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ON THE LIMITING DISTRIBUTIONS OF MULTIVARIATE
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A depth-based rank sum statistic for multivariate data intro-
duced by Liu and Singh [J. Amer. Statist. Assoc. 88 (1993) 252–260]
as an extension of the Wilcoxon rank sum statistic for univariate
data has been used in multivariate rank tests in quality control and
in experimental studies. Those applications, however, are based on
a conjectured limiting distribution, provided by Liu and Singh [J.
Amer. Statist. Assoc. 88 (1993) 252–260]. The present paper proves
the conjecture under general regularity conditions and, therefore, val-
idates various applications of the rank sum statistic in the literature.
The paper also shows that the corresponding rank sum tests can be
more powerful than Hotelling’s T 2 test and some commonly used mul-
tivariate rank tests in detecting location-scale changes in multivariate
distributions.

1. Introduction. The key idea of data depth is to provide a center-
outward ordering of multivariate observations. Points deep inside a data
cloud are assigned high depths, while those on the outskirts are assigned
lower depths. The depth of a point decreases when the point moves away
from the center of the data cloud. Applications of depth-induced ordering
are numerous. For example, Liu and Singh [12] generalized, via data depth,
the Wilcoxon rank sum statistic to the multivariate setting. Earlier general-
izations of the statistic are due to, for example, Puri and Sen [17], Brown and
Hettmansperger [2] and Randles and Peters [19]. More recent ones include
Choi and Marden [3], Hettmansperger, Möttönen and Oja [7] and Topchii,
Tyurin and Oja [23]. A special version of the Liu–Singh depth-based rank
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sum statistic (with a reference sample) inherits the distribution-free prop-
erty of the Wilcoxon rank sum statistic. The statistic discussed in this paper,
like most other generalizations, is only asymptotically distribution-free under
the null hypothesis. For its applications in quality control and experimen-
tal studies to detect quality deterioration and treatment effects, we refer to
[10, 11, 12]. These applications relied on a conjectured limiting distribution,
provided by Liu and Singh [12], of the depth-based rank sum statistic. Rous-
son [20] made an attempt to prove the conjecture, but did not handle the
differentiability of the depth functionals for a rigorous treatment. The first
objective of the present paper is to fill this mathematical gap by providing
regularity conditions for the limiting distribution to hold and by verifying
those conditions for some commonly used depth functions. Empirical process
theory and, in particular, a generalized Dvoretzk–Kiefer–Wolfowitz theorem
in the multivariate setting, turns out to be very useful here.

Our second objective is to investigate the power behavior of the test based
on the Liu–Singh rank sum statistic. The test can outperform Hotelling’s
T 2 test and some other existing multivariate tests in detecting location-scale
changes for a wide range of distributions. In particular, it is very powerful
for detecting scale changes in the alternative, for which Hotelling’s T 2 test
is not even consistent.

Section 2 presents the Liu–Singh depth-based rank sum statistic and an
asymptotic normality theorem. Technical proofs of the main theorem and
auxiliary lemmas are given in Section 3. The theorem is applied to several
commonly used depth functions in Section 4, Section 5 is devoted to a study
of the power properties of the rank sum test. Concluding remarks in Section 6
end the paper.

2. Liu–Singh statistic and its limiting distribution. Let X ∼ F and Y ∼
G be two independent random variables in R

d. Let D(y;H) be a depth
function of a given distribution H in R

d evaluated at point y. Lin and
Singh [12] introduced R(y;F ) = PF (X :D(X;F )≤D(y;F )) to measure the
relative outlyingness of y with respect to F and defined a quality index

Q(F,G) :=

∫

R(y;F )dG(y)

(2.1)
= P{D(X;F )≤D(Y ;F ) |X ∼ F,Y ∼G}.

Since R(y;F ) is the fraction of the F population that is “not as deep” as
the point y, Q(F,G) is the average fraction over all y ∈G. As pointed out by
Proposition 3.1 of Liu and Singh [12], R(Y ;F )∼ U [0,1] and, consequently,
Q(F,G) = 1/2 when Y ∼G= F and D(X;F ) has a continuous distribution.
Thus, the index Q(F,G) can be used to detect a treatment effect or quality
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deterioration. The Liu–Singh depth-based rank sum statistic

Q(Fm,Gn) :=

∫

R(y;Fm)dGn(y) =
1

n

n
∑

j=1

R(Yj;Fm)(2.2)

is a two-sample estimator of Q(F,G) based on the empirical distributions
Fm and Gn. Under the null hypothesis F =G (e.g., no treatment effect or
quality deterioration), Liu and Singh [12] proved in one dimension d = 1
that

((1/m+ 1/n)/12)−1/2(Q(Fm,Gn)− 1/2)
d−→N(0,1)(2.3)

and in higher dimensions, they proved the same for the Mahalanobis depth
under the existence of the fourth moments, conjecturing that the same lim-
iting distribution holds for general depth functions and in the general mul-
tivariate setting. In the next section, we prove this conjecture under some
regularity conditions and generalize the result to the case F 6=G in order to
perform a power study.

We first list assumptions that are needed for the main result. They will
be verified in this and later sections for some commonly used depth func-
tions. Assume, without loss of generality, that m ≤ n hereafter. Let Fm

be the empirical version of F and D(· ; ·) be a given depth function with
0≤D(x;H)≤ 1 for any point x and distribution H in R

d.

