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Abstract

The aim of this paper is to define an n− 1-cocycle σ on GLn(Q) with values in a certain
space D of distributions on An

f \ {0}. Here Af denotes the ring of finite adèles of Q, and
the distributions take values in the Laurent series C((z1, . . . , zn)). This cocycle can be
used to evaluate special values of Artin L-functions on number fields at negative integers.
The construction generalizes that of Solomon [8] in the case n = 2.

2000 Mathematics Subject Classification: 11F75, 11F67.

1 Introduction

Let Af denote the ring of finite adèles of Q. Let D be the space of distributions on An
f \ {0}

with values in the Laurent series ring C((z1, . . . , zn)). In other words

D = Hom
(

S(An
f \ {0}),C((z1, . . . , zn))

)

,

where S(An
f \ {0}) denotes the space of Bruhat-Schwartz functions f : An

f \ {0} → C. The aim
of this paper is to define an n − 1-cocycle σ on GLn(Q) with values in D. The construction
generalizes that of Solomon [8] in the case n = 2. A similar but different cocycle was found by
and Solomon and Hu [3] in the case n = 2, 3. For n > 3 the cocycle of Solomon and Hu is only
defined on a Zariski-open subset of GLn(Q)n. Following [8] and [3] we shall refer to the cocycle
σ as the Shintani cocycle.

Very briefly, to define the Shintani cocycle σ we begin by choosing a non-zero vector v ∈ Qn.
Given α1, . . . , αn ∈ GLn(Q), we shall define a cone C in Qn. Roughly speaking, C will be the
set of linear combinations

∑

xiαiv with the xi ∈ Q positive. To be more precise, one must also
include some of the faces of C. Then the cocycle is given by

σ(α1, . . . , αn)(ϕ) =
∑

v∈C

ϕ(v) exp

(

n
∑

i=1

vizi

)

, ϕ ∈ S(An
f \ {0}).

Solomon and Hu showed how to make sense of the right hand side of this formula as an element
of C((z1, . . . , zn)); we shall explain their method in §3 below. The difficulty tackled in this
paper, is to define the cone C correctly in the case where the vectors αiv are not in general
position. These problems are solved in §4. In §5, we describe the case n = 2 in detail, and
show how σ is related to Solomon’s cocycle.
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2 Special values of L-functions

Motivation for studying Shintani-cocycles lies in their relation with special values of L-functions.
We shall spend a few moments discussing this connection. Since these matters are the subject
of other papers ([2, 6, 7, 8, 9]), the discussion here is deliberately informal, and is independent
of the rest of the paper.

Given a totally real number field k of degree n, one can obtain formulae for the values
of abelian L-functions of k at negative integers by substituting units of k (regarded as n × n
integer matrices) into the n − 1-cocycle on GLn(Q). Similar formulae have been obtained by
Sczech [4, 5] and Stevens [10].

1. L-functions of Q. As a first example, we consider the case n = 1. In this case we have
a (homogeneous) 0-cocycle σ on GL1(Q). Evaluating σ at the identity element, we obtain the
following distribution

σ(1)(ϕ) =
∑

v∈Q, v>0

ϕ(v) exp(zv) ∈ C((z)), ϕ ∈ S(Af \ {0}).

If we substitute for φ a Dirichlet character χ : Ẑ → C, extended to be zero on Af \ Ẑ, then this
gives

σ(1)(χ) =
∞
∑

n=1

χ(n) exp(nz).

Differentiating with respect to z, we obtain formally (following Euler):

L(χ, 1− r) =

(

∂

∂z

)r−1
(

σ(1)(χ)
)

∣

∣

∣

∣

∣

z=0

, r ∈ N.

To make sense of this equation, let f ∈ N be a conductor of χ. We can group the terms into
finitely many geometric progressions as follows:

σ(1)(χ) =

f
∑

n=1

χ(n) exp(nx)
(

1 + exp(fz) + exp(2fz) + · · ·
)

=

f
∑

n=1

χ(n)
exp(nz)

1− exp(fz)
.

