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1 Introdution.

This work is a ontribution to the study of a speial type of branhing Markov hains. We

will onstrut a ontinuous time branhing hain X whih has a self-similar property and

whih takes its values in the spae of �nite point measures of R
∗
+. This type of proess is

a generalization of a self-similar fragmentation (see [4℄), whih may apply to ases where

the size models non additive quantities as e.g. surfae energy in aerosols. We will fous on

the ase where the index of self-similarity α is non-negative, whih means that the bigger

individuals will reprodue faster than the smaller ones. There is no loss of generality by

onsidering this model, as the map x → x−1
on atoms in R

∗
+ transforms a self-similar

proess with index α into another one with index −α (and preserves the Markov property).
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In this artile we hoose to onstrut the proess by bare hand. We extend the method

used in [4℄ to deal with more general proesses where we allow an individual to have a mass

bigger than that of its parent. We will explain in the sequel, whih di�ulties this new

set-up entails. There exists losely related artiles about branhing proesses, like among

others [18℄, [19℄ from Kyprianou and [12℄, [13℄ from Chauvin. However notie that the time

of splitting of the proess depends on the size of the atoms of the proess.

More preisely we will �rst introdue a branhing Markov hains as a marked tree and

we will obtain a proess, indexed by generations (it is simply a random mark on the tree of

generation, see Setion 2). Thanks to a martingale whih is assoiated to the latter and the

theory of random stopping lines on a tree of generation, we will de�ne the proess indexed

by time. After having onstruted the proess, we will study the evolution of the randomly

hosen branh of the hain, from whih we shall dedue some Limit Theorems, relying on

the theory of self-similar Markov proesses. In an appendix we will onsider the intrinsi

proess and give some properties in the spirit of the artile of Jagers [15℄. By the way we

will show properties about the earlier martingale.

2 The marked tree.

In this part we will introdue a branhing Markov hain as a marked tree, whih gives a

genealogi desription of the proess that we will onstrut. This terminology omes from

Neveu in [21℄ even if here the marked tree we onsider is slightly di�erent. First we introdue

some notations and de�nitions.

A �nite point measure on R
∗
+ is a �nite sum of Dira point masses s =

∑n
i=1 δsi, where

the si are alled the atoms of s and n ≥ 0 is an arbitrary integer. We shall often write

♯s = n = s(R∗
+) for the number of atoms of s, and Mp(R

∗
+) for the spae of �nite point

measures on R
∗
+. We also de�ne for f : R∗

+ → R measurable funtion and s ∈ Mp(R
∗
+)

〈f, s〉 :=

♯s∑

i=1

f(si),

by taking the sum over the atoms of s repeated aording to their multipliity and we will

sometimes use the slight abuse of notation

〈f(x), s〉 :=

♯s∑

i=1

f(si)

when f is de�ned as a funtion depending on the variable x. We endow the spae Mp(R
∗
+)

with the topology of weak onvergene, whih means that sn onverge to s if and only if

〈f, sn〉 onverge to 〈f, s〉 for all ontinuous bounded funtions f .
Let α ≥ 0 be an index of self-similarity and ν be some probability measure onMp(R

∗
+).

The aim of this work is to onstrut a branhing Markov hain X = ((
∑♯X(t)

i=1 δXi(t))t≥0) with
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values in Mp(R
∗
+), whih is self-similar with index α and has reprodution law ν. The index

of self-similarity will play a part in the rate at whih an individual will reprodue and the

reprodution law ν will speify the distribution of the o�spring. We stress that our setting

inludes the ase when

ν(∃i : si > 1) > 0, (1)

whih means that with a positive probability the size of a daughter an exeed that of her

mother.

To do that, exatly as desribed in Chapter 1 setion 1.2.1 of [4℄, we will onstrut a

marked tree.

We onsider the Ulam Harris labelling system

U := ∪∞
n=0N

n,

with the notation N = {1, 2, ...} and N
0 = {∅}. In the sequel the elements of U are alled

nodes (or sometimes also individuals) and the distinguished node ∅ the root. For eah u =
(u1, ..., un) ∈ U , we all n the generation of u and write |u| = n, with the obvious onvention

|∅| = 0. When n ≥ 0, u = (u1, ..., un) ∈ N
n
and i ∈ N, we write ui = (u1, ..., un, i) ∈ N

n+1

for the i-th hild of u. We also de�ne for u = (u1, ..., un) with n ≥ 2,

mu = (u1, ..., un−1)

the mother of u, mu = ∅ if u ∈ N. If v = mnu for some n ≥ 0 we write v � u and say that

u stems from v. Additionally for M a set of U , M � v means that u � v for some u ∈ M .

Generally we write M � L if all x ∈ L stem from M .

Here it will be onvenient to identify the point measure s with the in�nite sequene

(s1, ..., sn, 0, ...) obtained by aggregation of in�nitely many 0's to the �nite sequene of the

atoms of s.

In partiular we say that a random in�nite sequene (ξi, i ∈ N) has the law ν, if there is
a (random) index n suh that ξi = 0 ⇔ i > n and the �nite point measure

∑n
i=1 δξi has the

law ν.