(A1) P{y1 ≤D(Y ;F )≤ y2} ≤C|y2 − y1| for some C and any y1, y2 ∈ [0,1].
(A2) supx∈Rd |D(x;Fm)−D(x;F )|= o(1), almost surely, as m→∞.

(A3) E (supx∈Rd |D(x;Fm)−D(x;F )|) =O(m−1/2).

(A4) E(
∑

i piX(Fm)piY (Fm)) = o(m−1/2) if there exist ci such that piX(Fm)>
0 and piY (Fm)> 0 for piZ(Fm) := P (D(Z;Fm) = ci | Fm), i= 1,2, . . . .

Assumption (A1) is the Lipschitz continuity of the distribution of D(Y ;F )
and can be extended to a more general case with |x2 − x1| replaced by
|x2−x1|α for some α> 0, if (A3) is also replaced by E (supx∈Rd |D(x;Fm)−
D(x;F )|)α = O(m−α/2). The following main result of the paper still holds
true:

Theorem 1. Let X ∼ F and Y ∼ G be independent and X1, . . . ,Xm

and Y1, . . . , Yn be independent samples from F and G, respectively. Under
(A1)–(A4),

(σ2
GF/m+ σ2

FG/n)
−1/2(Q(Fm,Gn)−Q(F,G))

d−→N(0,1), as m→∞,

where

σ2
FG =

∫

P 2(D(X;F )≤D(y,F ))dG(y)−Q2(F,G),

σ2
GF =

∫

P 2(D(x;F )≤D(Y,F ))dF (x)−Q2(F,G).
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Assumption (A2) in the theorem is satisfied by most depth functions such
as the Mahalanobis, projection, simplicial and halfspace depth functions; see
[9, 15, 25] for related discussions. Assumptions (A3)–(A4) also hold true for
many of the commonly used depth functions. Verifications can be technically
challenging and are deferred to Section 4.

Remark 1. Under the null hypothesis F = G, it is readily seen that
Q(F,G) = 1/2 and σ2

GF = σ2
FG = 1/12 in the theorem.

Remark 2. Note that (A1)–(A4) and, consequently, the theorem hold
true for not only common depth functions that induce a center-outward
ordering in R

d, but also other functions that can induce a general (not nec-
essarily center-outward) ordering in R

d. For example, if we define a function
D(x,F ) = F (x) in R

1, then the corresponding Liu–Singh statistic is equiv-
alent to the Wilcoxon rank sum statistic.

3. Proofs of the main result and auxiliary lemmas. To prove the main
theorem, we need the following auxiliary lemmas. Some proofs are skipped.
For the sake of convenience, we write, for any distribution functions H , F1

and F2 in R
d, points x and y in R

d and a given (affine invariant) depth
function D(· ; ·),

I(x, y,H) = I{D(x;H)≤D(y;H)},
I(x, y,F1, F2) = I(x, y,F1)− I(x, y,F2).

Lemma 1. Let Fm and Gn be the empirical distributions based on inde-

pendent samples of sizes m and n from distributions F and G, respectively.

Then

(i)
∫∫

I(x, y,F )d(Gn(y)−G(y))d(Fm(x)−F (x)) =Op(1/
√
mn),

(ii)
∫∫

I(x, y,Fm, F )d(Fm(x)−F (x))dG(y) = op(1/
√
m) under (A1)–(A2)

and

(iii)
∫∫

I(x, y,Fm, F )dFm(x)d(Gn−G)(y) =Op(m
−1/4n−1/2) under (A1)

and (A3).

Proof. We prove (iii). The proofs of (i)–(ii) are omitted. Let Imn :=
∫∫

I(x, y,Fm, F )dFm(x)d(Gn −G)(y). Then

E(Imn)
2 ≤E

{
∫
[
∫

I(x, y,Fm, F )d(Gn −G)(y)

]2

dFm(x)

}

=E

[
∫

I(X1, y,Fm, F )d(Gn −G)(y)

]2
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=E

[

E

{(

1

n

n
∑

j=1

(I(X1, Yi, Fm, F )

−EY I(X1, Y,Fm, F ))

)2
∣

∣

∣X1, . . . ,Xm

}]

≤ 1

n
E[EY {(I(X1, Y1, Fm, F ))2|X1, . . . ,Xm}]

=
1

n
E[EY {|I(X1, Y1, Fm, F )||X1, . . . ,Xm}].

One can verify that

|I(x, y,Fm, F )| ≤ I
(

|D(x;F )−D(y;F )| ≤ 2 sup
x∈Rd

|D(x;Fm)−D(x;F )|
)

.

By (A1) and (A3), we have

E(Imn)
2 ≤ 4C

n
E
(

sup
x∈Rd

|D(x;Fm)−D(x;F )|
)

=O(1/(m1/2n)).

The desired result then follows from Markov’s inequality. �

Lemma 2. Assume that X ∼ F and Y ∼G are independent. Then under

(A4), we have
∫∫

I(D(x;Fm) =D(y;Fm))dF (x)dG(y) = o(m−1/2).

