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Abstract
The aim of this paper is to define an n — 1-cocycle o on GL,,(Q) with values in a certain
space D of distributions on A’ \ {0}. Here Ay denotes the ring of finite adeles of Q, and
the distributions take values in the Laurent series C((z1,...,2,)). This cocycle can be
used to evaluate special values of Artin L-functions on number fields at negative integers.
The construction generalizes that of Solomon [§] in the case n = 2.
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1 Introduction

Let A denote the ring of finite adeles of Q. Let D be the space of distributions on A’ \ {0}
with values in the Laurent series ring C((z1, ..., 2,)). In other words

D = Hom (S(A7\ {0}), C((z1,. .- 20)).

where S(A’; \ {0}) denotes the space of Bruhat-Schwartz functions f : A%\ {0} — C. The aim
of this paper is to define an n — 1-cocycle o on GL,(Q) with values in D. The construction
generalizes that of Solomon [§] in the case n = 2. A similar but different cocycle was found by
and Solomon and Hu [3] in the case n = 2,3. For n > 3 the cocycle of Solomon and Hu is only
defined on a Zariski-open subset of GL,(Q)". Following [8] and [3] we shall refer to the cocycle
o as the Shintani cocycle.

Very briefly, to define the Shintani cocycle o we begin by choosing a non-zero vector v € Q".
Given ay, ..., a, € GL,(Q), we shall define a cone C in Q™. Roughly speaking, C' will be the
set of linear combinations Y z;o;v with the z; € Q positive. To be more precise, one must also
include some of the faces of C'. Then the cocycle is given by

olag,...,on)(p) = Z ©(v) exp (Z vizi) , @ € S(AT\ {0}).

veC

Solomon and Hu showed how to make sense of the right hand side of this formula as an element
of C((z1,...,2,)); we shall explain their method in §3 below. The difficulty tackled in this
paper, is to define the cone C' correctly in the case where the vectors a;v are not in general
position. These problems are solved in §4. In §5, we describe the case n = 2 in detail, and
show how ¢ is related to Solomon’s cocycle.
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2 Special values of L-functions

Motivation for studying Shintani-cocycles lies in their relation with special values of L-functions.
We shall spend a few moments discussing this connection. Since these matters are the subject
of other papers ([2, [6] [7, 8, @]), the discussion here is deliberately informal, and is independent
of the rest of the paper.

Given a totally real number field £ of degree n, one can obtain formulae for the values
of abelian L-functions of k at negative integers by substituting units of k (regarded as n x n
integer matrices) into the n — 1-cocycle on GL,(Q). Similar formulae have been obtained by
Sczech [4, 5] and Stevens [10].

1. L-functions of Q. As a first example, we consider the case n = 1. In this case we have
a (homogeneous) 0-cocycle 0 on GL;(Q). Evaluating o at the identity element, we obtain the
following distribution

o)) = Y ¢)ep(zv) € C((z), e 8(As\{0}).

veQ, v>0

If we substitute for ¢ a Dirichlet character y : 7 — C, extended to be zero on Ay \ Z, then this

gives
Z x(n) exp(nz)

Differentiating with respect to z, we obtain formally (following Euler):

L1 —7) = (83) (e )

To make sense of this equation, let f € N be a conductor of x. We can group the terms into
finitely many geometric progressions as follows:

, reN.

z=0

o()(x) = ZX n) exp(nx <1+exp(fz)+exp(2fz)+...>

U
=1

n

_ Zf: x(n exp(nz)

1 —exp(fz)

n=1

The ratio of exponentials can be expanded in terms of Bernoulli polynomials B,, as follows.

0o f m
cH) = -3 (Zx<n>3m+1 (?)) e

This gives the usual expression for L(x,1 — ) (see for example §2.3 of [2]):

t-n = L= gxm)& (;) .




2. L-functions of real quadratic fields. Now suppose k is a real quadratic field with ring
of integers 0. For simplicity, we shall assume that k£ has narrow class number 1, i.e. every
non-zero ideal of o has a totally positive generator. Indeed, if u denotes a generator for the
group of totally positive units in o0, then each ideal has a unique generator in the following cone:

C={z+yu:z,y€Q, >0, y>0}.
We may therefore express the abelian L-functions of k as follows:
Lix.s)= Y @)
acCno

By choosing an integral basis {b1, b2}, we can regard k* as a subgroup of GLy(Q) and o™ as
a subgroup of GLy(Z). The special values of L(y, s) are encoded in the restriction of o to 0*.
We shall also identify A% with the ring Ay @k of finite adeles of k. An element 2z € Homg(, C)
can be decomposed in terms of the dual basis {b}, b5} as follows:

z = 21b] + 2963, z1, 29 € C.