The ratio of exponentials can be expanded in terms of Bernoulli polynomials Bm as follows.

σ(1)(χ) = −
∞
∑

m=0

(

f
∑

n=1

χ(n)Bm+1

(

n

f

)

)

(fz)m

(m+ 1)!
.

This gives the usual expression for L(χ, 1− r) (see for example §2.3 of [2]):

L(χ, 1− r) = −
f r−1

r

f
∑

n=1

χ(n)Br

(

n

f

)

.
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2. L-functions of real quadratic fields. Now suppose k is a real quadratic field with ring
of integers o. For simplicity, we shall assume that k has narrow class number 1, i.e. every
non-zero ideal of o has a totally positive generator. Indeed, if u denotes a generator for the
group of totally positive units in o, then each ideal has a unique generator in the following cone:

C = {x+ yu : x, y ∈ Q, x ≥ 0, y > 0}.

We may therefore express the abelian L-functions of k as follows:

L(χ, s) =
∑

a∈C∩o

χ(a)N(a)−s.

By choosing an integral basis {b1, b2}, we can regard k× as a subgroup of GL2(Q) and o
× as

a subgroup of GL2(Z). The special values of L(χ, s) are encoded in the restriction of σ to o
×.

We shall also identify A2
f with the ring Af ⊗k of finite adeles of k. An element z ∈ HomQ(k,C)

can be decomposed in terms of the dual basis {b∗1, b
∗

2} as follows:

z = z1b
∗

1 + z2b
∗

2, z1, z2 ∈ C.

Evaluating our 1-cocycle on the fundamental unit u, we obtain the following the distribution:

σ(1, u)(ϕ) =
∑

a∈C

ϕ(a) exp(z · a).

Although the right hand side actually converges for z in a certain cone in HomQ(k,C), we shall
in fact interpret it as an element of C((z1, z2)) by the method of Solomon and Hu.

Again, substituting a Dirichlet character χ for ϕ, we obtain:

σ(1, u)(χ) =
∑

a∈C∩o

χ(a) exp(z · a).

On the other hand, we can also write z in the form

z = t1τ1 + t2τ2, t1, t2 ∈ C,

where τ1, τ2 : k → R are the two field embeddings. With this notation we have

N(a)r =

(

∂

∂t1

∂

∂t2

)r

exp(z · a)
∣

∣

∣

z=0
.

This gives (formally at least) the following:

L(χ,−r) =

(

∂

∂t1

∂

∂t2

)r

σ(1, u)(χ)
∣

∣

∣

z=0
.

To make sense of this formula, we let f ∈ N be a (not necessarily minimal) conductor of χ.
We can group the terms of σ(1, u)(χ) into finitely many products of geometric progressions as
before:

σ(1, u)(χ) =
∑

a∈P∩o

χ(a) exp(a · z)

∞
∑

r,s=0

exp(f(r + su) · z)

=
∑

a∈P∩o

χ(a) exp(z · a)

(1− exp(z · f))(1− exp(z · fu))
.
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Here P denotes the half-open parallelogram:

P = {x+ yu : x, y ∈ Q, 0 ≤ x < f, 0 < y ≤ f}.

When we expand the ratio of exponentials out as a power series in z, instead of values of
Bernoulli polynomials, the coefficients will instead be generalized Dedekind sums. The expan-
sion of such power series in terms of Dedekind sums and their generalization is described in
[1, 8]. In particular, the reciprocity laws satisfied by these sums are shown to be consequences
of the cocycle relation satisfied by σ. More precisely, we can expand out as follows:

σ(1, u)(χ) =

∞
∑

m1,m2=0

S(m1, m2, χ)
zm1

1

m1!

zm2

2

m2!
.