Proof. Let I(Fm) =
∫∫

I(D(x;Fm) =D(y;Fm))dF (x)dG(y). Condition-
ally on X1, . . . ,Xm (or equivalently on Fm), we have

I(Fm) =

∫

{y : P (D(X;Fm)=D(y;Fm)|Fm)>0}
P (D(X;Fm) =D(y;Fm) | Fm)dG(y)

=
∑

i

∫

{y : P (D(X;Fm)=D(y;Fm)=ci|Fm)>0}
P (D(X;Fm) = ci | Fm)dG(y)

=
∑

i

P (D(X;Fm) = ci | Fm)P (D(Y ;Fm) = ci | Fm)

=
∑

i

piX(Fm)piY (Fm),

where 0 ≤ ci ≤ 1 such that P (D(X;Fm) = ci | Fm) = P (D(Y ;Fm) = ci |
Fm)> 0. (Note that there are at most countably many such ci’s.) Taking ex-
pectation with respect to X1, . . . ,Xm, the desired result follows immediately
from (A4). �

Lemma 3. Let X ∼ F and Y ∼ G be independent and let X1, . . . ,Xm

and Y1, . . . , Ym be independent samples from F and G, respectively. Under
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(A1)–(A4),

Q(Fm,Gn)−Q(F,Gn) =

∫ ∫

I(x, y,F )dG(y)d(Fm(x)− F (x)) + op(m
−1/2)

and, consequently,
√
m(Q(Fm,Gn)−Q(F,Gn))

d−→N(0, σ2
GF ).

Proof. It suffices to consider the case F =G. First, we observe that

Q(Fm,Gn)−Q(F,Gn) =

∫

R(y;Fm)dGn(y)−
∫

R(y;F )dGn(y)

=

∫ ∫

I(x, y,Fm)dFm(x)dGn(y)

−
∫ ∫

I(x, y,F )dF (x)dGn(y)

=

∫ ∫

[I(x, y,Fm)− I(x, y,F )]dFm(x)dGn(y)

+

∫ ∫

I(x, y,F )d(Gn(y)−G(y))d(Fm(x)− F (x))

+

∫ ∫

I(x, y,F )dG(y)d(Fm(x)−F (x)).

We shall call the last three terms Imn1 Imn2 and Im3, respectively. From
Lemma 1, it follows immediately that

√
mImn2 = op(1). By a standard cen-

tral limit theorem, we have
√
mIm3

d−→N(0, σ2
GF ).(3.4)

We now show that
√
mImn1 = op(1). Observe that

Imn1 =

∫ ∫

I(x, y,Fm, F )dFm(x)d(Gn −G)(y)

+

∫ ∫

I(x, y,Fm, F )dFm(x)dG(y)

=

∫ ∫

I(x, y,Fm, F )dF (x)dG(y) + op(1/
√
m),

by Lemma 1 and the given condition. It is readily seen that
∫ ∫

I(x, y,Fm, F )dF (x)dG(y)

=

∫ ∫

I(x, y,Fm)dF (x)dG(y)−
∫ ∫

I(x, y,F )dF (x)dG(y)

=
1

2

∫ ∫

[I(D(x,Fm)≤D(y;Fm))

+ I(D(x,Fm)≥D(y;Fm))]dF (x)dG(y)− 1

2
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=
1

2

∫ ∫

I(D(x,Fm) =D(y;Fm))dF (x)dG(y) = o(m−1/2),

by Lemma 2. The desired result follows immediately. �

Proof of Theorem 1. By Lemma 3, we have

Q(Fm,Gn)−Q(F,G)

= (Q(Fm,Gn)−Q(F,Gn)) + (Q(F,Gn)−Q(F,G))

=

∫ ∫

I(x, y,F )dG(y)d(Fm(x)−F (x))

+

∫ ∫

I(x, y,F )dF (x)d(Gn(y)−G(y)) + op(m
−1/2).

The independence of Fm and Gn and the central limit theorem then give
the result. �

4. Applications and examples. This section verifies (A3)–(A4) [and (A2)]
for several common depth functions. Mahalanobis, halfspace and projection
depth functions are selected for illustration. The findings here and in Sec-
tion 2 ensure the validity of Theorem 1 for these depth functions.

Example 1 [Mahalanobis depth (MHD)]. The depth of a point x is
defined as

MHD(x;F ) = 1/(1 + (x− µ(F ))′Σ−1(F )(x− µ(F ))), x ∈R
d,

where µ(F ) and Σ(F ) are location and covariance measures of a given dis-
tribution F ; see [12, 27]. Clearly, both MHD(x;F ) and MHD(x;Fm) van-
ish at infinity as ‖x‖ →∞, where Fm is the empirical version of F based
on X1, . . . ,Xm and µ(Fm) and Σ(Fm) are strongly consistent estimators of
µ(F ) and Σ(F ), respectively. Hence,

sup
x∈Rd

|MHD(x;Fm)−MHD(x;F )|= |MHD(xm;Fm)−MHD(xm;F )|,

by the continuity of MHD(x;F ) and MHD(x;Fm) in x for some xm =
x(Fm, F ) ∈ R

d such that ‖xm‖ ≤M <∞ for some M > 0 and all large m.
Write, for simplicity, µ and Σ for µ(F ) and Σ(F ) and µm and Σm for µ(Fm)
and Σ(Fm), respectively. Then

|MHD(xm;Fm)−MHD(xm;F )|

=
|(µm − µ)′Σ−1

m (µm + µ− 2xm) + (xm − µ)′(Σ−1
m −Σ−1)(xm − µ)|

(1 + ‖Σ−1/2
m (xm − µm)‖2)(1 + ‖Σ−1/2(xm − µ)‖2)

.