De�nition 1. Let two independent families of i.i.d. variables be indexed by the nodes of the

tree, (ξu, u ∈ U) and (eu, u ∈ U), where for eah u ∈ U ξu = (ξ̃ui)i∈N is distributed aording

to the law ν, and (eui)i∈N is a sequene of i.i.d. exponential variables with parameter 1. We

de�ne reursively for some �xed x > 0

ξ∅ := x, a∅ := 0, ζ∅ := x−αe∅,

and for u ∈ U and i ∈ N:

ξui := ξ̃uiξu, aui := au + ζu, ζui := ξ−α
ui eui.
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To eah node u of the tree U , we assoiate the mark (ξu, au, ζu) where ξu is the size, au the

birth-time and ζu the lifetime of the individual with label u. We all

Tx = ((ξu, au, ζu)u∈U)

a marked tree with root of size x, and the law assoiated is denoted by Px. Let Ω̄ be the set

of all the possible marked trees.

The size of the individuals (ξu, u ∈ U) de�nes a multipliative asade (see the referenes
in Setion 3 of [5℄). However the latter is not su�ient to onstrut the proess X, in fat

we also need the information given by ((au, ζu), u ∈ U).
Another useful onept is that of line. A subset L ⊂ U is a line if for every u, v ∈ L,

u � v ⇒ u = v. The pre-L-sigma algebra is

HL := σ(ξ̃u, eu; ∃l ∈ L : u � l).

A random set of individuals

J : Ω̄ → P(U)

is optional if {J � L} ∈ HL for all line L ⊂ U , where P(U) is the power set of U . An

optional line is a random line whih is optional. For any optional set J we de�ne the

pre-J -algebra by:

A ∈ HJ ⇔ ∀L line ⊂ U : A ∩ {J � L} ∈ HL.

The �rst result is:

Lemma 1. The marked tree onstruted in De�nition 1 satis�es the strong Markov branhing

property: for J an optional line and ϕu : Ω̄ → [0, 1], u ∈ U , measurable funtions, we get

that,

E1

(
∏

u∈J

ϕu ◦ T
ξu

∣∣∣∣∣HJ

)
=
∏

u∈J

Eξu(ϕu),

where T ξu
is the marked tree extrated from T1 at the node (ξu, au, ζu). More preisely

T ξu = ((ξuv, auv − au, ζuv)v∈U).

Proof. Thanks to the i.i.d properties of the random variables (ξ̃u, u ∈ U) and (eu, u ∈ U),
the Markov property for lines is of ourse easily heked. In order to get the result for a more

general optional line, we use Theorem 4.14 of [15℄. Indeed, the tree we have onstruted is

a speial ase of the tree onstruted by Jagers in [15℄. In our ase the Jagers's notation ρu,
τu and σu are suh that the type ρu of u ∈ U , is the mass of u: ξu, the birth time σu is au
and τu is here equal to ζmu (beause the mother dies when she gives birth to her daughters).

We notie that all the sisters have the same birth time, whih means that for all u ∈ U and

all i ∈ N, we have that τui is here equal to ζu.
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3 Malthusian hypotheses and the intrinsi martingale.

We introdue some notations to formulate the fundamental assumptions of this work:

p := inf

{
p ∈ R :

∫

Mp(R∗
+)

〈xp, s〉ν(ds) <∞

}
,

and

p∞ := inf

{
p > p :

∫

Mp(R∗
+)

〈xp, s〉ν(ds) = ∞

}

(with the onvention inf ∅ = ∞) and then for every p ∈ (p, p∞):

κ(p) :=

∫

Mp(R∗
+)

(1− 〈xp, s〉) ν(ds).

Note that κ is a ontinuous and onave funtion (but not neessarily a stritly inreasing

funtion) on (p, p∞), as p →
∫
Mp(R∗

+)
〈xp, s〉ν(ds) is a onvex appliation. By onavity, the

equation κ(p) = 0 has at most two solutions on (p, p∞). When a solution exists, we denote

by p0 := inf{p ∈ (p, p∞) : κ(p) = 0} the smallest, and all p0 the Malthusian exponent.

We now make the fundamental:

Malthusian Hypotheses. We suppose that the Malthusian exponent p0 exists, that

p0 > 0, and that

κ(p) > 0 for some p > p0. (2)

Furthermore we suppose that the integral

∫

Mp(R∗
+)

(〈xp0, s〉)p ν(ds) (3)

is �nite for some p > 1.

Throughout the rest of this artile, these hypotheses will always be taken for

granted.

Note that (2) always holds when ν(si ≤ 1 for all i) = 1 (fragmentation ase). We stress

that κ may not be stritly inreasing, and may not be negative when p is su�iently large

(see Subsetion 6.1 for a onsequene of this fat.)

We will give one example based on the Dirihlet proess (see the book Kingman [16℄).

Fix n ≥ 2, (υ1, ..., υn) n positive real numbers and υ =
∑n

i=1 υi. We de�ne the simplex ∆n

by

∆n :=

{
(p1, p2, ..., pn) ∈ R

n
+,

n∑

j=1

pi = 1

}
.
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The Dirihlet distribution of parameter (υ1, ..., υn) over the simplex ∆n has the density (with

respet to the (n− 1)-dimensional Lebesgue measure on ∆n):

f(p1, ..., pn) =
Γ(υ)

Γ(υ1)...Γ(υn)
pυ1−1
1 ...pυn−1

n .

