC, Cp, etc. A simpler approach,
which is closely related, when we have the luxury of enough observations, is to
split the data in such way that one part is used to obtain the estimate, and the
other separate hold-out data is used to evaluate the loss. The main advantage
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of this approach is that it can be easily applied in various situations (without
theoretical derivation) to select one out of many competing procedures. There
are a few different variations to this approach, including leave-one-out CV,
k-fold CV, Generalized CV, etc. A well-studied case is the linear regression
problem, where Shao (1993) showed the surprising result that leave-one-out
CV will select the models with extra redundant variables with nonvanishing
probability (This theory assumed that the number of covariates is fixed. It is a
different story when the number of covariates grows with n). In order to restore
consistency, one should split the data such that the size of the evaluation part
of the data is dominating. All of the above techniques are summarized and
compared in Shao (1997) in the context of linear regression with different kinds
of asymptotics.

Yang (2005) studied the problem of cross-validation in the context of non-
parametric regression comparing a finite number of estimators. It is shown in
that paper that under the L2 loss, as long as one of the competing procedures
converges at a nonparametric rate, the dominance of evaluation data is not
necessary for consistency. Instead, the two parts of the data can be of the
same order, which is surprising considering the corresponding result for linear
regression.The proof of Yang’s result is based on an application of Bernstein’s
inequality. Similarly, it is shown in Yang (2006) that cross validation is con-
sistent in classification problems where the consistency also depends on the
rate of disagreement between the two classifiers.

In this paper, we consider the problem of density estimation when the ob-
servations are generated i.i.d. from the true distribution P0. There exists a
large literature on density estimators, earlier results focus on linear estima-
tors including kernel density estimator, later developments include wavelets
thresholding and adaptive width kernel that achieve minimax rate of conver-
gence in a large class of Besov spaces where no linear estimate can attain
the optimal convergence rate. Faced with such large choices of estimator with
different theoretical properties, it is important to select one that has optimal
performance for the current problem. Cross validation can be directly applied
by splitting the observations into two groups. Different estimators, such as
kernel estimates and wavelets, can be obtained based on the first part of data,
then the likelihood of the second group of data can be evaluated and com-
pared. Finally, the estimator that obtains the largest likelihood is chosen as
the winner. A natural question is whether this process will return the optimal
procedure. In particular, what condition on the splitting ratio should be satis-
fied in order to ensure the consistency property? The main conclusion in this
paper is similar to that of Yang (2005), that is, we do not necessarily need
to assume the size dominance of the evaluation data as in linear regression
problem.
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2 Consistency result

Consider the situation where we have n observations X1, X2, . . . , Xn gener-
ated i.i.d. from an underlying distribution P0 with corresponding density p0.
There exists many well-known density estimators. For parametric procedures,
such as mixture modeling using parametric families of densities, the conver-
gence rate is usually 1/

√
n. On the other hand, for nonparametric procedures,

the rate of convergence is slower, depending on the smoothness property of
the true density. Density estimation is closely related to regression problem,
as demonstrated in a series of well-known papers (see, e.g., Brown and Low
(1996), Nussbaum (1996)).

With many possible choices for density estimation procedures, both parametric
and nonparametric, one needs to find the best estimator among them for
the current data. Parametric procedures have a faster rate of convergence
when the model is correct, but suffer from a nonvanishing bias when the true
distribution lies outside of the parametric family. Nonparametric procedures
are more flexible but lose in efficiency when the underlying density is of a
known parametric form. In practice, we need to know which procedure is best
without knowledge of the true distribution.

We start by splitting the data into two parts: the estimation data X1 =
{X1, . . . , Xn1} and the evaluation data X2 = {Xn1+1, . . . , Xn}, and let n2 =
n−n1. We assume we have many estimation procedures {P̂i}mn

i=1 (note the num-
ber of potential choices can grow with n), which will produce density estimates

{p̂(n1)
i (x;X1, . . . , Xn1)}, we will omit the dependence of p̂

(n1)
i on the training

data X1 in the following. To choose the best procedure among those mn, the
test data X2 is used to evaluate the likelihood: p̂

(n1)
i (X2) =

∏n
k=n1+1 p̂

(n1)
i (Xk).