This, in conjunction with the strong consistency of µm and Σm, yields (A2).
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Hölder’s inequality and expectations of quadratic forms (page 13 of [21])
yield (A3) if conditions (i) and (ii) below are met. (A4) holds trivially if (iii)
holds.

(i) µm and Σm are strongly consistent estimators of µ and Σ, respec-
tively;

(ii) E (µm − µ)i = O(m−1/2), E (Σ−1
m − Σ−1)jk =O(m−1/2), 1≤ i, j, k ≤

d, where the subscripts i and jk denote the elements of a vector and a
matrix, respectively;

(iii) The probability mass of X at any ellipsoid is 0.

Corollary 1. Assume that conditions (i), (ii) and (iii) hold and the

distribution of MHD(Y ;F ) is Lipschitz continuous. Then Theorem 1 holds

for MHD.

Example 2 [Halfspace depth (HD)]. Tukey [24] suggested this depth as

HD(x;F ) = inf{P (Hx) : Hx closed halfspace with x on its boundary},
x ∈R

d,

where P is the probability measure corresponding to F . (A2) follows im-
mediately (see, e.g., pages 1816–1817 of [5]). Let H be the set of all closed
halfspaces and Pm be the empirical probability measure of P . Define

Dm(H) :=m1/2‖Pm − P‖H := sup
H∈H

m1/2|Pm(H)−P (H)|.

Note that H is a permissible class of sets with polynomial discrimination
(see Section II.4 of [18] for definitions and arguments). Let S(H) be the
degree of the corresponding polynomial. Then, by a generalized Dvoretzk–
Kiefer–Wolfowitz theorem (see [1, 13, 14] and Section 6.5 of [6]), we have,

for any ε > 0, that P (Dm(H)>M)≤Ke−(2−ε)M2
for some sufficiently large

constant K =K(ε,S(H)). This immediately yields (A3).

To verify (A4), we consider the case F =G for simplicity. We first note
that HD(X;Fm) for given Fm is discrete and can take at most O(m) val-
ues ci = i/m for i= 0,1, . . . ,m. Let F be continuous. We first consider the
univariate case. Let

A0 =R
1 −

⋂

Hm, Ai =
⋂

Hm−i+1 −
⋂

Hm−i,

Ak+1 =
⋂

Hm−k −
⋂

∅,
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with 1 ≤ i ≤ k and k = ⌊(m− 1)/2⌋, where Hi is any closed half-line con-
taining exactly some i points of X1, . . . ,Xm. It follows that for 0≤ i≤ k,

P (HD(X;Fm) = ci | Fm)

= P (Ai) = [F (X(i+1))−F (X(i))] + [F (X(m−i+1))−F (X(m−i))]

P (HD(X;Fm) = ck+1 | Fm) = P (Ak+1) = [F (X(m−k))− F (X(k+1))],

where −∞=:X(0) ≤X(1) ≤ · · · ≤X(m) ≤X(m+1) :=∞ are order statistics.

On the other hand,X(i) and F−1(U(i)) are equal in distribution (
d
=), where

0 =: U(0) ≤ U(1) ≤ · · · ≤ U(m) ≤ U(m+1) := 1 are order statistics based on a
sample from the uniform distribution on [0,1]. Let Di = F (X(i+1))−F (X(i)),
i= 0, . . . ,m. The D′

is have the same distribution and

E(Di) =
1

m+ 1
, E(D2

i ) =
2

(m+ 1)(m+ 2)
,

E(DiDj) =
1

(m+ 1)(m+ 2)
.

Hence, for 0 ≤ i ≤ k, E((P (HD(X;Fm) = ci | Fm))2) = 6/((m+1)(m+2))
and E((P (HD(X;Fm) = ck+1 | Fm))2) =O(m−2). Thus, (A4) follows imme-
diately.

Let us now treat the multivariate case. Let X1, . . . ,Xm be given. Denote
by Hi any closed halfspace containing exactly i points of X1, . . . ,Xm. Define
the sets

A0 =R
d −

⋂

Hm, A1 =
⋂

Hm −
⋂

Hm−1 , . . . ,

Am−k =
⋂

Hk+1 −
⋂

Hk, Am−k+1 =
⋂

Hk,

with (m−k+1)/m=maxx∈Rd HD(x;Fm)≤ 1. Then it is not difficult to see
that

HD(x;Fm) = i/m, for x ∈Ai, i= 0,1, . . . ,m− k,m− k+1.

Now let pi = P (HD(X;Fm) = ci | Fm) with ci = i/m. Then, for any 0≤ i≤
m− k + 1, pi = P (X ∈ Ai) = P (

⋂

Hm−i+1)− P (
⋂

Hm−i) with Hm+1 = R
d

and Hk−1 =∅. Now, treating pi as random variables based on the random
variables X1, . . . ,Xm, by symmetry and the uniform spacings results used
for the univariate case above, we conclude that the pi’s have the same dis-
tribution for i= 0, . . . ,m− k and

E(pi) =O(m−1), E(p2i ) =O(m−2), i= 0, . . . ,m− k+1.