The coefficients S(m1, m2, χ) can be expressed in terms of Dedekind sums.
Using the r-th symmetric power of the transition matrix from {τ1, τ2} to {b∗1, b

∗

2}, we obtain
a formula for L(χ,−r) in terms the numbers S(χ,m1, m2) with m1 +m2 = 2r.

3. Totally Real Fields. Let k be a totally real algebraic number field with [k : Q] = n.
Let H∞ denotes the narrow class group of k, i.e. the group of fractional ideals, modulo the
principal ideals gererated by totally positive elements. It was shown by Shintani [6] (see also
§2.7 of [2]) that there are finitely many cones C1, . . . , CN such that any abelian L-function of
k can be expressed in the form

L(χ, s) =
∑

[b]∈H∞

N
∑

i=1

∑

a∈Ci∩b
−1

χ(ab)N(ab)−s.

By choosing an integral basis, we can regard o
× as a subgroup of GLn(Z). The method described

above may be used to express the special values L(s,−r) in terms of the restriction of σ to o
×.

As an example, suppose k has narrow class number 1. Let {u1, . . . , un−1} be a basis for the
group of totally positive units. Then we have, for a certain differential operator ∂:

L(χ,−r) = ∂r





∑

ξ∈Sn−1

sign(ξ) · σ̃(uξ(1), . . . , uξ(n−1))



 (χ)

∣

∣

∣

∣

∣

∣

z=0

,

where σ̃ is the corresponding inhomogeneous cocycle:

σ̃(α1, . . . , αn−1) = σ(1, α1, α1α2, . . . , α1 · · ·αn−1).

Note that if k has a complex place, then its L-functions are zero at negative integers. This
can be seen from the functional equation.

3 Notation and Background Material

1. The module of cones. Let v1, . . . , vr ∈ Rn be linearly independent vectors. By the open
cone of v1, . . . , vr, we shall mean the set

Co(v1, . . . , vr) =
{

∑

λivi : λ1, . . . , λr > 0
}

.
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The closed cone C̄(v1, . . . , vr) is defined similarly but with the inequalities > replaced by ≥.
We shall write ∂C for the points of the closed cone which are not in the open cone. A cone will
be called rational if the vectors v1, . . . , vr are in Qn. Let Ko

Q be the abelian group of functions
Rn \ {0} → Z generated by the characteristic functions of rational open cones. We shall also
write KQ for the group of functions Rn → Z whose restrictions to Rn \ {0} are in Ko

Q.
We shall regard K (resp. KQ) as a left GLn(R)- (resp. GLn(Q)-) module with the action

given by
(α ∗ c)(v) = sign(detα) · c(α−1v).

The constant functions Rn \ {0} → Z are in KQ, and form a submodule which we shall denote
Z(−). The quotient KQ/Z(−) will be written LQ.

2. The Solomon - Hu pairing. In [3], Solomon and Hu introduced a pairing

LQ × S(An
f \ {0}) → C((z1, . . . , zn)).

This is defined in several steps.
Step 1. Let Z{Qn} be the space of all functions Qn → Z and let Z[Qn] be the group ring of

the group Qn, i.e. the elements of Z{Qn} of finite support. One defines a map Φ : Z[Qn] →
C((z1, . . . , zn)) as follows:

Φ(A) =
∑

w∈Qn

A(w) exp(w · z).

Here w · z denotes the dot product w1z1 + . . .+ wnzn.
Step 2. The group ring Z[Qn] acts on Z{Qn}, Z[Qn] and C((z1, . . . , zn)) and the map Φ is

compatible with these actions. Define

Z{Qn}(q) = {B ∈ Z{Qn} : ∃A ∈ Z[Qn] \ {0} such that AB ∈ Z[Qn]} .

As Z[Qn] is an integral domain, it follows that Z{Qn}(q) is an additive subgroup of Z{Qn}.
Furthermore the map Φ : Z[Qn] → C((z1, . . . , zn)) extends uniquely to Z{Qn}(q) in a way
which is compatible with the actions of Z[Qn].