Let a := υ(υ + 1)/(
∑n

i=1 υi(υi + 1)). Note that a is stritly larger than 1. Let the

reprodution measure be the law of (aX1, ..., aXn), where (X1, ..., Xn) is a random vetor

with Dirihlet distribution of parameter (υ1, ..., υn). Therefore

κ(p) = ap
Γ(υ)

Γ(υ + p)

n∑

i=1

Γ(p+ υi)

Γ(υi)
,

p = −υ, p0 = 1 and the Malthusian hypotheses are veri�ed.

In this artile we will all extintion the event that for some n ∈ N, all nodes u at the

n-th generation have zero size, and non-extintion the omplementary event. We see that

the probability of extintion is always stritly positive whenever ν(s1 = 0) > 0, and equals

zero if and only if ν(s1 = 0) = 0 (as we have suppose (3); see p.28 [4℄).

After these de�nitions, we introdue a fundamental martingale assoiated to (ξu, u ∈ U).

Theorem 1. The proess

Mn :=
∑

|u|=n

ξp0u , n ∈ N

is a martingale in the �ltration (HLn), with Ln the line assoiated to the n-th generation

(i.e. Ln := {u ∈ U : |u| = n}). This martingale is bounded in Lp(P) for some p > 1, and in

partiular is uniformly integrable.

Moreover, onditionally on non-extintion the terminal value M∞ is stritly positive a.s.

Remark 1. As κ is onave the equation κ(p) = 0 may have a seond root p+ := inf{p >
p0, κ(p) = 0}). This seond root is less interesting: even though

M+
n :=

∑

|u|=n

ξp+u , n ∈ N,

is also a martingale, it is easy to hek that for all p > 1 the p-variation of M+
n is in�nite,

i.e. E (
∑∞

n=0 |Mn+1 −Mn|
p) = ∞).

We an notie that for all p ∈ (p0, p+) (M
(p)
n )n∈N := (

∑
|u|=n ξ

p
u)n∈N is a supermartingale.

The assumption (3) means atually that E(Mp
1 ) <∞.

Proof. • We will use the fat that the empirial measure of the logarithm of the sizes of

fragments

Z(n) :=
∑

|u|=n

δlog ξu (4)
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an be viewed as a branhing random walk (see the artile of Biggins [8℄) and use Theorem

1 of [8℄. In order to do that we �rst introdue some notation: for θ > p, we de�ne

m(θ) := E

(∫
eθxZ(1)(dx)

)
= E




∑

|u|=1

ξθu



 = 1− κ(θ)

and

W (n)(θ) := m(θ)−n

∫
eθxZ(n)(dx) = (1− κ(θ))−n

∑

|u|=n

ξθu.

We notie that Mn =W (n)(p0). Therefore in order to apply Theorem 1 of [8℄ and to get the

onvergene almost surely and in pth mean for some p > 1, it is enough to show that

E(W (1)(p0)
γ) <∞

for some γ ∈ (1, 2] and
m(pp0)/|m(p0)|

p < 1

for some p ∈ (1, γ]. The �rst ondition is a onsequene of the Malthusian assumption.

Moreover the seond follows from the identities

m(pp0)/|m(p0)|
p = (1− κ(pp0))/|1− κ(p0)|

p = 1− κ(pp0)

whih, by the de�nition of p0, is smaller than 1 for p > 1 well hosen.

• Finally, let us now hek that M∞ > 0 a.s. onditionally on non-extintion. De�ne

q = P(M∞ = 0), therefore as E(M∞) = 1 we get that q < 1. Moreover, an appliation of the

branhing property yields

E(qZn) = q,

where Zn is the number of individuals with positive size at the n-th generation. Notie that

Zn = 〈Z(n), 1〉. By the onstrution of the marked tree and as ν is a probability measure:

(Zn, n ∈ N) is of ourse a Galton-Watson proess and it follows that q is its probability of

extintion. Sine M∞ = 0 onditionally on the extintion, the two events oinide a.s.

4 Evolution of the proess in ontinuous time.

After having de�ned the proess indexed by generation and having shown that the martingale

Mn is Lp(P) bounded, we are now able to de�ne properly the main objet of this paper. In

order to do this, when an individual labelled by u has a positive size, ξu > 0, let Iu :=
[au, au + ζu) be the interval of times during whih this individual is alive. Otherwise, i.e.

when ξu = 0, we deide that Iu = ∅. With this de�nition, we set:
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De�nition 2. We de�ne the proess X = (X(t), t ≥ 0) by

X(t) =
∑

u∈U

1l{t∈Iu}δξu , t ≥ 0. (5)

In partiular we have for f : R+ → R measurable funtion

〈f,X(t)〉 =
∑

u∈U

f(ξu)1l{t∈Iu}.

For every x > 0, let Px be the law of the proess X starting from a single individual with

size x. And for simpli�ation, we denote P for P1, and let (Ft)t≥0 be the natural �ltration

of the proess (X(t), t ≥ 0). We use the notation (X1(t), ..., X♯X(t)(t)) for the sequene of

atoms of X(t). In the following we will show that this sequene is almost surely �nite. Of

ourse the set (X1(t), ..., X♯X(t)(t)) is the same as the set ((ξu); t ∈ Iu); but sometimes it will

be learer to use the notation (Xi(t)).
We de�ne for u ∈ R+:

F (u) :=

∫

Mp(R∗
+)

u♯sν(ds).

