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1. Introduction

The theory of free probability and free entropy was developed by Voiculescu from 1980s. It
played a crucial role in the recent study of finite von Neumann algebras (see [1], [3], [4], [5],
[6], [7], [8], [9], [12], [16], [17], [25], [26], [27]). An analogue of free entropy dimension in C*
algebra context, the notion of topological free entropy dimension of of n-tuples of elements in
a unital C* algebra, was introduced by Voiculescu in [28], where some basic properties of free
entropy dimension are discussed.

We start our investigation of the properties of topological free entropy dimension in [13],
where we computed the topological free entropy dimension of a self-adjoint element in a unital
C* algebra. Some estimation of topological free entropy dimension in an infinite dimensional,
unital, simple C* algebra with a unique trace was also obtained in the same paper. In this article,
we will continue our investigation on the properties of topological free entropy dimension.

First, we compute the topological free entropy dimension in an n x n complex matrix algebra
M.,,(C) as follows (see Theorem 3.1):

1

(Stop(.flfl, e ,ZI}'m) =1- ﬁ’
where x1,...,x,, is any family of self-adjoint generators of M,,(C) and (21, ..., 2y) is the
Voiculescu’s topological free entropy dimension of xy, ..., .

In [28], Voiculescu asked the question whether the equality
Xtop(xl ¥ Y1y Tp ¥ yn) = maX{Xtop(Ila ce >$n)> Xtop(yla s >yn)}>
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holds when z1,...,x, and y1,...,y, are self-adjoint elements in a unital C* algebras A, or B
respectively, and Xy, is the topological free entropy defined in [28]. Motivated by his question,
in the paper we consider the topological free entropy dimension in the orthogonal sum of unital
C* algebras. More specifically, we prove the following result.

Theorem 4.2: Suppose that A and B are two unital C* algebras and x1 ® 1, ..., 2, Dy, is
a family of self-adjoint elements that generate A@ B as a C*-algebra. Assume

S = Otop(T1, ..., Tp) and t = Otop(Y1s -+ Yn)-
(1) If s>1ort>1, then

5t0p(x1 ) Yi,-.-,Tn ) yn) = max{dtop(xla cee axn)a 5top(y1> cee 7yn)}

(2) If s < 1, t < 1 and both families {x1,..., 2.}, {y1,...,yn} are stable (see Definition 4.1) ,
then (i)

st—1
5top($1 ©® Y1y Tn ¥ yn) = m;
and (ii) the family of elements x; ® y1, ..., x, @ y, is also stable.

Combining the preceding two results, Theorem 3.1 and Theorem 4.2, we obtain the topo-
logical free entropy dimension of any family of self-adjoint generators in a finite dimensional C*
algebra (see Theorem 5.1): Suppose that A is a finite dimensional C* algebra and dimc.A is
the complex dimension of A. Then

1
Oop(T1y .oy y) =1 — —)
top(1 ) dimcA
where 1, ..., x, is a family of self-adjoint generators of A.

The organization of the paper is as follows. In section 2, we recall Voiculescu’s definition of
topological free entropy dimension. The computation of topological free entropy dimension in an
n X n complex matrix algebra is carried out in section 3. In section 4, we prove a formula of the
topological free entropy dimension in the orthogonal sum of the unital C* algebras. In section
5, we calculate the topological free entropy dimension in any finite dimensional C* algebra.

In this article, we only discuss unital C* algebras which have the approximation property
(see Definition 5.3 in [13]).

2. Definitions and preliminary

In this section, we will recall Voiculescu’s definition of the topological free entropy dimension
of n-tuples of elements in a unital C* algebra.

2.1. A Covering of a set in a metric space. Suppose (X, d) is a metric space and K is
a subset of X. A family of balls in X is called a covering of K if the union of these balls covers
K and the centers of these balls are in K.
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2.2. Covering numbers in complex matrix algebra (M(C))". Let My(C) be the
k x k full matrix algebra with entries in C, and 7, be the normalized trace on My (C), i.e.,
7 = T'r, where Tr is the usual trace on My(C). Let U(k) denote the group of all unitary
matrices in My (C). Let My (C)™ denote the direct sum of n copies of My (C). Let M$%(C) be
the subalgebra of My (C) consisting of all self-adjoint matrices of M(C). Let (M5%(C))" be
the direct sum (or orthogonal sum) of n copies of M$%(C). Let || - || be an operator norm on
M (C)™ defined by