Step 3. We next define a pairing KQ × S(An
f ) → C((z1, . . . , zn)). Given c ∈ KQ and ϕ ∈

S(An
f ), we define a function c · ϕ : Qn → C by

(c · ϕ)(v) =

{

c(v)φ(v) if v 6= 0,

0 if v = 0.

It turns out that c · ϕ is in Z{Qn}(q), and we define

〈c, ϕ〉 = Φ(c · ϕ).

We shall describe this more explicitly. Let v1, . . . , vr ∈ Qn be linearly independent and let c
be the characteristic function of the open cone of v1, . . . , vr. Given ϕ ∈ S(An

f ), there is a lattice
L ⊂ Qn such that ϕ is invariant under translation by L. By multiplying the vectors v1, . . . , vn
by natural numbers if necessary, we may assume v1, . . . , vn ∈ L. Let

P = {x1v1 + . . .+ xnvn : x1, . . . , xn ∈ (0, 1]}.
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We have (1 − [v1]) . . . (1 − [vr])(c · ϕ) = p · ϕ, where p is the characteristic function of the
parallelotope P. As p · ϕ has finite support, it follows that c · φ is in Z{Qn}(q), and the pairing
is given by:

〈c, ϕ〉 =
1

1− exp(v1 · z)
. . .

1

1− exp(vr · z)

∑

w∈P∩Qn

ϕ(w) exp(w · z).

Step 4. Let c be the constant function on Qn \ {0} with value 1 and let ϕ ∈ S(An
f ). Then

for any non-zero vector v ∈ Qn such that ϕ is periodic modulo v, we have

(

(1− [v])(c · ϕ)
)

(w) =







ϕ(0) if w = −v
−ϕ(0) if w = 0
0 otherwise.

It follows that the constant functions are orthogonal to the subspace S(An
f \ {0}). Hence the

pairing factors through to give LQ × S(An
f \ {0}) → C((z1, . . . , zn)).

3. The Result. To obtain a cocycle with values in D, it is sufficient, using the pairing defined
above, to construct one with values in LQ. In the case n = 2, Solomon’s cocycle s (with values
in LQ) is defined as follows. For α, β ∈ GL2(Q),

s(α, β)(v) =







sign det(αe1, βe1) if v ∈ Co(αe1, βe1),
1
2
sign det(αe1, βe1) if v ∈ ∂C(αe1, βe1),

0 otherwise.

Here e1 =

(

1
0

)

. One could of course replace e1 by any other non-zero vector to obtain a

cohomologous cocycle. In the case that αe1, βe1, γe1 are in general position, it is easy to see
that s satisfies the cocycle relation:

s(β, γ)− s(α, γ) + s(α, β) = 0 modulo constant functions.

If αe1, βe1 are not linearly independent then the above definition makes no sense and we instead
define s(α, β) = 0. With this completed definition the cocycle relation remains true modulo
the kernel of the Solomon-Hu pairing.

Naively one would expect to generalize the cocycle s above by defining for α1, . . . , αn ∈
GLn(Q):

s(α1, . . . , αn)(v) =

{

sign det(α1e1, . . . , αne1) if v ∈ Co(α1e1, . . . , αne1),
0 if v /∈ C̄(α1e1, . . . , αne1),

Indeed as long as v, α1e1, . . . , αne1 are in general position, the above definition makes sense and
a similar cocycle relation is satisfied. The difficulties are (a) how to define s when α1e1, . . . , αne1
are linearly dependent, and (b) how to define s when v ∈ ∂C(α1e1, . . . , αne1) without losing
the cocycle relation. Both these problems are solved by the same method in this paper.
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4 Definition of the Shintani Cocycle

1. A relation between signs of determinants By an ordered field we shall mean a
(commutative) field F equipped with a total ordering > satisfying the condition:

• ∀x, y, z ∈ F if x > y then x+ z > y + z;

• ∀x, y, z ∈ F if x > y and z > 0 then xz > yz.