We notie that F (u) is the generating funtion of the Galton-Watson proess (Zn, n ≥ 0) =
(♯{u ∈ U : ξu > 0 and |u| = n}, n ≥ 0).

From now on, we will suppose that for every ǫ > 0

∫ 1

1−ǫ

du

F (u)− u
= ∞. (6)

Of ourse if F
′
(1) = E(Z1) < ∞ this last assumption is ful�lled. Therefore we get the �rst

theorem about the ontinous time proess:

Theorem 2. The proess X takes its values in the set Mp(R
∗
+). It is a branhing Markov

hain, more preisely the onditional distribution of X(t+r) given that X(r) = s is the same

as that of the sum

∑
X(i)(t), where for eah index i, X(i)(t) is distributed as X(t) under Psi

and the variables X(i)(t) are independent.

The proess X also has the saling property, namely for every c > 0, the distribution of

the resaled proess (cX(cαt), t ≥ 0) under P1 is Pc.

In the fragmentation ase, the fat that the size of the fragments dereases with time

entails that the proess of the fragments of size larger than or equal to ǫ is Markovian, and

whih leads easily to Theorem 2. This property is lost in the present ase.

Proof. • First we will hek that for all t ≥ 0, X(t) is a (random) �nite point measure. By

Theorem 1 and the Doob's Lp
-inequality we get that for some p > 1:

sup
n∈N

Mn = sup
n∈N

∑

|u|=n

ξp0u ∈ Lp(P).
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As a onsequene:

sup
u∈U

ξp0u ∈ Lp(P)

and then by the de�nition of the proess X, writing X1(t), ... for the (possibly in�nite)

sequene of atoms of X(t)
sup
i

sup
t∈R+

Xi(t)
p0 ∈ Lp(P).

Reall that p0 > 0 by assumption. We �x some arbitrarily large m > 0. We now work

onditionally on the event that the size of all individuals is bounded by m, and we will show

that the number of the individuals alive at time t is almost surely �nite for all t ≥ 0.
As we are onditioning on the event {supu∈U ξu ≤ m}, by the onstrution of the marked

tree, we get that the life time of an individual an be stohastially bounded from below by an

exponential variable of parameter mα
. Therefore we an bound the number of individuals

present at time t by the number of individuals of a ontinuous time branhing proess

denoted by GW in whih eah individual lives for a random time whose law is exponential

of parameter mα
and the probability distribution of the o�spring is the law of ♯s ∨ 1 under

ν (we have taken the supremum with 1 to ensure the absene of death). For the Markov

branhing proess GW , we are in the temporally homogeneous ase and, we notie that

∫

Mp(R∗
+)

u(ns)∨1ν(ds) = (f(u)− u)ν(ns 6= 0) + u,

therefore as we have supposed (6), we an use Theorem 1 p.105 of the book of Athreya and

Ney [3℄ (proved in Theorem 9 p.107 of the book of Harris [14℄) and get that we are in the

non-explosive ase for the GW . As the number of the individuals is bounded by that of GW
we get that the number of individuals at time t is a.s. �nite.

Therefore onditioning on the event {supu∈U ξu ≤ m}, we have that for all t ≥ 0, the
number of individuals at time t is a.s. �nite, i.e. X(t) is a �nite point measure.

• Seond we will show the Markov property. Fix r ∈ R+. Let τr be equal to {u ∈ U :
r ∈ Iu}. We notie that τr is an optional line. In fat for all lines L ⊂ U we have that

{τr � L} = {r < au + ζu ∀u ∈ L} ∈ HL.

By de�nition, we have the identity

♯X(t+r)∑

i=1

1l{Xj(t+r)>0}δXj(t+r) =
∑

u∈U

1l{t+r∈Iu}δξu .

Let X(r) =
∑n

i=1 δξvn ∈ Mp(R
∗
+) with n = ♯X(r) and (v1, ..., vn) the nodes of U . De�ne for

all i ≤ n,

T̃ (i) := ((ξviu, aviu − avi , ζviu − 1l{u=∅}(r − avi))u∈U) = ((ξ̃(i)u , ã
(i)
u , ζ̃

(i)
u )u∈U),
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Ĩ
(i)
u := [ã

(i)
u , ã

(i)
u + ζ̃

(i)
u [ and

X(i)(t) =
∑

u∈U

1l
{t∈Ĩ

(i)
u }
δ
ξ̃
(i)
u
.

Then

X(t+ r) =

n∑

i=1

X(i)(t).

By the lak of memory of the exponential variable, we have that for u ∈ U , given s ∈ Iu
the law of the marked tree T̃ (i)

is the same as that of

T ξvi := ((ξviu, aviu − avi , ζviu)u∈U) := ((ξiu, a
i
u, ζ

i
u)u∈U).

Thus we have the equality in law:

∑

u∈U

1l
{t∈Ĩ

(i)
u }
δ
ξ̃
(i)
u

(d)
=
∑

u∈U

1l{t∈Iiu}δξiu ,

with I iu := [aiu, a
i
u + ζ iu[.