I(Ar, -, An) || = max{[[Aq]l, ., [[An][}

for all (A,...,A,) in My(C)". Let || - |7 denote the usual trace norm induced by Tr on
Mk((c)n? i'e'>

(A1, A)llrr = VTr(ATAD) + ...+ Tr(AzA,)
for all (Ay,..., A,) in Mg (C)™. Let || - ||2 denote the trace norm induced by 7, on M (C)™, i.e.,
(AL Az = V(AT AL + .+ (AR A)

for all (Ay,...,A,) in M,(C)".
For every w > 0, we define the w-|| - ||-ball Ball(By, ..., By;w, || -||) centered at (By, ..., By)
in M (C)™ to be the subset of M (C)" consisting of all (A4;,...,A4,) in My(C)" such that

(A1, ..., An) — (B1,..., By)| < w.

Definition 2.1. Suppose that ¥ is a subset of My(C)". We define v (3, w) to be the minimal
number of w-|| - ||-balls that consist a covering of ¥ in My (C)".

For every w > 0, we define the w-||- ||o-ball Ball(By, ..., By;w, ||-||2) centered at (B, ..., By)
in M (C)™ to be the subset of My(C)™ consisting of all (A;,...,A,) in My(C)" such that

||(A1,,An) — (Bl,...,Bn)Hg < W.

Definition 2.2. Suppose that ¥ is a subset of My(C)". We define vo(X,w) to be the minimal
number of w-|| - ||2-balls that consist a covering of ¥ in My(C)".

The following lemma is obvious.

Lemma 2.1. Suppose K is a subset of My(C)", equipped with a distance d. Suppose that
{By}xea 1s a family of balls of radius w so that

K C UyepBa.

Then
Covering number of K by balls of radius 2w < Cardinality of A.

2.3. Noncommutative polynomials. In this article, we always assume that A is a unital
C*-algebra. Let x1,..., 2, Y1, - ., Ym be self-adjoint elements in A. Let C(Xq,..., X, Y1, ..., Y)
be the unital noncommutative polynomials in the indeterminates Xi,..., X,,Y;,...,Y,,. Let
{P,}52, be the collection of all noncommutative polynomials in C(X7,..., X,,,Y7,...,Y,,) with
rational complex coefficients. (Here “rational complex coefficients” means that the real and
imaginary parts of all coefficients of P, are rational numbers).
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Remark 2.1. We alsways assume that 1 € C(Xy, ..., X,,Y1,...,Y,).

2.4. Voiculescu’s Norm-microstates Space. For all integers r,k > 1, real numbers
R, e > 0 and noncommutative polynomials P, ..., P, we define

Fgop)(xlw"axnayla'"7ym;ka€7P1a'-->Pr)
to be the subset of (M3 *(C))"*™ consisting of all these
(Al, S ,An, Bl; ey Bm) S (MZ'G(C))n+m

satisfying
max{|[As[l, .., [[Anll, [ Bill, - [ B[} < R
and

|||Pj(Ala"'>AnaBla'--aBm)H - ||Pj(x17'"7xnay1>--'>ym)||| < V1 <j<r.
Define the norm-microstates space of x1,...,x, in the presence of y1, ..., y,,, denoted by

Fgo‘ﬁ)(xl,...,xn:yl,...,ym;k,e,Pl,...,Pr)

as the projection of Fgoﬁ) (T1, ., Tpy Yty s Ym; ks €, Py ..., Py) onto the space (M3;(C))" via
the mapping
(Al,...,An,Bl,...,Bm) — (Al,...,An).

2.5. Voiculescu’s topological free entropy dimension. Define
VOO(FgOP)(xl, e T YLy Ymi k€, Py P w)

to be the covering number of the set Fgom (X1, T 2 Y1y Yms ks €, Py ooy Py) by w-|| - ||-balls
in the metric space (M3 *(C))™ equipped with operator norm.