Fix an ordered field F and define for x ∈ F×:

sign(x) =

{

1 x > 0,
−1 x < 0.

A set of vectors in Fn will be said to be in general position if every subset with no more than
n elements is linearly independent. Given vectors v0, . . . , vn ∈ Fn in general position, there are
non-zero scalars λ0, . . . , λn ∈ F such that λ0v0 + . . .+ λnvn = 0. We define

d(v0, . . . , vn) =

{

(−1)isign det(v1, . . . , v̂i, . . . , vn) if λ0, . . . , λn all have the same sign,
0 otherwise.

Proposition 1 (i) d(v0, . . . , vn) is well defined (i.e. independent of i).

(ii) For any permutation ξ we have d(vξ(0), . . . , vξ(n)) = sign(ξ)d(v0, . . . , vn).

(iii) If λ0, . . . , λn ∈ F>0 then d(λ0v0, . . . , λnvn) = d(v0, . . . , vn).

(iv) For any α ∈ GLn(F) we have d(αv0, . . . , αvn) = sign(detα) · d(v0, . . . , vn).

(v) Let F′ be another ordered field and let ι : F →֒ F′ be an order-preserving field ho-
momorphism. Then for v0, . . . , vn in general position in Fn we have d(ιv0, . . . , ιvn) =
d(v0, . . . , vn).

(vi) If v1, . . . , vn+2 ∈ Fn are in general position then

n+2
∑

i=0

(−1)id(v1, . . . , v̂i, . . . , vn+2) = 0.

Proof. (i) The case that d(v0, . . . , vn) = 0 is clearly well defined, so assume v0 = −
∑n

j=1 λjvj
with λj > 0. We have by elementary properties of determinants:

(−1)isign det(v0, v1, . . . , v̂i, . . . , vn) = (−1)isign det(−λivi, v1, . . . , v̂i, . . . , vn)

= (−1)i−1sign det(vi, v1, . . . , v̂i, . . . , vn)

= sign det(v1, . . . , vn).

(ii) This follows from (i) in the case that ξ is an adjacent transposition (i i + 1). The
general case follows since the adjacent transpositions generate the group of all permutations.

Parts (iii), (iv) and (v) follow immediately from the definition.
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(vi) By (ii), (iii) and (iv) we may reduce the general case to the case that v1, . . . , vn are the
standard basis elements e1, . . . , en in Fn and vn+1 and vn+2 are of the form

vn+1 =

















1
...
1







r

−1
...
−1

















; vn+2 =



















x1
...
xr

xr+1
...
xn



















,

with x1 > . . . > xr and xr+1 < . . . < xn. For simplicity we assume 0 < r < n; the cases r = 0
and r = n may be handled similarly.

Case 1. Assume i ≤ r. If we have

vn+2 =

n+1
∑

j=1

λjvj ,

then this implies

λj =







xj − xi if j ≤ r, j 6= i,
xj + xi if r < j ≤ n.
xi if j = n + 1.

For all the coefficients λj to be negative we require i = 1, x1 < 0 and x1 + xn < 0. From this
we may deduce that

r
∑

i=1

(−1)id(v1, . . . , v̂i, . . . , vn) =

{

1 if x1 < 0 and x1 + xn < 0,
0 otherwise.

A similar calculation shows that
n
∑

i=r+1

(−1)id(v1, . . . , v̂i, . . . , vn) =

{

−1 if xn > 0 and x1 + xn < 0,
0 otherwise.

Finally we have d(v1, . . . , vn+1) = 0 and

(−1)n+1d(v1, . . . , vn, . . . , vn+2) =

{

−1 if x1 < 0 and xn < 0,
0 otherwise.