Assumption (A4) follows in a straightforward fashion. Thus, we have
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Corollary 2. Assume that F is continuous and the distribution of

HD(Y ;F ) is Lipschitz continuous. Then Theorem 1 holds true for HD.

Example 3 [Projection depth (PD)]. Stahel [22] and Donoho [4] defined
the outlyingness of a point x ∈R

d with respect to F in R
d as

O(x;F ) = sup
u∈Sd−1

|u′x− µ(Fu)|/σ(Fu),

where Sd−1 = {u :‖u‖ = 1}, µ(·) and σ(·) are univariate location and scale
estimators such that µ(aZ+ b) = aµ(Z)+ b and σ(aZ+ b) = |a|σ(Z) for any
scalars a, b ∈ R

1 and random variable Z ∈ R
1 and u′X ∼ Fu with X ∼ F .

The projection depth of x with respect to F is then defined as (see [10, 25])

PD(x;F ) = 1/(1 +O(x;F )).

Under the following conditions on µ and σ,

(C1) supu∈Sd−1 µ(Fu)<∞, 0< infu∈Sd−1 σ(Fu)≤ supu∈Sd−1 σ(Fu)<∞;
(C2) supu∈Sd−1|µ(Fmu)−µ(Fu)|= o(1), supu∈Sd−1|σ(Fmu)−σ(Fu)|= o(1), a.s.

(C3) E sup‖u‖=1|µ(Fmu)−µ(Fu)|=O(m−1/2), E sup‖u‖=1|σ(Fmu)−σ(Fu)|=
O(m−1/2),

where Fmu is the empirical distribution based on u′X1, . . . , u
′Xm andX1, . . . ,Xm

is a sample from F , Assumption (A2) holds true by Theorem 2.3 of [25] and
(A3) follows from (C3) and the fact that for any x ∈R

d and some constant
C > 0,

|PD(x;Fm)−PD(x;F )|

≤ sup
u∈Sd−1

O(x;F )|σ(Fmu)− σ(Fu)|+ |µ(Fmu)− µ(Fu)|
(1 +O(x;Fm))(1 +O(x;F ))σ(Fmu)

≤C sup
u∈Sd−1

{|σ(Fmu)− σ(Fu)|+ |µ(Fmu)− µ(Fu)|}.

(C1)–(C3) is true for general smooth M -estimators of µ and σ (see [8]) and
rather general distribution functions F . If we consider the median (Med) and
the median absolute deviation (MAD), then (C3) holds under the following
condition:

(C4) Fu has a continuous density fu around points µ(Fu) + {0,±σ(Fu)}
such that

inf
‖u‖=1

fu(µ(Fu))> 0,

inf
‖u‖=1

(fu(µ(Fu) + σ(Fu)) + fu(µ(Fu)− σ(Fu)))> 0.
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To verify this, it suffices to establish just the first part of (C3) for µ=Med.

Observe that

F−1
u (1/2− ‖Fmu −Fu‖∞)−F−1

u (1/2) ≤ µ(Fmu)− µ(Fu)

≤ F−1
u (1/2 + ‖Fmu − Fu‖∞)

−F−1
u (1/2)

for any u and sufficiently large m. Hence,

|µ(Fmu)− µ(Fu)| ≤ 2‖Fmu − Fu||∞/ inf
u∈Sd−1

fu(µ(Fu)) :=C‖Fmu −Fu‖∞,

by (C4). Clearly, µ(Fmu) is continuous in u. From (C4), together with and

Lemma 5.1 and Theorem 3.3 of [25], it follows that µ(Fu) is also continuous

in u. Therefore,

P
(√

m sup
u∈Sd−1

|µ(Fmu)− µ(Fu)|> t
)

≤ P (‖Fmu0 −Fu0‖∞ > (t2/(mC2))1/2)

≤ 2e−2t2/C2
, for any t > 0,

where the unit vector u0 may depend on m. Hence, the first part of (C3)

follows.

Assumption (A4) holds for PD since P (PD(X;Fm) = c | Fm) = 0 for most

commonly used (µ,σ) and F . First, the continuity of µ(Fmu) and σ(Fmu)

in u gives

P (PD(X;Fm) = c | Fm) = P ((u′XX − µ(Fmu
X
))/σ(Fmu

X
) = (1− c)/c | Fm)

for some unit vector uX depending on X . This probability is 0 for most F

and (µ,σ). For example, if (µ,σ) = (mean, standard deviation), then

P (PD(X;Fm) = c | Fm) = P (‖S−1/2
m (X − X̄m)‖= (1− c)/c | Fm),

where Sm = 1
m−1

∑m
i=1(Xi − X̄m)(Xi − X̄m)′, which is 0 provided the mass

of F on any ellipsoid is 0. Thus,

Corollary 3. Assume that (C1)–(C3) hold, P (PD(X;Fm) = c | Fm) =

0 for any c≥ 0 and PD(Y ;F ) satisfies (A1). Then Theorem 1 holds for PD.
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5. Power properties of the Liu–Singh multivariate rank sum test.