Definition 2.3. Define

Otop(Z1, ooy T T Y1y ey Y W)
108 (Voo TSP (21, .t Y1y ymi ko€, Pry . Py
=sup inf limsup Bl (@1, s @0 i Y1, Ymikr6 Py, )y 0))
R>0 0N g o —k?logw
The topological entropy dimension of x1,...,x, in the presence of y1, ..., Yym 1S defined by
Stop(T1y vy Tn Y1y e vy Ypm) = HMSUP Opop (T1, -+ o, Ty 2 Y1y - o vy Yy W)
w—0t
Remark 2.2. Let R > max{||z1]|, ..., [|zall; lv1ll,- - -, |uml|} be some positive number. By defi-

nition, we know

5top(x1a-"> Ty * yla"'aym)

108 (Voo TV (21, ..o Tn Y1y Y kv €, Py, P
— lim sup inf lim sup Og(V ( R (xh y L Y1, yYmy R, €, 177, ) )7 w))
w0t €0rEN L —k?logw

Remark 2.3. Apparently, Oop(T1,...,Tn © Y1,-..,Ym) does not depend on the order of the
sequence {P,}52,.
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2.6. C* algebra ultraproduct and von Neumann algebra ultraproduct. Suppose
{My,, (C)}o_, is a sequence of complex matrix algebras where k,, goes to infinity as m goes
to infinity. Let v be a free ultrafilter in S(N) \ N. We can introduce a unital C* algebra
[1_, My, (C) as follows:

H M, (C V)= | Vm 21, Vi € My, (C) and sup [Yr|| < oo}
m>1

We can also 1ntroduce norm closed two sided ideals Z,, and Z, as follows.

Zoo S HMk ) | Jim [[Yn || = 0}

T ={ mleHMk )| Jim [[Yo]l2 = 0}

Definition 2.4. The C* algebra ultraproduct of { My, (C)}_, along the ultrfilter v, denoted
by I1),_; My, (C), is defined to be the quotient algebra of [[7_; My, (C) by the ideal I,. The
image of (Yin)oo_, € [[-_y My, (C) in the quotient algebra is denoted by [(Yin)m)-

Definition 2.5. The von Neumann algebra ultraproduct of { My, (C)}5_, along the ultrfilter
v, also denoted by T[] _, My, (C) if no confusion arises, is defined to be the quotient algebra of
[, Mg, (C) by the ideal Zy. The image of (Y)oooy € [ 1o, My,.(C) in the quotient algebra
is denoted by [(Yom)m)-

Remark 2.4. The von Neumann algebra ultraproduct 1] _, My,,(C) is a finite factor (see

[18]).
3. Topological free entropy dimension in M,,(C)

In this section, we are going to calculate the topological free entropy dimension of a family
of self-adjoint generators of M,,(C).

3.1. Upper-bound.

Proposition 3.1. Let n be a positive integer and M, (C) be the n X n matriz algebra over

the complex numbers. Let xy,...,x,, be a family of self-adjoint matrices that generate M.,,(C).
Then )
5top($1a--- )<1_ﬁ

PRrROOF. Since M,,(C) is a unital C* algebra with a unique tracial state, by Theorem 5.1 in
[13], we know that
Otop(X1y - oy Tm) < KO(T1, ..oy ),

where k0 (21, ..., 2y,) is the Voiculescu’s free dimension capacity in [28]. By [14] or Proposition

1 in [12], we have

1
KO(T1, ooy Tm) <1 — —.
n
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Therefore,

1
Stop(T1, -y Tm) < 1 — ol

O

3.2. Some lammas. In this subsection, we let n,t be some positive integers and k& = nt.
Let

1-1, 0 0 0 1-1, 0 0
0 2-1, 0 0 0 1-7 0

A: DR DR DR DR and W:
0 0 one 1-1, 0 0o - 0

be in M (C), where I; is the identity matrix of M;(C).

Lemma 3.1. Let § > 0. Suppose ||Uy AU — UsAUS |2 < 0 and ||{UWU; — UsWUs||l2 < 6 for
some unitary matrices Uy and Uy in U(k). Then there are a unitary matriz Vi in My(C) and

Vi 0 0
0 W 0

V = ' e U(k)
0 0 N

so that
HU1 - UQVHQ S 1472,2(5

PROOF. Assume that

Un Uiz e Uin
U U . Us.,
so=| D e um
Un,l Un,2 Tt Un,n
where each U; ; is a t X ¢ matrix for all 1 <14,j <n.
Let
U11 0
0 Usg 0