Evaluating our 1-cocycle on the fundamental unit u, we obtain the following the distribution:
o(Lu)(p) = p(a)exp(z - a).
acC

Although the right hand side actually converges for z in a certain cone in Homg(k, C), we shall
in fact interpret it as an element of C((21, 22)) by the method of Solomon and Hu.
Again, substituting a Dirichlet character y for ¢, we obtain:

o(Lu)(x) = > x(a)exp(z-a).

On the other hand, we can also write z in the form
z=1111 +1tomo, 11,1 E(C,

where 7, 75 : k — R are the two field embeddings. With this notation we have

N(a) = (a%a%)lxp(z a)

This gives (formally at least) the following:

L1 = (550 ) oL

To make sense of this formula, we let f € N be a (not necessarily minimal) conductor of .
We can group the terms of o(1,u)(x) into finitely many products of geometric progressions as
before:

z:O.

z:(]'

o(Lu)(x) = > xlaexp(a-2) > exp(f(r+su)-z2)

acePNo r,s=0

_ x(a) exp(z - a)
-2 (1 —exp(z- f))(1 — exp(z - fu))

acePno
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Here P denotes the half-open parallelogram:
P={o+tyu:z,yecQ 0z <f 0<y<f}

When we expand the ratio of exponentials out as a power series in z, instead of values of
Bernoulli polynomials, the coefficients will instead be generalized Dedekind sums. The expan-
sion of such power series in terms of Dedekind sums and their generalization is described in
[T, ®]. In particular, the reciprocity laws satisfied by these sums are shown to be consequences
of the cocycle relation satisfied by o. More precisely, we can expand out as follows:

2 2y
o(l,u)(x) = Z S(my, ma, )ml'nig"
mi,m2=0 ’ ’

The coefficients S(my, mso, x) can be expressed in terms of Dedekind sums.
Using the r-th symmetric power of the transition matrix from {7y, 2} to {bj, b5}, we obtain
a formula for L(x, —r) in terms the numbers S(x, my, m2) with my + my = 2r.

3. Totally Real Fields. Let k be a totally real algebraic number field with [k : Q] = n.
Let H., denotes the narrow class group of k, i.e. the group of fractional ideals, modulo the
principal ideals gererated by totally positive elements. It was shown by Shintani [6] (see also
§2.7 of [2]) that there are finitely many cones Ci,...,Cx such that any abelian L-function of
k can be expressed in the form

“Y Y Y

[bleHoo =1 acC;Nb—1

By choosing an integral basis, we can regard 0™ as a subgroup of GL,,(Z). The method described
above may be used to express the special values L(s, —r) in terms of the restriction of o to 0*.

As an example, suppose k has narrow class number 1. Let {u,...,u,_1} be a basis for the
group of totally positive units. Then we have, for a certain differential operator O:

L(x,—r)=0" Z sign(§) - o (ugqy, - -+ Ugn-1)) | (X) )
EESn71 2=0
where & is the corresponding inhomogeneous cocycle:
glag,...,an_1) =0c(l,a1, 009, ..., 00 Qp_q).

Note that if £ has a complex place, then its L-functions are zero at negative integers. This
can be seen from the functional equation.

3 Notation and Background Material

1. The module of cones. Let vq,...,v, € R" be linearly independent vectors. By the open
cone of vy, ..., v,, we shall mean the set

Covr,. .., 0) = {ZAivi:)\l,...,)\r>0}.
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The closed cone C(vi,...,v,) is defined similarly but with the inequalities > replaced by >.
We shall write C' for the points of the closed cone which are not in the open cone. A cone will
be called rational if the vectors vy, ..., v, are in Q". Let X be the abelian group of functions
R"™\ {0} — Z generated by the characteristic functions of rational open cones. We shall also
write Kq for the group of functions R™ — Z whose restrictions to R™ \ {0} are in Xg,.

We shall regard K (resp. Kg) as a left GL,(R)- (resp. GL,(Q)-) module with the action
given by

(o * ¢)(v) = sign(det a) - c(a™1v).

The constant functions R" \ {0} — Z are in Kq, and form a submodule which we shall denote
Z(—). The quotient Kg/Z(—) will be written Lg.