Large sample properties. A major application of the Liu–Singh multi-
variate rank-sum statistic is to test the following hypotheses:

H0 : F =G versus H1 : F 6=G.(5.5)

By Theorem 1, a large sample test based on the Liu–Singh rank-sum statistic
Q(Fm,Gn) rejects H0 at (an asymptotic) significance level α when

|Q(Fm,Gn)− 1/2|> z1−α/2((1/m+1/n)/12)1/2,(5.6)

where Φ(zr) = r for 0< r < 1 and normal cumulative distribution function
Φ(·). The test is affine invariant and is distribution-free in the asymptotic
sense under the null hypothesis. Here, we focus on the asymptotic power
properties of the test. By Theorem 1, the (asymptotic) power function of
the depth-based rank-sum test with an asymptotic significance level α is

βQ(F,G) = 1−Φ

(

1/2−Q(F,G) + z1−α/2

√

(1/m+ 1/n)/12
√

σ2
GF/m+ σ2

FG/n

)

(5.7)

+ Φ

(

1/2−Q(F,G)− z1−α/2

√

(1/m+1/n)/12
√

σ2
GF/m+ σ2

FG/n

)

.

The asymptotic power function indicates that the test is consistent for
all alternative distributions G such that Q(F,G) 6= 1/2. Before studying
the behavior of βQ(F,G), we shall consider its key component Q(F,G), the
so-called quality index in [12]. For convenience, consider a normal family
and let d = 2. Assume, without loss of generality, that F = N2((0,0)

′, I2)
and consider G=N2(µ,Σ), where I2 is the 2× 2 identity matrix. It can be
shown that

Q(F,G) = (|S|/|Σ|)1/2 exp(−µ′(Σ−1 −Σ−1S Σ−1)µ/2)

for any affine invariant depth functions, where S = (I2+Σ−1)−1. In the case
µ= (u,u)′ and Σ = σ2 I2, write Q(u,σ2) for Q(F,G). Then

Q(u,σ2) :=Q(F,G) = exp(−u2/(1 + σ2))/(1 + σ2).

Its behavior is revealed in Figure 1. It increases to its maximum value (1 +
σ2)−1 [or exp(−u2)] as u → 0 for a fixed σ2 (or as σ2 → 0 for a fixed u).
When u = 0 and σ2 = 1, Q(F,G), as expected, is 1/2, and it is less than
1/2 when there is a dilution in the distribution (σ2 > 1). Note that Liu and
Singh [12] also discussed Q(u,σ2). The results here are more accurate than
their Table 1.
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Fig. 1. The behavior of Q(F,G) with F =N2((0,0)
′, I2) and G=N2((u,u)

′, σ2I2).

A popular large sample test for hypotheses (5.5) is based on Hotelling’s
T 2 statistic that rejects H0 if

(X̄m − Ȳn)
′((1/m+1/n)Spooled )

−1(X̄m − Ȳn)> χ2
1−α(d),(5.8)

where Spooled = ((m− 1)SX + (n− 1)SY )/(m+ n− 2), X̄m, Ȳn, SX and SY

are sample means and covariance matrices and χ2
r(d) is the rth quantile of

the chi-square distribution with d degrees of freedom. The power function
of the test is

βT 2(F,G) = P ((X̄m − Ȳn)
′((1/m+1/n)Spooled )

−1(X̄m − Ȳn)
(5.9)

>χ2
1−α(d)).

We also consider a multivariate rank-sum test based on the Oja objective
function in [7]. The Oja test statistic, O, has the following null distribution
with N =m+ n and λ= n/N :

O := (Nλ(1− λ))−1T ′
NB−1

N TN
d−→ χ2(d).(5.10)

Here TN =
∑N

k=1 akRN (zk), RN (z) = d!(N−d)!
N !

∑

p∈P Sp(z)np, ak = (1−λ)I(k >

m)−λI(k <m), zk ∈ {X1, . . . ,Xm, Y1, . . . , Yn}, BN = 1
N−1

∑

kRN (zk)R
′
N (zk),

P = {p= (i1, . . . , id) : 1≤ i1 < · · ·< id ≤N}, Sp(z) = sign(n0p + z′np) and

det

(

1 1 . . . 1 1
zi1 zi2 . . . zid z

)

= n0p + z′np,
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where n0p and njp, j = 1, . . . , d, are the cofactors according to the column
(1, z′)′. The power function of this rank test with an asymptotic significance
level α is

βO(F,G) = P ((Nλ(1− λ))−1T ′
NB−1

N TN >χ2
1−α(d)).(5.11)

The asymptotic relative efficiency (ARE) of this test in Pitman’s sense is
discussed in the literature; see, for example, [16]. At the bivariate normal
model, it is 0.937 relative to T 2.

In the following, we study the behavior of βQ, βO and βT 2 . To facilitate
our discussion, we assume that α= 0.05, m= n, d= 2 and that G is normal
or mixed (contaminated) normal, shrinking to the null distribution F =
N2((0,0)

′, I2). Note that the asymptotic power of the depth-based rank-sum
test, hereafter called the Q test, is invariant with respect to the choice of
the depth function.