Adding everything up we obtain the result. �

2. A relation between cone functions Given a basis {v1, . . . , vn} of F
n we define a function

c(v1, . . . , vn) : F
n → Z by

c(v1, . . . , vn)(w) =

{

sign det(v1, . . . , vn) if v∗1(w), . . . , v
∗

n(w) > 0,
0 otherwise.

Thus up to a sign, c(v1, . . . , vn) is the characteristic function of the open cone of v1, . . . , vn.
This may be expressed in terms of the function d:

c(v1, . . . , vn)(w) = (−1)nd(v1, . . . , vn,−w). (1)

The functions c and d satisfy the following cocycle relation.
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Proposition 2 If v0, . . . , vn, w ∈ Fn are in general position then

n
∑

i=0

(−1)ic(v0, . . . , v̂i, . . . , vn)(w) = d(v0, . . . , vn).

Proof. This follows immediately from Proposition 1 (vi) and (1). �

3. Consider the local field F = R((ǫ1)) . . . ((ǫn)). Every element of F may be expressed as

∑

r∈Zn

arǫ
r,

where ǫr = ǫr11 · · · ǫrnn . The coefficients ar are in R. We shall order the multi-indices r ∈ Zn

lexicographically, so r < s if and only if there is an i ∈ {1, 2, . . . , n} such that

ri < si and ∀j > i, rj = sj .

Using this ordering we may define the leading term of a non-zero element of F to be the non-
zero monomial arǫ

r for which r is smallest. An element of F× will be said to be positive (resp.
negative) if its leading term arǫ

r has positive (resp. negative) coefficient. For f, g ∈ F we define
f > g if and only if f − g is positive. Under this ordering ǫ1 is positive but smaller than every
positive real number. For i = 1, . . . , n− 1, the element ǫi+1 is positive but smaller than every
power of ǫi.

We shall also use the field F′ = R((ǫ0)) . . . ((ǫn)), ordered in an analogous way. We have
n+ 1 order-preserving field embeddings ιi : F →֒ F′ defined by

(ιif)(ǫ0, . . . , ǫn) = f(ǫ0, . . . , ǫ̂i, . . . , ǫn).

4. Define for i = 1, . . . , n:

b(ǫi) =









1
ǫi
...

ǫn−1
i









.

We shall regard b(ǫi) as an element of Fn.

Lemma 1 For any α0, . . . , αn ∈ GLn(R) and any w ∈ Rn\{0}, the set {α0b(ǫ0), . . . , αnb(ǫn), w}
is in general position in F′n.

Proof. Regarding b as a function R → Rn, we note that the values of αib(ǫi) span Rn.
We may therefore choose ǫ1, . . . , ǫn ∈ R so that {α1b(ǫ1), . . . , αnb(ǫn)} is a basis of Rn. Hence
det(α1b(ǫ1), . . . , αnb(ǫn)) is a non-zero function of ǫ1, . . . , ǫn, so is a non-zero element of F. It
follows that {α1b(ǫ1), . . . , αnb(ǫn)} is a basis of Fn. A similar argument shows that for any j,
{w, αib(ǫi) : i 6= j} is also a basis of Fn. �
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5. We now define our cocycle. Let F denote the space of all functions ϕ : Rn \ {0} → Z. We
let GLn(R) act on F by:

(α ∗ ϕ)(w) = sign detα · ϕ(α−1w), α ∈ GLn(R), ϕ ∈ F, w ∈ Rn \ {0}.

The constant functions in F form a submodule, which we shall denote Z(−). We shall write M
for the quotient. We shall describe a cocycle σ ∈ Hn−1(GLn(R),M).

For α1, . . . , αn ∈ GLn(R) and w ∈ Rn \ {0}, we define

σ(α1, . . . , αn)(w) = c(α1b(ǫ1), . . . , αnb(ǫn))(w).