Let τ ir := {viu ∈ U : r ∈ I iu}. Moreover for all lines L ∈ U we have that

{τ ir � L} = {r < aviu + ζviu ∀viu ∈ L} ∈ HL.

Therefore τ ir is an optional line and by applying Lemma 1 for the optional line τ is, we have
that the ondition distribution of the point measure

∑

u∈U

1l{t+r∈Iiu}
δξiu

given Hτr is the law of X(t) under Pxi
. We notie that Hτs = σ(ξ̃u, eu : au ≤ s) is the

same �ltration as Fs = σ(X(s
′
) : s

′
≤ s). Therefore (X(1),X(2), ...,X(n)) is a sequene of

independent random proesses, where for eah i X(i)(t) is distributed as X(t) under Pxi
. We

then have proven the Markovian property.

• The saling property is an easy onsequene of the de�nition of the tree Tx.

Remark 2. For every measurable funtion g : R∗
+ → R

∗
+, de�ne a multipliative funtional

suh that for every s =
∑♯s

i=1 δsi ∈ Mp(R
∗
+):

φg(s) := exp(−〈g, s〉) = exp(−

♯s∑

i=1

g(si)).

Then the generator G of the Markov proess X(t) ful�lls for every y =
∑♯y

i=1 δyi ∈ Mp(R
∗
+):

Gφg(y) =
∑

yαi e
−

P

j 6=i g(yj)

∫

Mp(R∗
+)

(e−〈g(xyi),s〉 − e−g(yi))ν(ds). (7)
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The intrinsi martingale Mn is indexed by the generations; it will also be onvenient to

onsider its analogue in ontinuous time, i.e

M(t) := 〈xp0 ,X(t)〉 =
∑

u∈U

1l{t∈Iu}ξ
p0
u .

It is straightforward to hek that (M(t), t ≥ 0) is again a martingale in the natural �ltration

(Ft)t≥0 of the proess (X(t), t ≥ 0); and more preisely, the argument Proposition 1.5 in [4℄

gives:

Corollary 3. The proess (M(t), t ≥ 0) is a martingale, and more preisely

M(t) = E(M∞|Ft),

where M∞ is the terminal value of the intrinsi martingale (Mn, n ∈ N). In partiular M(t)
onverges in Lp(P) to M∞ for some p > 1.

Proof. We will use the same argument as in the proof of Proposition 1.5 of [4℄. Netherless,

we have to deal here with the fat that supu∈U ξu may be larger than 1. Therefore we will

have to ondition. We know that Mn onverges in Lp(P) to M∞ as n tends to ∞, so

E(M∞|Ft) = lim
n→∞

E(Mn|Ft).

By Theorem 1 as we have

sup
u∈U

ξp0u ∈ Lp(P),

we �x m > 0. We now work on the event Bm := {supu∈U ξu ≤ m}.
By applying the Markov property at time t we easily get that

E(Mn|Ft) =

♯X(t)∑

i=1

Xp0
i (t)1l{̺(Xi(t))≤n} +

∑

|u|=n

ξp0u 1l{au+ζu<t} (8)

where ̺(ξv) stands for the generation of the individual v (i.e. ̺(ξv) = |v|), and au + ζu is

the instant when the individual orresponding to the node u reprodues. We an rewrite the

latter as

au + ζu = ξ−α
m|u|u

e0 + ξ−α
m|u|−1u

e1 + ...+ ξ−α
u e|u|

where e0,... is a sequene of independent exponential variables with parameter 1, whih is

also independent of ξu. We an remark that in the �rst term of sum (8) we sum over the

sizes of the individuals whih belong to the n-th generation and are alive at time t, and in

the seond term we sum over those belonging to the n-th generation and are dead at time t.
As α is nonnegative, and as we are working on the event Bm: ξ

−α
miu ≥ m−α

we have that

for eah �xed node u ∈ U , au + ζu is bounded from below by the sum of |u|+1 independent
exponential variables with parameter mα

whih are independent of ξu. Thus

lim
n→∞

E




∑

|u|=n

ξp0u 1l{au+ζu<t}1l{Bm}



 = 0,
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and therefore by (8) on the event {Bm}, we get that for all m > 0: E(M∞|Ft)1l{Bm} =
M(t)1l{Bm}, and then by letting m tend to ∞ we get the result.

5 A randomly tagged leaf.

We will here (as in [4℄) de�ne what a tagged individual is by using a tagged leaf.

We all leaf of the tree U an in�nite sequene of integers l = (u1, ...). For eah n, l
n :=

(u1, ..., un) is the anestor of l at the generation n. We enrih the probabilisti struture by

adding the information about a so alled tagged leaf, hosen at random as follows. Let Hn be

the spae of bounded funtionals Φ whih depend on the markM and of the leaf l up to the n-
th �rst generation, i.e. suh that Φ(M, l) = Φ(M

′
, l

′
) if ln = ln

′
andM(u) =M

′
(u) whenever

|u| ≤ n. For suh funtionals, we use the slightly abusing notation Φ(M, l) = Φ(M, ln). As
in [4℄ for a pair (M,λ) where M : U → [0, 1]×R+ ×R+ is a random mark on the tree and λ
is a random leaf of U , the joint distribution denoted by P

∗
(and by P

∗
x if the size of the �rst

mark is x instead of 1) an be de�ned unambiguously by

E
∗(Φ(M,λ)) = E




∑

|u|=n

Φ(M,u)ξp0u



 , Φ ∈ Hn.