2. The Solomon - Hu pairing. In [3], Solomon and Hu introduced a pairing

Lo x S(AM\ {0}) = C((z1,. - -, 20).

This is defined in several steps.

Step 1. Let Z{Q"} be the space of all functions Q" — Z and let Z|Q"] be the group ring of
the group Q", i.e. the elements of Z{Q"} of finite support. One defines a map ¢ : Z[Q"] —
C((z1,...,2,)) as follows:

O(A) = > A(w)exp(w - 2).

weQn

Here w - z denotes the dot product wiz; + ... 4+ w,z,.
Step 2. The group ring Z[Q"] acts on Z{Q"}, Z|Q"] and C((zy,...,2,)) and the map P is
compatible with these actions. Define

7{Q"}9 = {B € Z{Q"} : 3A € Z|Q"] \ {0} such that AB € Z[Q"]}.

As Z[Q"] is an integral domain, it follows that Z{Q"}@ is an additive subgroup of Z{Q"}.
Furthermore the map ® : Z[Q"] — C((z1,...,2,)) extends uniquely to Z{Q"}? in a way
which is compatible with the actions of Z[Q"].

Step 3. We next define a pairing Kg x 8(A%}) — C((z1,...,2,)). Given ¢ € Kg and ¢ €
S(A%), we define a function c¢- ¢ : Q" — C by

(c-p)(v) = { S(U)¢(U) iiz i g,

It turns out that ¢ - ¢ is in Z{Q"}9, and we define

(c,p) = D(c- ).

We shall describe this more explicitly. Let vy, ..., v, € Q" be linearly independent and let ¢
be the characteristic function of the open cone of vy, ..., v,.. Given ¢ € S(A?), there is a lattice
L C Q" such that ¢ is invariant under translation by L. By multiplying the vectors vy, ..., v,
by natural numbers if necessary, we may assume vy,...,v, € L. Let

P=A{rv1+...+x0, :2q,...,2, € (0,1]}.
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We have (1 — [vq])...(1 — [v.])(c-¢) = p - ¢, where p is the characteristic function of the
parallelotope P. As p - ¢ has finite support, it follows that c- ¢ is in Z{Q"}?, and the pairing
is given by:

B 1 1
l—exp(v-2) 1 —exp(v, - 2)

> p(w)exp(w - 2).

wePNQr

(c, )

Step 4. Let ¢ be the constant function on Q" \ {0} with value 1 and let ¢ € §(A%). Then
for any non-zero vector v € Q" such that ¢ is periodic modulo v, we have

e(0)  ifw=-—v
(= RDe-9)) ) = —(0) ifw=0

0 otherwise.

It follows that the constant functions are orthogonal to the subspace S(A% \ {0}). Hence the
pairing factors through to give Lo x 8(A?\ {0}) — C((21,...,2n)).

3. The Result. To obtain a cocycle with values in D, it is sufficient, using the pairing defined
above, to construct one with values in Lg. In the case n = 2, Solomon’s cocycle s (with values
in Lg) is defined as follows. For «, 5 € GLy(Q),

sign det(aeq, fer)  if v € C°(aeq, Bey),
s(a, B)(v) = %Sign det(aey, fey) if v € 0C(aeq, Bey),
0 otherwise.

Here e; = One could of course replace e; by any other non-zero vector to obtain a

1
0
cohomologous cocycle. In the case that aeq, Beq,ye; are in general position, it is easy to see
that s satisfies the cocycle relation:

s(B,7y) — s(a,v) + s(a, f) = 0 modulo constant functions.

If aey, ey are not linearly independent then the above definition makes no sense and we instead
define s(a, ) = 0. With this completed definition the cocycle relation remains true modulo
the kernel of the Solomon-Hu pairing.

Naively one would expect to generalize the cocycle s above by defining for aq,...,q, €

GL,(Q):

| signdet(ages,...,aner) if v e Caeq,...,ane1),
S(Oél,...,Oén)(’U)—{ 0 if’U¢C(O&1€1,...,O&n€1),

Indeed as long as v, aqeq,. .., aye; are in general position, the above definition makes sense and
a similar cocycle relation is satisfied. The difficulties are (a) how to define s when aqeq, ..., aye;
are linearly dependent, and (b) how to define s when v € 0C(ayey, ..., ane;) without losing
the cocycle relation. Both these problems are solved by the same method in this paper.