Proposition 3 (i) For α0, . . . , αn ∈ GLn(R) and w ∈ Rn \ {0} we have

n
∑

i=0

(−1)iσ(α0, . . . , α̂i, . . . , αn)(w) = d(α0b(ǫ0), . . . , αnb(ǫn)).

(ii) For β, α1, . . . , αn ∈ GLn(R) we have

σ(βα1, . . . , βαn) = β ∗ σ(α1, . . . , αn).

Proof. (i) We have by definition

σ(α0, . . . , α̂i, . . . , αn)(w) = c(α0b(ǫ1), . . . , αi−1b(ǫi), αi+1b(ǫi+1), . . . , αnb(ǫn))(w).

Applying the the order-preserving map ιi : F → F′ we have

σ(α0, . . . , α̂i, . . . , αn)(w) = c(α0b(ǫ0), . . . , αi−1b(ǫi−1), αi+1b(ǫi+1), . . . , αnb(ǫn))(w).

The result now follows from Lemma 1 and Proposition 2.
(ii) This follows from Propsition 1 (iv) and (1). �

The proposition shows that σ represents an element of Hn−1(GLn(R),M). The short exact
sequence

0 → Z(−) → F → M → 0,

gives rise to a connecting homomorphism ∂ : Hn−1(GLn,M) → Hn(GLn,Z(−)). The proposi-
tion also shows that ∂σ is given by the n-cocycle

τ(α0, . . . , αn) = d(α0b(ǫ0), . . . , αnb(ǫn)).

Aside. In this context it is worth recording the following long exact sequence:

. . . → Hr(GLn(R),Z(−)) → Hr(GLn−1(R),Z(−)) → Hr(GLn(R),M) → Hr+1(GLn(R),Z(−)) → . . . .

Proof. We need only show thatHr(GLn−1(R),Z(−)) is canonically isomorphic toHr(GLn(R),F).
Consider the mirabolic subgroup:

P = {α ∈ GLn(R) : αe1 = e1}.
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We have F = ind
GLn(R)
P Z(−). Hence by Shapiro’s Lemma,

Hr(GLn(R),F) = Hr(P,Z(−)).

The group extension
1 → Rn−1 → P → GLn−1(R) → 1,

gives rise to the spectral sequence

Hp(GLn−1(R), H
q(Rn−1,Z(−))) ⇒ Hp+q(P,Z(−)).

The result now follows since

Hq(Rn−1,Z(−)) =

{

Z(−) if q = 0,
0 q > 0.

�

6. We finally show that the values of σ are actually in the module of cones.

Theorem 1 (i) For α1, . . . , αn ∈ GLn(R) we have σ(α1, . . . , αn) ∈ LR.
(ii) For α1, . . . , αn ∈ GLn(Q) we have σ(α1, . . . , αn) ∈ LQ.

Proof. Note that KR is closed under pointwise multiplication of functions. Hence to prove
the first part of the proposition, it is sufficient to show that, for any linear form φ : Fn → F,
the set

S = {w ∈ Rn : φ(w) > 0}

is a finite disjoint union of open cones. The restriction φ : Rn → F is R-linear. We may write
φ as

φ =
∑

r

φrǫ
r,

with φr : Rn → R linear forms. In this sum r runs over the multipowers of the ǫi. We may
therefore decompose S into disjoint subsets:

S =
⋃

r

Sr,

where
Sr = {w ∈ Rn : φr(w) > 0 and for all s < r, φs(w) = 0}

Each non-empty Sr is an open half-subspace, and is hence a finite disjoint union of cones. It
remains to show that only finitely many Sr are non-empty. If Sr and Ss are both non-empty
and s < r then Sr is contained in the boundary of the closure of Ss and is therefore of strictly
smaller dimension.