It is easy to see that ||S|[s < 1 and

1
52 Z ||U1AU1 UQAU2 H2 TT((UQ UlA AU2 Ul)(U2 UlA AU2 Ul) )
1 . X
% Z Tr(li — j|? UijUij)
1<iZj<m
1 *
1<i#j<m
Hence
IUy = UzS|l2 = |UsUy — Sll2 = Z Tr(UsUg) < 6. (3:2.1)
1<z;é]<m
Thus,
0 U33 0 U22
0 0 Un 0 0 Unn 5
= [[W*SW = Sl = |[SW = WS|ls = [U;UW = WU3Uy — (U Uy — S)W + W (U3 Uy — S) |2 < 36.
It follows that
\/TT’ ji — Ujrie)(Uj; = Ujprji)*) <36, V1<j<n-—1 (3.2.2)
Let
Un 0 0
0 Un 0
X p—
0 0 Un
By inequality (3.2.2), we have
IS — X]||2 S— (U — Uy)(Uyg — <—Z\/Tr (Uyn — Uy)(Upn — Uy)*)
L =
1 n i—1
< — T((Uj,j = Ujs1,5+1) Uy — Ujr,j+1)*) < 3n%. (3.2.3)
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Let Uy = V1 H be the polar decomposition of Uy; in M, (C) and

Vi 0
0 Vi 0
V=
0 0 Vi
Note || H|| = ||Un]| < ||S|| < 1. We have
H 0 0
0 H
IX =Vl =| ) ~ 1]l
0 0 H
H? 0 0
0o H? e 0
<| ) 1l
0 0 H?

= | X*X = Iz < 2||S = X|l2 4+ [|5*S — I||z < 6n%6 + 26,
where the last inequality follows from inequalities (3.2.1) and (3.2.3). It follows that
UL — UV |2 < UL — UsS|l2 + [|S — X2 + [|X — V|2 < 36 + 3n%6 + 606 + 25 < 14n?6.

O
Lemma 3.2. Let k = nt and
1% 0 0
0 174 0
N = ' eUk) | Vi eU(t) p € Mg(C).
0 0 Vi

For every U e U(k), let

Y(U) ={U, €U(k) | 3 a unitary matriz V in Ny such that ||[U; — UV ||y < 14020 }.
Then

. (0"

usw) < c-sosf ()

where p is the normalized Haar measure on U(k) and C,Cy are constants independent of t, 6.



PROOF. By computing the covering number of A by d-|| - ||o-balls in U(k), we know

t2
i < (5)

where C'is a constant independent of ¢, . Thus, by Lemma 2.1, the covering number of the set
3(U) by the 30n?0-| - [|2-balls in U(k) is bounded by

WQXU%&M%)SVANL&%E(%)R.

But the ball of radius 30n%§ in U(k) has the volume bounded by
pu(ball of radius 30n28 in U(k)) < (C; - 30n28)*",

where (] is a universal constant. Thus

,42@0)§(0y3mf®“~(9)ﬁ.

0
O
Lemma 3.3. Let A, W and
Vi 0 0
0 Vi 0
N = , eUk) | Vi eU(t) p € Mg(C).
0 0 Vi

be defined as above. Let

MAWQZKWAM%UWV+Wﬂa U(W = W*U) | U € U(k)}.

1
2v/—1
Then, for each § > 0,

—t2
(A W), 16) > (Cr - 30m%0) (%) |

where C1, C' are some universal constants independent of t,0.
PROOF. For every U € U(k), define
Y(U) = {U, € U(k) | 3 a unitary matrix V € N, such that ||U; — UV||y < 14n*5}.

By preceding lemma, we have

/Azan)g(cysmf&“-(%)ﬂ.
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A “parking” (or exhausting) argument will show the existence of a family of unitary elements
{U;}N., C U(k) such that

—t2
N > (C} - 30n%0) 7% . (%)

and
U; is not contained in U’ L N(Uy), Vi=1,...,N.

From the definition of each ¥(Uj,), it follows that
|U; — U;V || > 14036, V unitary matrix Ve N1,V 1<j <i < N.
By Lemma 3.1, we know that
|U; AU — U; AU |2 > 6 or |UWU; — U;WU?||2 > 6,
which implies that

—¢2
v2(Q(A, W), 35) > N > (Cy-30n%5) " (%) ,
O

3.3. Lower-bound. Suppose z1,...,x,, is a family of self-adjoint elements that generate
M, (C). Let {es}%,—; be a canonical system of matrix units in M,,(C). We might assume that

n
:L’Z:ng?-est, V1<i<m,

s,t=1

Il Sl L

n n—1
a= g 1€ and w = E €iit1 + €n1-
=1 =1

Note that M,,(C) is a finite dimensional C* algebra. It is easy to see that there exist noncom-
mutative polynomials P;(z1,...,z,) and Py(zy,...,z,;,) such that

a=P(xy,...,2y) and w= Py(x1,...,2m).
The proof of Lemma 5.1 in [13] can be easily adapted to prove the following Lemma 3.4.
Lemma 3.4. We have

5top(aa

w+w* w—w*

2 7 2/—1

PXy e T) < Opop (T, T

Lemma 3.5. We have

w4+ wt w—w* 1
'Il,...,l’m)21——.