Moreover sine the intrinsi martingale (Mn, n ∈ Z+) is uniformly integrable (f. Theorem 1),

the �rst marginal of P
∗
is absolutely ontinuous with respet to the law of the random mark

M under P, with density M∞.

Let λn be the node of the tagged leaf at the n-th generation. We denote χn := ξλn for

the size of the individual orresponding to the node λn and χ(t) for the size of the tagged

individual alive at time t, viz.

χ(t) := χn if aλn ≤ t < aλn + ζλn ,

beause in the ase onsidered supn∈N aλn = ∞. We stress that, in general the proess χ(t)
is not monotoni. However as in [4℄, Lemma 1.4 there beomes:

Lemma 2. Let k : R+ → R+ be a measurable funtion suh that k(0) = 0. Then we have

for every n ∈ N

E
∗(k(χn)) = E




∑

|u|=n

ξp0u k(ξu)



 ,

and for every t ≥ 0
E
∗(k(χ(t))) = E (〈xp0k(x), X(t)〉) .

Proposition 1.6 of [4℄ beomes:
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Proposition 4. Under P
∗
,

Sn := lnχn, n ∈ Z+

is a random walk on R with step distribution

P(lnχn − lnχn+1 ∈ dy) = ν̃(dy),

where the probability measure ν̃ is de�ned by

∫

]0,∞[

k(y)ν̃(dy) =

∫

Mp(R∗
+)

〈xp0k(ln(x)), s〉ν(ds).

Equivalently, the Laplae transform of the step distribution is given by

E
∗(epS1) = E

∗(χp
1) = 1− κ(p+ p0), p ≥ 0.

Moreover, onditionally on (χn, n ∈ Z+) the sequene of the lifetimes (ζλ0 , ζλ1, ...) along

the tagged leaf is a sequene of independent exponential variables with respetive parameters

χα
0 , χ

α
1 , ...

We now see that we an use this proposition to obtain the desription of χ(t) using a

Lamperti transformation. Let

ηt := S ◦Nt, t ≥ 0,

with N a Poisson proess with parameter 1 whih is independent of the random walk S;
for probabilities and expetations related to η we use the notation P and E. The proess

(χ(t), t ≥ 0) is Markovian and enjoys a saling property. More preisely under P
∗
x we get

that

χ(t)
(d)
= exp(ητ(tx−α)), t ≥ 0, (9)

where η is the ompound Poisson de�ned above and τ the time-hange de�ned impliitly by

t =

∫ τ(t)

0

exp(αηs)ds, t ≥ 0. (10)

6 Asymptoti behaviors.

6.1 The onvergene of the size of a tagged individual.

Let

κ
′

(p0) = −

∫

Mp(R∗
+)

〈xp0 ln(x), s〉ν(ds)

denote the derivative of κ at the Malthusian parameter p0.
In this part we fous on the asymptoti behavior of the size of a tagged individual. In

this diretion, the quantity ̟t = eαηt plays an important role, as it appears at the time

hange of the Lamperti transformation (see (10)), as we see in the next proposition:
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Proposition 5. Suppose that α > 0, that the support of ν is not a disrete subgroup rZ for

any r > 0 and that 0 < κ
′
(p0) < ∞. Then for every y > 0, under P

∗
y, t

1/αχ(t) onverges in
law as t→ ∞ to a random variable Y whose law is spei�ed by

E(k(Y α)) =
1

αm1
E(k(I)I−1),

for every measurable funtion k : R+ → R+, with I :=
∫∞

0
exp(αηs)ds and m1 := E(η1) =

−κ
′
(p0).

Proof. As −κ
′
(p0) is the mean of the step distribution of the random walk Sn (see Proposition

4), therefore κ
′
(p0) > 0 imply that E(−η1) > 0 thus the assumption of Theorem 1 in the

works of Bertoin and Yor [7℄ is ful�lled by the self-similar Markov proess χ(t)−1
, whih gives

the result.

We ould also try to use the same method as the one used in [6℄ for whih we need

Proposition 1.7 [4℄. But in this latter we needed E(〈xp, X(t)〉) to be �nite when p is large,

and its derivative to be ompletely monotone. But here neither of these requirements is

neessarily true as κ is not neessarily positive when p is large. This explains why we have

to use a di�erent method.

Remark 3. In the ase κ
′
(p0) = 0 we an extend this proposition. More preisely if∫

Mp(R∗
+)
〈xp0| ln(x)|, s〉ν(ds) <∞,

J :=

∫ ∞

1

xν−((x,∞))dx

1 +
∫ x

0
dy
∫∞

y
ν−((−∞,−z))dz

<∞,

(where ν− is the image of ν̃ by the map u → −u and ν̃ is de�ned in Proposition 4) and

E
(
log+

∫ T1

0
e−ηsds

)
< ∞ (with Tz := inf{t : −ηt ≥ z}) hold then, for any y > 0 under P

∗
y,

t1/αχ(t) onverge in law as t→ ∞, to a random variable Ỹ whose law is spei�ed by

for any bounded and ontinuous funtion k and for t > 0:

E(k(Ỹ α)) = lim
λ→0

1

λ
E(I−1

λ k(Iλ)),

where Iλ =
∫∞

0
exp(αηs − λs)ds.