4 Definition of the Shintani Cocycle

1. A relation between signs of determinants By an ordered field we shall mean a
(commutative) field F equipped with a total ordering > satisfying the condition:

e Vr,y,zeFifx >ythenx+2z>y+ z;
o Vr,y,zeFif x >y and 2 > 0 then zz > yz.
Fix an ordered field F and define for x € F*:

. 1 x>0,
sign(z) = -1 z<0.

A set of vectors in F” will be said to be in general position if every subset with no more than
n elements is linearly independent. Given vectors vy, ..., v, € F" in general position, there are
non-zero scalars Ao, ..., A\, € F such that \gvg + ...+ A\,v, = 0. We define

o )= (—1)'signdet(vy, ..., 4 ...,0,) if Mg, ..., A, all have the same sign,
Yore W) =9 otherwise.

Proposition 1 (i) d(v,...,v,) is well defined (i.e. independent of i).

(1) For any permutation & we have d(ve(o), - - -, Ven)) = sign(§)d(vo, . . ., vn).
(iii) If Xo, ..., A\n € FZ0 then d(Xgvo, . . ., \yvp) = d(vo, . .., V).

(iv) For any a € GL,(F) we have d(avy, . .., av,) = sign(det «) - d(vg, . .., vy).

(v) Let B’ be another ordered field and let v : F — ' be an order-preserving field ho-

momorphism. Then for vy, ..., v, in general position in F™ we have d(wvy,...,w,) =
d(vo, ..., p).
(vi) If vy, ..., 512 € F™ are in general position then
n+2
> (=1)d(vr,. . B, Unga) = 0.
i=0

Proof. (i) The case that d(vo, . . ., v,) = 0is clearly well defined, so assume vy = — 3 7| A\jv;
with A\; > 0. We have by elementary properties of determinants:

(—1)'sign det(vo, v1, ..., 0. .., v,) = (—1)'signdet(—=\vi,v1,...,0,...,0,)
= (—1)"'signdet(vi,v1,...,0,...,0,)
= signdet(vy,...,v,).
(ii) This follows from (i) in the case that £ is an adjacent transposition (¢ ¢+ 1). The

general case follows since the adjacent transpositions generate the group of all permutations.
Parts (iii), (iv) and (v) follow immediately from the definition.



(vi) By (ii), (iii) and (iv) we may reduce the general case to the case that vy, ..., v, are the

standard basis elements ey, ..., e, in F" and v, 1 and v,.5 are of the form
1 T
ST :
v 1 v o
n+l — ; n+2 —
-1 ’ Lr41 ’
-1 )

with 1 > ... > 2z, and 2,1 < ... < z,,. For simplicity we assume 0 < r < n; the cases r =0
and r = n may be handled similarly.
Case 1. Assume 7 < r. If we have

n+1

Unt2 = E AjUj,
j=1

then this implies
i —x; ifj<r j#i
A= zj+x ifr<j<n
For all the coefficients \; to be negative we require ¢ = 1, x; < 0 and z; + z,, < 0. From this
we may deduce that

. i N |1 ifx; <0and 2y +2, <0,
Z(_1> d(ve, -, 03,y vn) = { 0 otherwise.

1=1

A similar calculation shows that

- ; . | -1 iftz, >0and 2y +2, <0,
Z (=D d(vr, s By o) = { 0  otherwise.
i=r+1
Finally we have d(vy,...,v,41) = 0 and
-1 ifz; <0and x, <0
_ 1\n+1 _ 1 n )
( 1) d(vlv ceesUnyees 7UTL+2) { 0 otherwise.
Adding everything up we obtain the result. O
2. A relation between cone functions Given a basis {vy, ..., v, } of F* we define a function

c(vi,...,v,) : F" — Z by

[ signdet(vy,...,v,) if vi(w),...,vi(w) >0,
cvr, -, vn)(w) = { 0 otherwise.
Thus up to a sign, ¢(vy,...,v,) is the characteristic function of the open cone of vy, ..., v,.
This may be expressed in terms of the function d:
c(vg,...,vp)(w) = (=1)"d(vy, ..., vp, —w). (1)

The functions ¢ and d satisfy the following cocycle relation.
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Proposition 2 Ifvg,...,v,, w € F" are in general position then

n

Z(—l)ic(vo, ce Uy v (w) = d(vg, - Up).