If p̂
(n1)
j (X2) = maxi p̂

(n1)
i (X2), then the procedure P̂

(n1)
j is selected as the fi-

nal estimator. The desired property is that this cross-validation procedure
will select the best one with high probability. We will use a loss function
d(p0, p) to measure the closeness of p to the true density p0. In this paper,
we will adopt the commonly used Hellinger distance as the loss function:
dH(p0, p) = (

∫

(
√
p0 −

√
p)2)1/2. Another commonly used measure of loss in

the context of density estimation is the Kullback-Leibler divergence (which is
not a true distance) dK(p0, p) =

∫

p0 log
p0
p
. It is always true that d2H ≤ dK .

Under some mild assumptions, these two measures of loss are almost equiva-
lent. The simplest case under which this is true is when the class of densities
considered are uniformly bounded away from zero and infinity, so that the ra-
tio p0

p
is uniformly bounded, then dK(p0, p) = O(d2H(p0, p)) (see, e.g., Lemma

8.2 in Ghosal et al. (2000)). The more complicated techniques similar to those
used in section 3 of that paper can also be used when the estimate is con-
strained to be within a finite approximation set (this will result in an extra
logarithmic factor). The paper of Yang and Barron (1999) contains more infor-
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mation regarding the relationships between d2H , dK and the Lp loss function,
and established some equivalence result between them under some conditions.
In the rest of the paper, we will assume that dK ≤ Md2H for some constant
M .

Theorem 1 P0(p̂
(n1)
1 (X2) > p̂

(n1)
i (X2), ∀i > 1|X1) → 1 if the following con-

ditions hold:

(1) n1 → ∞, n2 → ∞

(2) n2 mini>1 v
2
n1,i → ∞, and logmn = o(n2mini>1 v

2
n1,i)

(3) There exists c < 1 and tn > 0 s.t. ntn → ∞ and
Mv2

n1,1
+sn1 tn2

cv2
n1,i

< 1, ∀i > 1

where vn,i = dH(p0, p̂
(n)
i ), sn = V (p0, p̂

(n)
1 ), and V (p0, p) =

∫

p0(log
p0
p
)2

Remark 2 In the statement of the theorem, the probability is conditioned on
X1, and vn1,i and sn1 in conditions (2) and (3) are random variables, so the

theorem should be interpreted as P0(p̂
(n1)
1 (X2) > p̂

(n1)
i (X2), ∀i > 1|X1) → 1 on

the set that the conditions (1)-(3) hold.

Proof. The proof is based on simple likelihood ratio inequalities in Wong and
Shen (1995). All the probabilities below are implicitly conditioned on the
training data X1. From Lemma 1 in Wong and Shen (1995), we have, for
i 6= 1, b > 0,

P0(
p̂
(n1)
i (X2)

p0(X2)
≥ exp(−n2b))≤ exp(

n2b

2
− n2v

2
n1,i

2
)

Choosing b = cv2n1,i
(c as in the above assumption (3)), we get

P0(
p̂
(n1)
i (X2)

p0(X2)
≥ exp(−n2cv

2
n1,i

))≤ exp(−n2v
2
n1,i

2
(1− c))

Denote by Wn2 the event {
d
(n2)
K

(p0,p̂
(n1)
1 )−dK(p0,p̂

(n1)
1 )

V (p0,p̂
(n1)
1 )

≥ tn2}, where d
(n2)
K (p0, p̂

(n1)
1 )

is the empirical version of dK(p0, p̂
(n1)
1 ) on evaluation data X2:

d
(n2)
K (p0, p̂

(n1)
1 ) =

1

n2

n
∑

i=n1+1

log
p0(Xi)

p̂
(n1)
1 (Xi)

. By Chebyshev’s inequality, P0(Wn2) ≤ 1
n2tn2

. Denoting d = Mv2n1,1
+ sn1tn2 ,
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P0(
p̂
(n1)
1 (X2)

p0(X2)
≤ exp(−n2d))

=P0(exp{−n2V (p0, p̂
(n1)
1 )

d
(n2)
K (p0, p̂

(n1)
1 )− dK(p0, p̂

(n1)
1 )

V (p0, p̂
(n1)
1 )