The proof is the same as the previous one using Theorem 1 and Theorem 2 from the

works of Caballero and Chaumont [11℄ instead of [7℄.

6.2 Convergene of the mean measure and Lp
-onvergene.

We enode the on�guration of masses X(t) = {(Xi(t))1≤i≤♯X(t)} by the weighted empirial

measure

σt :=

♯X(t)∑

i=1

Xp0
i (t)δt1/αXi(t)
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whih has total mass M(t).
The assoiated mean measure σ∗

t is de�ned by the formula

∫ ∞

0

k(x)σ∗
t (dx) = E

(∫ ∞

0

k(x)σt(dx)

)

whih is required to hold for all ompatly supported ontinuous funtions k. Sine M(t) is
a martingale, σ∗

t is a probability measure. We interest us to the onvergene of this measure.

This onvergene was already established in the ase of binary onservative fragmentation

(see the results of Brennan and Durrett [9℄ and [10℄). A very useful tool for this is the

renewal theorem, for whih they needed the fat that the proess χ(t) is dereasing; here we
no longer have suh a monotoniity property. See also Theorem 2 and 5 of [6℄, Theorem 1.3

of [4℄ and Proposition 4 of [17℄ for Theorems about empirial measure for measure whih

have a onservative property ν(si ≤ 1 ∀i ∈ N) = 1.
Nonetheless, with Proposition 5 and Lemma 2, we easily get:

Corollary 6. With the assumptions of Proposition 5 we get:

1. The measures σ∗
t onverge weakly, as t → ∞, to the distribution of Y i.e. for any

ontinuous bounded funtion k : R+ → R+ , we have:

E
(
〈xp0k(t1/αx), X(t)〉

)
→
t→∞

E(k(Y )).

2. For all p+ > p > p0:

t(p−p0)/αE (〈xp, X(t)〉) →
t→∞

E(Y p−p0).

We now formulate a more preise result onerning the onvergene of the empirial

measure:

Theorem 7. Under the same assumptions as in Proposition 5 we get that for every bounded

ontinuous funtion k:

Lp − lim
t→∞

∫ ∞

0

k(x)σt(dx) =M∞E(k(Y )) =
M∞

αm
E(k(I)I−1),

for some p > 1.

Remark 4. A slightly di�erent version of Corollary 6 and Theorem 7 exists also under the

assumptions in Remark 3.

See also Asmussen and Kaplan [1℄ and [2℄ for a losely related result.
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Proof. We follow the same method as Setion 1.4. in [4℄ and in this diretion we use Lemma

1.5 there: for (λ(t))t≥0 = (λi(t), i ∈ N)t≥0 a sequene of non-negative random variables suh

that for �xed p > 1

sup
t≥0

E

((
∞∑

i=1

λi(t)

)p)
<∞ and lim

t→∞
E

(
∞∑

i=1

λi(t)

)
= 0,

and for (Yi(t), i ∈ N) a sequene of random variables whih are independent onditionally

on λ(t), we assume that there exists a sequene (
−

Yi, i ∈ N) of i.i.d variables in Lp(P), whih

is independent of λ(t) for eah �xed t, and suh that |Yi(t)| ≤
−

Y i for all i ∈ N and t ≥ 0.

Then we know from Lemma 1.5 in [4℄ that

lim
t→∞

∞∑

i=1

λi(t)(Yi(t)− E (Yi(t)|λ(t))) = 0. (11)

Now, let k be a ontinuous funtion bounded by 1 and let

At := 〈xp0k(t1/αx), X(t)〉.

By appliation of the Markov property at time t for At+s and the self-similarity property

of the proess X we an rewrite At+s as

♯X(t)∑

i=1

λi(t)Yi(t, s)

where λi(t) := Xp0
i (t) and

Yi(t, s) := 〈xp0k((t+ s)1/αXi(t)x),Xi,.(s)〉,

with X1,., X2,., ... a sequene of i.i.d. opies of X whih is independent of X(t).
By Theorem 1 we get that

sup
t≥0

E








♯X(t)∑

i=1

λi(t)




p

 <∞.

By the last orollary we also obtain that

E




♯X(t)∑

i=1

λpi (t)


 ∼ t−(p−1)p0E(χ(p−1)p0(1)) → 0,

as t→ ∞.
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Moreover the variables Yi(t, s) are uniformly bounded by

Yi = sup
s≥0

〈xp0,Xi,.(s)〉,

whih are i.i.d. variables and also bounded in Lp(P) thanks to Doob's inequality (as 〈xp0 ,Xi,.(s)〉
is a martingale bounded in Lp(P)).

Thus we may apply (11), whih redues the study to that of the asymptoti behavior of:

♯X(t)∑

i=1

λi(t)E(Yi(t, s)|X(t)),

as t tends to ∞. On the event {Xi(t) = y}, we get

E(Yi(t, s)|X(t)) = E
(
〈xp0k((t+ s)1/αyx),X(s)〉

)
.

Then by Lemma 2:

E
(
〈xp0k((t+ s)1/αyx),Xi,.(s)〉

)
= E

∗
(
k
(
(t+ s)1/αyχ(s)

))
.