Otop(@; ; :
top(@ 2 24/—1 n?
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PROOF. Let t be positive integer and k£ = nt. Note that

n
xi:ng?~est, Vi<i<m
s,t=1

n

a = E ’Lem
i=1

n—1

w = E €iir1 T €en1-

i=1

We let

X = in?-est)@h, vi<i<m

s,t=1

A= ii'eii>®jt

i=1

n—1
W= Z €ii+1 T+ €n,1> ® I

i=1

be matrices in My (C). It is not hard to see that, for every t € N and k = nt,

W+ W* W —W* . * gk
(A, + : )ergp)(a,erw ’w v cxy, . T ke, P P
2 2v/—1 2 2v/—1
when R > max{||al||, [|[z1]|,- .., ||zm||, 1}, € > 0 and r > 1. Therefore,

w4+ wt w—w*
2 7 2y/-1
where Q(A, W) is defined in Lemma 3.3. Letting 0 = 4w, by lemma 3.3, we have

QA W) c TP (q,

CXy, e T ke, Py P,

* * —t2
(top),  WHW w—w* _ 9 g2 4C

vy (T a, , STy, .. Ty ke, Py P w) > (O - 120n°w | — ,
o(F 5 9T U 1 ),w) = (Cy ) (w

where (7, C' are some constants independent of t,w. By the definitions of the operator norm
and the trace norm on (My(C))3, we get

w+w* w— w*
2 7 2y/—1

Z vy (Fgop) (a7

Voo (57 (a,

CX1y e Ty ke, Py P,

Sile

w+w* w—w*

2 2v/—1

—t2
> (O} - 120n%w) ™ - (@) . (3.3.1)

w

Cx, Ty ke, Py B w)
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It quickly induces that

w+w* w—w*
: e Tm) > 1 — —.
9 ,2 ,—_1 Xy, ax)— 77,2

5top (CI,,

Combining Lemma 3.4 and Lemma 3.5, we have the following result.

Proposition 3.2. Suppose x1,..., 2, is a family of self-adjoint generators of M, (C). Then
1
Stop(T1, .y Tm) > 1 — ol
3.4. Conclusion. By Proposition 3.1 and Proposition 3.2, we obtain the following result.
Theorem 3.1. Suppose 1, ..., %y, is a family of self-adjoint generators of M,,(C). Then
1
6top(x17 P ,Z’m) =1- ﬁ
4. Topological free entropy dimension in orthogonal sum of C* algebras
In this section, we assume that 4, B are two unital C* algebras and A @ B is the orthogonal
sum, or direct sum, of A and B. We assume that the self-adjoint elements x; ® y1,- -+, z, Dy,
generate AP B as a C* algebra. Thus z1,...,z, and yi, ..., y,, are the families of self-adjoint
generators of A, or B respectively.

4.1. Upper-bound of topological free entropy dimension in orthogonal sum of C*
algebras. Let R > max{||z1]|,..., [|[zal, lvall,-- -, |lynl|} be a positive number. By the definition
of topological free entropy dimension, we have the following.

Lemma 4.1. For each
a > Oop(x1, ..., 2p) and B> Otop(Y1s - - - Yn),

i) there is some <= > wy > 0 so that, if 0 < w < wy,
10

10g (Voo (TR (@1, . s k1, L Py P, W)

inf li < q;

rEN llf?j;lop —k?logw @
lo l/ool"(wp) e UYni ko, L P P w

inf lim sup SCEI 30 ‘;J 2] )w) < 0.

r€N kyyoo —k3logw

(ii) Thus, for each 0 < w < wy, there is r(w) € N satisfying
log (Voo (TR (@1, ., i bty =5, Pry o Pry), )

r(w)’

lim su <
kl_,oop —k?log w

X log(l/oo(rgop)(yla <oy Yn; k2> ﬁa Pla sy Pr(w))>w))

lim sup < f.