=0

Proof. This follows immediately from Proposition [I] (vi) and (). O

3. Consider the local field F = R((€1)) ... ((€,)). Every element of F may be expressed as

g ap€",

rezn

where € = €}'---€/». The coefficients a, are in R. We shall order the multi-indices r € Z"

lexicographically, so r < s if and only if there is an ¢ € {1,2,...,n} such that
r < S; ande > 1, r; = 8;.

Using this ordering we may define the leading term of a non-zero element of F to be the non-
zero monomial a,€” for which r is smallest. An element of F* will be said to be positive (resp.
negative) if its leading term a,€" has positive (resp. negative) coefficient. For f,g € F we define
f > g if and only if f — ¢ is positive. Under this ordering €; is positive but smaller than every
positive real number. For ¢+ = 1,...,n — 1, the element ¢;,; is positive but smaller than every
power of ¢;.

We shall also use the field F' = R((€p))...((€,)), ordered in an analogous way. We have
n + 1 order-preserving field embeddings ¢; : F < F’ defined by

(tif)(€0y- .. €n) = f€0yevy€iyerns€n).

4. Definefori:=1,...,n:

We shall regard b(e;) as an element of F™.

Lemma 1 Foranyay,...,a, € GL,(R) and any w € R™"\{0}, the set {apb(€p), - - ., anb(en), w}
is in general position in F'™.

Proof. Regarding b as a function R — R"™, we note that the values of «;b(¢;) span R™.
We may therefore choose €, ..., €, € R so that {a;b(e1), ..., a,b(€,)} is a basis of R™. Hence
det(ayb(€r), ..., a,b(€,)) is a non-zero function of €, ..., €,, so is a non-zero element of F. It
follows that {a1b(e1),. .., anb(€,)} is a basis of F*. A similar argument shows that for any j,
{w, a;b(e;) i # 7} is also a basis of F". O



5. We now define our cocycle. Let F denote the space of all functions ¢ : R" \ {0} — Z. We
let GL,(R) act on F by:

(o * p)(w) = signdet « - cp(a_lw), a € GL,(R), p € F, we R"\ {0}.

The constant functions in F form a submodule, which we shall denote Z(—). We shall write M
for the quotient. We shall describe a cocycle o € H" }(GL,(R), M).
For ay,...,a, € GL,(R) and w € R™ \ {0}, we define

olaq,...,an)(w) = clarb(er), ..., a,b(e,))(w).

Proposition 3 (i) For ay, ..., o, € GL,(R) and w € R™ \ {0} we have

n

> (=o(ag,. .. ... o) (w) = d(agb(eo), - . ., anb(en)).

i=0
(i1) For B,ay, ..., a, € GL,(R) we have
o(far,...,Ba,) =Bxo(ag,...,a,).
Proof. (i) We have by definition
olag, ..., Q. o) (w) = clagb(er), . .., a;_10(€), air1b(€ig1), - - -, anb(€,))(w).
Applying the the order-preserving map ¢; : F — F’ we have
o(ag, ..., Gy o) (w) = elagb(eg), -« oy ai1b(€i-1), @ir1b(€i41), - - -, anb(€y)) (w).

The result now follows from Lemma [Il and Proposition 2
(ii) This follows from Propsition [l (iv) and (). O

The proposition shows that o represents an element of H"~!(GL,(R), M). The short exact
sequence
0—=Z(-) = F —M—0,

gives rise to a connecting homomorphism 0 : H"'(GL,,, M) — H"(GL,,Z(—)). The proposi-
tion also shows that do is given by the n-cocycle

(g, -, ) = d(aob(€), - - ., anb(en)).

Aside. In this context it is worth recording the following long exact sequence:

.. = H™(GL,(R), Z(—)) — H"(GLy_1(R), Z(~)) — H"(GL,(R), M) — H™*'(GL,(R), Z(~)) — ....

Proof. We need only show that H"(GL,_1(R), Z(—)) is canonically isomorphic to H"(GL, (R), F).
Consider the mirabolic subgroup:

P={aeGL,(R): ae; =e1}.
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We have F = indgL”(R)Z(—). Hence by Shapiro’s Lemma,
H"(GL,(R),%F) = H"(P,Z(—)).
The group extension
1 —-R"! 5 P— GL,_1(R) — 1,

gives rise to the spectral sequence
H?(GL,1(R), HY(R"™Y, Z(—))) = H"*(P,Z(-)).