}exp{−n2dK(p0, p̂
(n1)
1 )}

≤ exp{−n2d})

≤P0



exp{−n2V (p0, p̂
(n1)
1 )

d
(n2)
K (p0, p̂

(n1)
1 )− dK(p0, p̂

(n1)
1 )

V (p0, p̂
(n1)
1 )

} ≤ exp{−n2(d−Mv2n1,1
)}





≤P0(Wn2) → 0

The last inequality above holds since on the set

W c
n2

= {d
(n2)
K (p0, p̂

(n1)
1 )− dK(p0, p̂

(n1)
1 )

V (p0, p̂
(n1)
1 )

< tn2},

we have

exp{−n2V (p0, p̂
(n1)
1 )

d
(n2)
K (p0, p̂

(n1)
1 )− dK(p0, p̂

(n1)
1 )

V (p0, p̂
(n1)
1 )

}>exp{−n2sn1tn2}

= exp{−n2(d−Mv2n1,1)}

Note that when d = Mv2n1,1
+sn1tn2 < cv2n2,i

(assumption (3)),
p̂
(n1)
1 (X2)

p0(X2)
> e−n2d

and
p̂
(n1)
i

(X2)

p0(X2)
< e−n2cv2n2,i implies p̂

(n1)
1 (X2) > p̂

(n1)
i (X2). So we can bound the

probability that the cross validation procedure chooses an estimator other
than P̂1:

P0(p̂
(n1)
1 (X2) < p̂

(n1)
i (X2) for some i)

≤P0(
p̂
(n1)
1 (X2)

p0(X2)
< e−n2d) +

mn
∑

i=2

P0(
p̂
(n1)
i (X2)

p0(X2)
> e−n2cv2n2,i)

≤P0(Wn2) +mnexp(−
n2(1− c)

2
min

i
v2n1,i

)

The above expression converges to zero under the assumed condition (2). ✷

Remark 3 The above theorem cannot be directly applied since vn1,i are ran-
dom variables depending on X1. We will specialize the result to the two pro-
cedures case below in Corollary 1.

Remark 4 Under some mild conditions, we will have sn1 = V (p0, p̂
(n1)
1 ) =

O(d2H(p0, p̂
(n1)
1 )), see, e.g., Theorem 5 in Wong and Shen (1995).
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Remark 5 As in Yang (2005), we can consider the case where we have mul-
tiple different splittings of the original data. Cross validation as stated above
can be applied to each splitting separately, and then use majority vote to choose
the final procedure.

Now we give a definition comparing two procedures by their rate of conver-
gence.

Definition 6 Procedure P̂1 is asymptotically better than P̂2 under the loss
function dH if for some sequence ǫn → 0

lim
n→∞

P0(dH(p0, p̂
(n)
1 ) < ǫndH(p0, p̂

(n)
2 )) → 1

Under this definition we can state the following corollary, the definition of
exact rate of convergence is similar to Definition 3 in Yang (2005).

Corollary 7 Considering two procedures for density estimation where one
is asymptotically better than the other. Suppose the exact rate of conver-
gence of dH(p0, p̂

(n)
1 ) and dH(p0, p̂

(n)
2 ) are pn and qn respectively. Assume that

V (p0, p̂
(n1)
i ) = O(dK(p0, p̂

(n1)
i )), i = 1, 2. If n1 → ∞, n2 → ∞,

√
n2 max(pn1 , qn1) →

∞, then the cross validation is consistent in the sense of choosing the asymp-
totically better procedure with probability tending to 1.

Remark 8 If one of the procedures has nonparametric rate n−α with α < 1/2,
then n1

n2
= O(1) will suffice for

√
n2max(pn1, qn1) → ∞

3 Conclusions

We give a simple proof of the consistency of cross validation in the context
of density estimation. Although it is shown in Shao (1993) that leave-one-
out cross validation is inconsistent for linear regression problem, it is unclear
to us whether this is the case for nonparametric problems. Another interest-
ing problem is that when multiple splittings are available, we can either use
majority voting as in Yang (2005) or choose the procedure with the largest
product of individual likelihood for each splitting. The comparison of these
two approaches is similar to the tradeoff between model selection and model
averaging.
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