kea—00 —k2logw
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(iii) Therefore, for each 0 < w < wy and r(w) € N, there is some K(r(w)) € N satisfying

o 1
log(’/oo(rg p)(xlv <oy T k17 ﬁ7 P17 ceey PT’(UJ))vw)) < —Oé]f% lng’ v kl Z K(T(w))7
r(w
o 1
10%(%0@% p)(yb <o Yn; k2a ma P1> R Pr(w))>w)) < _5]{:% 10gw7 v k2 2 K(’I"(W))
Lemma 4.2. Suppose that A and B are two unital C* algebras and x1 By, . .., T, DY, 1S a family
of self-adjoint elements that generate A B. Let R > max{||x||,..., ||xall, |v1ll,-- -, [|ynll} be

a positive number. For any w > 0, rq € N, there is some t > 0 so that the following holds:
Vr>t,Vk>2, if
o 1
(Xla-"aXn) € ng)(llj'l @yla"-axn@yn;k>;>Pl>"-aPT)a
then there are ki, ky € N,

o 1
(Al,...,An) 6ng)(xlw~~>In;k1>;0>P1>---aPro)>

o 1
(Bl>"-aBn) 6ng)(ylw">yn;k2>;0>Pl>"'aPro)

and U € U(k) so that (i) ki + ke = k; and (ii)

Mxh“gmyJﬁ(%lg)P”,C#_&)ngu

ProOF. We will prove the result by using the contradiction. Assume, to the contrary, the
result of the lemma does not hold, i.e. there are some wy > 0, 7o > 1, two strictly increasing
sequences {r,,}>°_, and {k,,}°°_;, and

m O 1
(X1( ),...,Xflm))6ng)(xl@yl,...,xn@yn;km,r—,Pl,...,Prm)
satisfying

XM xmy e U Ull > w. 4.1.1
H( 1 > y“dn ) ( 0 B%m) ’ ) 0 By(Lm) ) w ( )

for all .

(Agm),...,Aglm))EFgo‘ﬁ)(xl,...,xn;slym,r—,Pl, Py,
0
1

(B, .. B € TS (g1, .y yns 5,0, ro P )

and all U € U(k) where s, +s,, = k.
Let v be a free ultra-filter in S(N) \ N. Let [} _, M, (C) be the C* algebra ultra-product
of (My,,(C))2_, along the ultra-filter v, i.e. [[) _; My,,(C) is the quotient algebra of the C*

algebra [[, My, (C) by Z., the 0-ideal of the norm || - ||, where ||(Y,,)0 ;]| = limy,—y [|Y5]|
for each (Y;,)o0_; in [], My, (C).
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By mapping x; ® y; to [(Xfm))fn":l] in [ _; M, (C) for each 1 < i < n, we obtain a unital
s«-isomorphism ¢ from the C* algebra A € B onto the C* subalgebra generated by [(X 1(m))°° ],

m=1

LX) in TT0 -, My, (C) . Thus (14 & 0) and (0 & Ig) are two projections in

m=1

T _ My, (C) satisfying
Y(La®0) + 90 @ Is) = Iy, _, py,, ©-

Without loss of generality, we can assume that there is a sequence of projections {F,,}5°_;
with P,, € My, (C) such that

[(Pr)m=i] = ¢(Ia®0)  and  [(Jk, — Bn)ia] = (00 Ip),

is the identity matrix of My, (C). For each P, in My, (C), there are positive integers
with s, ~+s,, = ky, and a unitary matrix U, in U(k;,) so that

where I},
S, ,§

m

1,m? “2m?

I 0 . (0 O
P,=U} ( 1,m O) U, and Iy, — P, =U,, (O I ) Un,

0 sQ,m

where I, are I, the identity matrices of M, (C), or M,, (C) respectively.
Note ' ' ’

2 @0 = (I4®0)(z; ®y:)(La ®0) € AEHO.