This proves the first part of the proposition. Now assume α1, . . . , αn ∈ GLn(Q). It follows
that the basis vectors αib(ǫi) are in Q(ǫ). From this it follows that φr : Qn → Q. Hence the
sets Sr may be decomposed into rational cones. �

Remark 1 One could define a K-cone for any subfield K of R and obtain a generalization of
the above proposition.
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5 Comparison with previous results

We shall describe σ in the case n = 2 and then give a coboundary relating it to Solomon’s
cocycle s.

1. As σ is homogeneous, we need only calculate σ(1, α) for α =

(

a b
c d

)

∈ GL2(R). Let

w =

(

x
y

)

∈ R2 \ {0}. Recall that to calculate σ(1, α)(w), we express w in the form

w = x′

(

1
ǫ1

)

+ y′α

(

1
ǫ2

)

, x′, y′ ∈ R((ǫ1))((ǫ2)).

To simplify notation consider the matrix

M =

((

1
ǫ1

)

, α

(

1
ǫ2

))

=

(

1 a+ bǫ2
ǫ1 c+ dǫ2

)

.

We have
(

x′

y′

)

= M−1

(

x
y

)

.

The cocycle is given by the formula:

σ(1, α)

(

x
y

)

=

{

sign(detM) if x′ and y′ are both positive in R((ǫ1))((ǫ2)),
0 otherwise.

After solving these inequalities we obtain:

Proposition 4 (i) Let α =

(

a b
0 c

)

.

• If a > 0 and c > 0 then σ(1, α) = 0.

• If a > 0 and c < 0 then σ(1, α)

(

x
y

)

=

{

−1 if x > 0 and y = 0,
0 otherwise.

• If a < 0 and c > 0 then σ(1, α)

(

x
y

)

=

{

1 if y > 0,
0 otherwise.

• If a < 0 and c < 0 then σ(1, α)

(

x
y

)

=

{

1 if y > 0 or if y = 0 and x < 0
0 otherwise.

(ii) Let α =

(

a b
0 c

)(

0 1
1 0

)(

1 d
0 1

)

.

• If a > 0 and c > 0 then σ(1, α)

(

x
y

)

=

{

1 if y > 0 and cx− by > 0,
0 otherwise.

• If a > 0 and c < 0 then σ(1, α)

(

x
y

)

=

{

−1 if y ≤ 0 and cx− by < 0,
0 otherwise.
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• If a < 0 and c > 0 then σ(1, α)

(

x
y

)

=

{

1 if y > 0 and cx− by ≤ 0,
0 otherwise.

• If a < 0 and c < 0 then σ(1, α)

(

x
y

)

=

{

−1 if y ≤ 0 and cx− by ≤ 0,
0 otherwise.

Proof. To give an impression of how to do this calculation, we shall prove (i) in the case

a, c < 0. The other cases are left to the reader. We have M =

(

1 a+ bǫ2
ǫ1 cǫ2

)

. Hence

detM = cǫ2 − aǫ1 − bǫ1ǫ2. The leading term of detM is −aǫ1, which is positive. Therefore
detM > 0. Furthermore

x′ =
1

detM
(−ay + (cx− by)ǫ2) , y′ =

1

detM
(−ǫ1x+ y) .

For y′ to be positive we require either y > 0 or y = 0 and x < 0. In both of these cases x′ is
also positive. �

2. In [8] Solomon obtained a cocycle on PGL2 rather than on GL2; however the values of the
cocycle were in 1

2
L rather than in L. This cocycle s ∈ Z1(PGL2(R),

1
2
L) is defined as follows:

s(α, β)(w) =







sign det(αe1, βe1) if {αe1, βe1} is a basis of R2 and w ∈ Co(αe1, βe1),
1
2
sign det(αe1, βe1) if {αe1, βe1} is a basis of R2 and w ∈ ∂C(αe1, βe1),

0 otherwise.

This is related to σ by the coboundary:

(σ − s)(α, β) = α ∗ τ − β ∗ τ,

where

τ

(

x
y

)

=

{

1
2

if y = 0 and x > 0,
0 otherwise.
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