The result now follows since

Hq<Rn—1,z<—>>={ S ass

6. We finally show that the values of o are actually in the module of cones.

Theorem 1 (i) For ay,...,a, € GL,(R) we have o(aq, ..., a,) € L.
(ii) For aq,...,a, € GL,(Q) we have o(ay, ..., a,) € Lg.

Proof. Note that Kp is closed under pointwise multiplication of functions. Hence to prove
the first part of the proposition, it is sufficient to show that, for any linear form ¢ : F* — T,
the set

S={weR": ¢(w) >0}

is a finite disjoint union of open cones. The restriction ¢ : R" — F is R-linear. We may write
¢ as
¢ = Z ¢r€r,
r

with ¢, : R™ — R linear forms. In this sum r runs over the multipowers of the ¢;. We may
therefore decompose S into disjoint subsets:

s=Js.

where
Sy ={w € R": ¢(w) > 0 and for all s < r, ¢s(w) = 0}

Each non-empty S, is an open half-subspace, and is hence a finite disjoint union of cones. It
remains to show that only finitely many S, are non-empty. If S, and Sg are both non-empty
and s < r then S, is contained in the boundary of the closure of Sy and is therefore of strictly
smaller dimension.

This proves the first part of the proposition. Now assume ay, ..., a, € GL,(Q). It follows
that the basis vectors a;b(e;) are in Q(¢). From this it follows that ¢, : Q" — Q. Hence the
sets Sy may be decomposed into rational cones. 0

Remark 1 One could define a K-cone for any subfield K of R and obtain a generalization of
the above proposition.
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5 Comparison with previous results

We shall describe o in the case n = 2 and then give a coboundary relating it to Solomon’s
cocycle s.

1. As o is homogeneous, we need only calculate o(1,«) for a = (Z 2) € GLy(R). Let

w = (?j) € R%\ {0}. Recall that to calculate o(1,a)(w), we express w in the form

1 1
oo ( ) rya ( ) Ly € R(@)(@).
€1 €9
To simplify notation consider the matrix

= () (D)= ()

We have

The cocycle is given by the formula:

(x) { sign(det M) if 2’ and ' are both positive in R((e1))((e2)),
(1, ) = :
0 otherwise.

After solving these inequalities we obtain:

Proposition 4 (i) Let a = <8 ZC))

e [fa>0 andc>0 then o(1,a) =0.

8

e Ifa>0 andc<0 then o(1, ) (y)

)
)

)
)

—1 ifx>0andy =0,
0 otherwise.

1 ify>0o0rify=0andx <0
0 otherwise.

ify >0,
otherwise.

O =

o Ifa<0 andc>0 then o(1, @) (

< 8

o Ifa<0 andc<0 then o(1, ) (

=5 )06 1)

e [fa>0 andc >0 then o(1, ) <

< R

otherwise.

< R

{ 1 4ify >0 and cx — by > 0,
0

— ) < _
e [fa>0 andc <0 then o(1, ) { L ify <0 and cx — by <0,

otherwise.

< R
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1 ify>0andcx —by <0,
0 otherwise.

o [fa <0 andc>0 then o(1, ) <§) :{

—1 ify <0 andcx—0by <0,
0 otherwise.

o Ifa <0 andc<0 then o(1, ) (?j) :{

Proof. To give an impression of how to do this calculation, we shall prove (i) in the case
1 a—+ b€2
€1 C€o
det M = ces — ae; — bejes. The leading term of det M is —ae;, which is positive. Therefore
det M > 0. Furthermore

a,c < 0. The other cases are left to the reader. We have M = ( Hence

/ 1 /
T (—ay + (cx —by)ey), ¥y = (—e1z +y).

~ det M det M

For y' to be positive we require either y > 0 or y = 0 and = < 0. In both of these cases ' is
also positive. O]

2. In [§] Solomon obtained a cocycle on PGLy rather than on GLg; however the values of the
cocycle were in £ rather than in £. This cocycle s € Z'(PGLy(R), ££) is defined as follows:

signdet(aey, Be;) if {aey, Be;} is a basis of R* and w € C°(aey, Bey),
s(a, B)(w) = § 3signdet(aey, Ber) if {aer, Bei} is a basis of R? and w € 9C (aey, Bey),
0 otherwise.

This is related to o by the coboundary:

(o0 —s)(a,B)=ax*xT—[(*T,

x 1 ify=0and z > 0,
- —J 2
Y 0 otherwise.

where
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