With Proposition 5, we obtain

lim
t→∞

E
∗
(
k
(
(t + s)1/αyχ(s)

))
= E (k (Y )) .

Moreover reall from Corollary 3 that

∑♯X(t)
i=1 λi(t) onverges to M∞ in Lp(P). Therefore we

�nally get that when t goes to in�nity:

♯X(t)∑

i=1

λi(t)E(Yi(t, s)|X(t)) ∼ E (k (Y ))

♯X(t)∑

i=1

λi(t) ∼ E (k (Y ))M∞.

A Further results about the intrinsi proess

We will give more general properties about the intrinsi proess {MQ, Q ⊂ U}, MQ =∑
u∈M ξp0u . For a line Q, {MQ} is adapted to the �ltration {HL}. We use the abuse of

notation that Mn stand for the proess MLn , with Ln = {u ∈ U : |u| = n} the labels of the

n-th generation. We introdue new de�nitions, we say that a line Q overs L, if Q � L and

any individual stemming from L either stems from Q or has progeny in Q. If Q overs the

anestor it may simply be alled overing. Let C0 be the lass of overing lines with �nite

maximal generation. We denoted the generation of Q: |Q| = supu∈Q |u|. The origin of the

intrinsi martingale omes from real time martingale of Nerman [20℄.
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Also for r ∈ R
∗
+, let ϑr be the strutural measure:

ϑr(B) := Er(♯{u ∈ U : ξu ∈ B}) =
∞∑

i=1

ν(rsi ∈ B) for B ⊂ B,

where B is the Borel algebra on R
∗
+. Let the reprodution measure µ on the sigma-�eld

B ⊗ B be suh that for every r ≥ 0:

µ(r, dv × du) := rαe−rαudu
∞∑

i=1

ν(rsi ∈ dv)

and for any λ ∈ R

µλ(r, dv × du) := e−λuµ(r, du× dv).

The omposition operation ∗ denotes the Markov transition on the size spae R+ and on-

volution on the time spae R+, so that: for all A ∈ B and B ∈ B,

µ∗2(s, A× B) = µ ∗ µ(s, A× B) =

∫

R+×R+

µ(r, A× (B − u))µ(s, dr× du).

With the onvention that the ∗-power 0 is 1l{A×B}(s, 0) whih gives all the mass to (s, 0). We

de�ne the renewal measure as

ψλ :=
∞∑

0

µ∗n
λ .

Let

α
′

:= inf{λ : ψλ(r,R+ × R+) <∞ for some r ∈ R+}.

Moreover as

µλ(r,R+ × R+) =

{
mrα/(rα + λ) if λ > −rα

∞ else,

thus

ψλ(r,R+ × R+) <∞ if and only if λ < (r/(m− 1))1/α

therefore we get α
′
= 0. For A ∈ B, let

π(A) := lim
n→∞

µ∗n(1, A× R+) (12)

whih is well de�ned as µ∗n(1, A× R+) is a dereasing funtion in n and nonnegative. Let

h(s) := sp0 for all s ∈ R+ and β := 1. These objets orrespond to those de�ned in [15℄.

Reall that the Galton-Watson proess (Zn, n ≥ 0)) is equal to (♯{u ∈ U : ξu >
0 and |u| = n}, n ≥ 0).

We suppose that

m := E(Z1) <∞,

i.e.

∫
Mp(R∗

+)
♯sν(ds) <∞ this assumption is slightly stronger than (6), therefore we get that:
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Proposition 8. 1. If L � Q are lines, then

E(MQ|HL) ≤ML.

If Q veri�es |Q| <∞ and overs L, then

E(MQ|HL) =ML.

2. For all s > 0, {ML; L ∈ C0} is uniformly Ps-integrable.

3. There is a random variable M ≥ 0 suh that for π-almost all s > 0

ML = Es(M |HL)

and ML
L1(Ps)
→ M, as L ∈ C0 �lters (�). If ςn � ςn+1 ∈ C0 and to any x ∈ U there is an

ςn suh that x has progeny in ςn, Mςn →M , as n→ ∞, also a.s. Ps.

A onsequene of the �rst and seond points applied for Ln = {u ∈ U : |u| = n} and

Lm = {u ∈ U : |u| = m} with m ≥ n ≥ 0, is that Mn is a martingale and the uniform Ps-

integrability of this martingale. The third point applied for the lines τt give the onvergene
of M(t) in L1(Ps) and almost surely.

Proof. • First the onditions of Malthusian population are ful�lled, thus by Theorem 5.1 in

[15℄ we get the �rst point.

Let ξ :=
∫
R+×R+

h(s)rαe−trαdtϑ1(ds) =
∑

|u|=1 ξ
p0
u and Eπ be the expetation with respet

to

∫
R+

Ps(dw)π(ds). Therefore,

Eπ(ξ log
+ ξ) =

∫

R+

Ex

(
∞∑

i=1

ξp0i

(
log+

∞∑

j=1

ξp0j

))
π(dx),

and it follows readily from the Malthusian hypotheses and the fat that

∑
|u|=n ξ

pp0
u is a

supermartingale, that this quantity is �nite. Therefore the assumption of Theorem 6.1 of

[15℄ are hek, whih gives by Theorem 6.1 of [15℄ the seond point and by Theorem 6.3 of

[15℄ we get the third point.
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