Thus
(@ ®0) = [(Po) 21X J[(P)y]
= (P X ™ Pp))]
- % [slm 0 (m) 7% [slm 0 0
Similarly,
DO D) = [T, — Pr) 2 J[(XT™)2 ][Ik — Prn) 2]
= (I, — Po) X (I, — P))2,]
o (00 (m); e (00 -
- [(Um (0 lszm) Usz Um (O [szm) Um)m:l]'
Let
A m) 0 _ ]sl m 0 (m) * sl m y —
< 0 0)—(0 0 UnX; U, i o) fort=1,...,n
and
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where Aﬁ’”’, ., AT are in M, ,.(C) and B§m), ...,BI™ are in M, ,.(C). Then,

A™ o\ N . |
[(( 0 O))m:1] = [(Un)>_ 0oz ® O)[(UZ)2] fori=1,....n

i 0o B™ Jm=1] = [(Un)m=1]¥ (0 D y:) (U )pzy] fori=1,... n.
Therefore, when m is large enough, we have

(A Ay e Fgo‘n)(xl, ey T S

1,m? —
(B, B e TP (g, yws s, Lo P P,
On the other hand,

(X)), (X)) = (W @ ), - (@, @ yn))
= (W(x1 ®0) + YO0 B y), ..., (2, B 0) + (0D y,))

— @il (1A O+ 1y o e
(A7 )+ 1(y g D)) (@

(m) (m)
(U ([( (A(g B?m>> AR (Ag B§m>) mzl]) (Un)z]

which is against the inequality (4.1.1). This completes the proof.

O
Lemma 4.3. Let o, > 0 and
fs)=as? +8(1—s)?+1-5>—(1—s)?2  for0<s<1.
Then 5
ap — .
gggglf(S){Wrﬁ? ifa<1,<1
- max{«, 5} otherwise.

ProOF. Note that
fls)=(a+p—2)s*=2(8—1)s+ .
Thus, if a« + 5 # 2, then f has an extreme point at
B—1

0 -2
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with

1
f(s0) = %5_2-

Case one: If a + 8 > 2, we know

aff —1 a?—2a+1 o aff —
P « P <a=f(1); similarly P

Thus

< B=1(0).

max f(s) =max{a, S} if a+pg>2.

0<s<1

Case two: If o+ —2 < 0 and f achieves its absolute maximum in the interval (0, 1), then
0 < s¢g < 1. This is equivalent to

a<l1 and b < 1.
Thus
af —1 a? —2a+1 af-1
=  =—ag—— > a= f(1
flon) = 2 —a= T s a = (), and f(s0) = S > 6= f(0)
It follows that
af-l ifa<l,f<1
Orilagclf(s): a+f—2
== max{a, f} fa+p<2 a>1 ora+p8<2, f>1.
Case three: If a + 3 — 2 =0, it is easy to check that
Dax f(s) = maxie, f}.
As a summary, we obtain
af —1 .
_— fa<l,p<1
max f(g)={arp2 LS
== max{«, 5} otherwise.
O

Proposition 4.1. Suppose that A and B are two unital C* algebras and x1 D yy, ..., T, DY, is
a family of self-adjoint elements that generate A@ B. If

a > Opop(T1, ..oy Tp) and B> Otop(Y1s - -+ Yn),

then
af —1
6top(x1@y17--'7xn@yn)§ O‘_'_B_Q
max{a, 8} otherwise.

ifa<l,p<1
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PROOF. Let R > max{|lz; ® yill,..., [z, © yall} be a positive number. By Lemma 4.1,
there is some wy > 0 so that the following hold: for any 0 < w < wy, there are r(w) € N and
K(r(w)) € N satistying

N 1 aky
Voo (T p)(:cl,...,xn;kl,m,Pl,...,Pr(w)),w) < (5) , V> K(r(w)); (4.1.2)
(top) 1 1 phs
Voo LR 7 (W1s - s Yni ko, —— P1, oo, Pry),w) < | — , Vky > K(r(w)). (4.1.3)
r(w) w

On the other hand, for each 0 < w < wy and r(w) € N, it follows from Lemma 4.2 that there is
somet € Nsothat Vr >t Vk>1,if
(top) L
(Xla-"aXn) GFR (xl@yla"-axn@ynak>;>Pl>"-aPT)a

then there are )
(Al, .. ,An> € FgOp)(xl, R %) ]{51, —,Pl, .. .,Prw>,
7

w

o 1
(Bl>"-aBn)6ng)(yla'-'>yn;k2>r_>Pl>"'aPrw)

w

and U € U(k) so that (i) ky + k2 = k; and (ii)

‘(Xl,...,Xn)—U*(@l 591) (’%" gﬂ))UH < w.