For pure location shift models Y ∼ G = N2((u,u)
′, I2), Hotelling’s T 2

based test, hereafter called T 2 is the most powerful, followed by the Oja
rank test, to be called the O test, and then followed by the Q test. All of
these tests are consistent at any fixed alternative. Furthermore, we note that
when the dimension d gets larger, the asymptotic powers of these tests move
closer.

On the other hand, for pure scale change models G=N2((0,0)
′, σ2I2), the

Q test is much more powerful than the other test. In fact, for these models,
the T 2 test has trivial asymptotic power α at all alternatives. Figure 2, a
plot of the power functions βT 2 , βO and βQ, clearly reveals the superiority
of the Q test. The O test performs just slightly better than T 2.

In the following, we consider a location shift with contamination a scale
change with contamination and a simultaneous location and scale change as
alternatives. The amount of contamination ε is set to be 10%. The asymp-
totic power calculations for T 2 and Q are based on the limiting distributions
of the test statistics under the alternatives. Since the limiting distribution is
not available for the O test (except for pure location shift models), we use
Monte Carlo to estimate the powers.

For G = (1 − ε)N2((u,u)
′, I2) + εN2((0,0)

′, (1 + 10uσ2)I2), the contam-
inated location shift models with u ≥ 0, the (asymptotic) power function
βT 2(F,G) is P (Z2a ≥ χ2

0.95(2)), where Z2a has a noncentral chi-square dis-
tribution with two degrees of freedom and noncentrality parameter n(1−
ε)2u2/(1 + 5εuσ2 + ε(1 − ε)u2). Since the derivation of this result is quite
tedious, we omit the details. Comparisons of βT 2 , βO and βQ are listed in
Table 1, which clearly reveals that T 2 becomes less powerful than Q when
a pure location shift model is 10% contaminated. For large µ, O is more
powerful than Q since the underlying model is mainly a location shift.

For G = 0.9N2((0,0)
′, σ2I2) + 0.1N2((u,u)

′, I2), the contaminated scale
change models with σ = u+ 1≥ 1, the (asymptotic) power function βT 2 is
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Fig. 2. βT2(F,G) and βQ(F,G) with F =N2((0,0)
′, I2), G=N2((0,0)

′, σ2I2).

Table 1

The (asymptotic) power of tests based on T 2, O and Q.

u 0.0 0.15 0.20 0.25 0.30 0.35

G= 0.9N2((u,u)
′, I2) + 0.1N2((0,0)

′, (1 + 10uσ2)I2), σ = 4
n= 100 βT2 0.050 0.117 0.155 0.196 0.239 0.284

βQ 0.051 0.245 0.286 0.307 0.381 0.443
βO 0.046 0.157 0.296 0.423 0.558 0.687

n= 200 βT2 0.050 0.193 0.273 0.357 0.441 0.521
βQ 0.051 0.430 0.508 0.549 0.659 0.746
βO 0.056 0.342 0.546 0.712 0.881 0.941

equal to P (Z2b ≥ χ2
0.95(2)), where Z2b has the noncentral chi-square distribu-

tion with two degrees of freedom and noncentrality parameter 2nε2u2/(1 +
ε+(1− ε)σ2 +2ε(1− ε)u2). Table 2 reveals the superiority of Q in detecting
scale changes over T 2 and O, even when the model has a 10% contamination.

For G = N2((u,u)
′, σ2I2), the simultaneous location and scale change

models with σ = u+1≥ 1, the (asymptotic) power function βT 2 is P (Z2c ≥
χ2
0.95(2)), where Z2c has the noncentral chi-square distribution with two de-

grees of freedom and noncentrality parameter 2nu2/(1+σ2). Table 3 reveals
that Q can be more powerful than T 2 and O when there are simultaneous
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location and scale changes. Here, we selected (σ − 1)/u = 1. Our empirical
evidence indicates that the superiority of Q holds provided that (σ− 1)/u is
close to or greater than 1, that is, as long as the change in scale is not much
less than that in location. Also note that in this model, T 2 is more powerful
than O.

Small sample properties. To check the small sample power behavior of Q,
we now examine the empirical behavior of the test based on Q(Fm,Gn) and
compare it with those of T 2 and O. We focus on the relative frequencies of
rejecting H0 of (5.5) at α= 0.05 based on the tests (5.6), (5.8) and (5.10) and
1000 samples from F and G at the sample size m= n= 25. The projection
depth with (µ,σ) = (Med, MAD) is selected in our simulation studies and
some results are given in Table 4. Again, we skip the pure location shift and
scale change models, in which cases, T 2 and Q perform best, respectively.
Our Monte Carlo studies confirm the validity of the (asymptotic) power
properties of Q at small samples.

Table 2

The (asymptotic) power of tests based on T 2, O and Q.

σ
2 1.0 1.2 1.4 1.6 1.8 2.0

G= 0.9N2((0,0)
′, σ2I2)+0.1N2((u,u)

′, I2), u= σ−1
n= 100 βT2 0.050 0.050 0.052 0.054 0.056 0.059

βQ 0.051 0.181 0.430 0.734 0.891 0.963
βO 0.048 0.054 0.057 0.064 0.068 0.070

n= 200 βT2 0.050 0.051 0.054 0.058 0.063 0.068
βQ 0.051 0.299 0.740 0.950 0.994 1.000
βO 0.052 0.059 0.063 0.085 0.112 0.139

Table 3

The (asymptotic) power of tests based on T 2, Q and O.

u 0.0 0.15 0.20 0.25 0.30 0.35

G=N2((u,u)
′, σ2I2), σ = u+1

n= 100 βT2 0.050 0.219 0.348 0.493 0.634 0.755
βQ 0.051 0.437 0.662 0.839 0.941 0.983
βO 0.046 0.218 0.324 0.430 0.573 0.708

n= 200 βT2 0.050 0.404 0.625 0.805 0.916 0.970
βQ 0.049 0.725 0.922 0.987 0.999 1.000
βO 0.056 0.357 0.569 0.755 0.882 0.944
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Table 4

Observed relative frequency of rejecting H0.

u 0.0 0.15 0.20 0.25 0.30 0.35

G= 0.9N2((u,u)
′, I2) + 0.1N2((0,0)

′, (1 + 10uσ2)I2), σ = 4
n= 25 βT2 0.058 0.083 0.108 0.142 0.151 0.189

βQ 0.057 0.154 0.156 0.170 0.203 0.216
βO 0.047 0.084 0.116 0.152 0.201 0.254

σ
2 1.0 1.2 1.4 1.6 1.8 2.0

G= 0.9N2((0,0)
′, σ2I2) + 0.1N2((u,u)

′, I2), u= σ− 1
n= 25 βT2 0.059 0.063 0.059 0.073 0.061 0.067

βQ 0.063 0.145 0.243 0.377 0.469 0.581
βO 0.051 0.058 0.041 0.053 0.043 0.055

u 0.0 0.15 0.20 0.25 0.30 0.35

G=N2((u,u)
′, σ2I2), σ = u+1

n= 25 βT2 0.069 0.113 0.147 0.183 0.220 0.269
βQ 0.060 0.245 0.324 0.418 0.498 0.587
βO 0.044 0.082 0.089 0.127 0.197 0.221

6. Concluding remarks. This paper proves the conjectured limiting dis-
tribution of the Liu–Singh multivariate rank-sum statistic under some reg-
ularity conditions which are verified for several commonly used depth func-
tions. The asymptotic results in the paper are established for general depth
structures and for general distributions F and G. The Q test requires nei-
ther the existence of a covariance matrix nor the symmetry of F and G.
This is not always the case for Hotelling’s T 2 test and other multivariate
generalizations of Wilcoxon’s rank-sum test.

The paper also studies the power behavior of the rank-sum test both
asymptotically and empirically. Although the discussion focuses on the nor-
mal and mixed normal models and d = 2, what we learned from these in-
vestigations is typical for d > 2 and for many non-Gaussian models. Our
investigations also indicate that the conclusions drawn from our two-sample
problems are valid for one-sample problems.

The Liu–Singh rank-sum statistic plays an important role in detecting
scale changes similarly to the role played by Hotelling’s T 2 in detecting
location shifts of distributions. When there is a scale change in F , the depths
of almost all points y from G decrease or increase together and, consequently,
Q(F,G) is very sensitive to the change. This explains why Q is so powerful
in detecting small scale changes. On the other hand, when there is a small
shift in location, the depths of some points y from G increase, whereas those
of the others decrease and, consequently, Q(F,G) will not be so sensitive to
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a small shift in location. Unlike the T 2 test for scale change alternatives, the
Q test is consistent for location shift alternatives, nevertheless.

Finally, we briefly address the computing issue. Hotelling’s T 2 statistic is
clearly the easiest to compute. The computational complexity for the O test
is O(nd+1), while the complexity for the Q test based on the projection depth
(PD) is O(nd+2). Indeed, the projection depth can be computed exactly by
considering O(nd) directions that are perpendicular to a hyperplane deter-
mined by d data points; see [26] for a related discussion. The exact computa-
tion is of course time-consuming. In our simulation study, we employed ap-
proximate algorithms (see http://www.stt.msu.edu/~zuo/table4.txt),
which consider a large number of directions in computing Q and O.

Acknowledgments. The authors wish to thank two referees, an Associate
Editor and Co-Editors Jianqing Fan and John Marden for their constructive
comments and useful suggestions. They are grateful to Hengjian Cui, James
Hannan, Hira Koul, Regina Liu, Hannu Oja and Ronald Randles for useful
discussions.

REFERENCES

[1] Alexander, K. S. (1984). Probability inequalities for empirical processes and a law
of the iterated logarithm. Ann. Probab. 12 1041–1067. MR0757769

[2] Brown, B. M. and Hettmansperger, T. P. (1987). Affine invariant rank meth-
ods in the bivariate location model. J. Roy. Statist. Soc. Ser. B 49 301–310.
MR0928938

[3] Choi, K. and Marden, J. (1997). An approach to multivariate rank tests in multi-
variate analysis of variance. J. Amer. Statist. Assoc. 92 1581–1590. MR1615267

[4] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators.
Ph.D. qualifying paper, Dept. Statistics, Harvard Univ.

[5] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of multivari-
ate location parameters and dispersion matrices. Ann. Statist. 20 1803–1827.
MR1193313

[6] Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Univ. Press.
MR1720712
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