Moreover, we can further assume that U € U(k)/(U (k1) P U(k2)).
Now it is a standard argument to show that for r > t,

Y 1
Voo(rgp)(xl@ylv'"7:1:n®yn;k7;7pl7"'7p7‘)73w)

<y (&) o
< — . Voo(FR (ZL’l,...,Zl,’n7]€1,r—,P1,...,Prw),w>

w
k1+ko=Fk w

. 1
Voo TP (1, s Ko —,Py,. ..,Prw),w)) : (4.1.4)

w

where (5 is some constant independent of k,w. But

K(r(w)) k—K(r(w))-1 k <<02)k2_k§—(k—k1)2

Ary= >+ > + >

w
ki=1 ki=K(r(w))+1 ki=k—K(r(w))
(top) 1
. Voo(FR (zla~~~>$n;k1>_>P1>"'aPrw)>w)
Tw

) 1
. I/OO(FE; p)(yl’ - 7yn7k — ]{51, T_’Pl’ .. .,PT“}),(A))) . (415)

w
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Let
o 1
M, =  max Voo(ng)(xl,...,xn;kl,—,Pl,...,Pm),w)
1<k1<K(r(w)) Tw
1
N, = oo (TSP (g1 ik, —, Pr, ..., P,
15192:(2%}({7*(@)” ( R (ylu » Yns 27Tw7 1 ’ w)’w)

By (4.1.2) and (4.1.3), we get that if k& > 2K (r(w)) then

o 1
Voo(Fg p)(xl BYL, s Ty B Yns ky ;,Pl, ., B, 3w)
B (K@) /1 B B (K@) 71y ok
< K(r(w))M, (3) (—) +K(r ()N, (Q) (—)

w w

k—K(r(w))-1 k2 —k?—(k—Fk1)> ak? Bk—k1)2
Cs ! 1 A
— — — . 4.1.6

k1=K (r(w))+1

Let
f(s)=as® +B(1—-1)*+1—5s*—(1-3s) for 0 < s < 1.
And
L{e, B) = max f(s).
Then
C, k2= (k=K (r(w)))? ,
(4.1.6) < | K (r(w))(M, + N,) <U> + kCS
1 Bk2 1 ak? 1 L(a,B)k?
- {<_) +(2) +(2) S @
w w w
Note that
2 (k— K (r(w)))2
 log [K(r(w))(Mw +N,) (L) ROt ka]
kh_g)lo 2 = log Cs;
and
L(a, B) > max{a, 8}.
We obtain,
1 oor(top) yren n;kvlvpv"wPTvB 1
hinsup Og(V ( R (flfl © hn xkz@ Yy r 1 ) W)) S log 02 + L(O{,ﬁ) log (;) )
—00
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It induces that
6top(x1 S Yiy-- -, Tp ) yn>
log(uoo(FgOp)(xl DY, ... Ty DYn k, L, Py, P.),w))

)

= lim sup inf lim sup

w0t TEN koo —k2 lng
-1
b=l fa<l,p<1
<L@p)={ a+h—2
max{a, f} otherwise,
where the last equation is from Lemma 4.3. 0

Proposition 4.2. Suppose that A and B are two unital C* algebras and x1 ® yy, ..., T, P Y, is
a family of self-adjoint elements that generate A@ B. If

$ = Otop(T1, ..., 2p) and t = 0top(Y1, -+, Yn),

then )
t —
L ifs <1, t<1;
6t0p(xl@y1>"-axn@yn)§ s+t—2
max{s,t} otherwise.

ProoFr. It follows directly from the preceding lemma.

4.2. One of topological free entropy dimensions > 1.

Lemma 4.4. Suppose that A and B are two unital C* algebras and 1 ® y1, ..., Ty B Yp IS
family of self-adjoint elements that generate A@ B. Then

6top(xl Y Y, ..., Tn S yn) Z max{étop(zla s >In)> 5top(yla s >yn)}

PROOF. Let R > max{||z1®v1|,-- ., ||zn®ynl|} be a positive number. For any r > 1, ¢ > 0,
k > ki, and any

(Al,...,An> 6Fgo’))(ajl,...,xn;kl,e,Pl,...,Pr),
(By,...,B,) €T (... yn:k — k1,6, P,..., P,)

we have

A 0 A, O ,
((01 Bl) ey ( 0 Bn)) € Pgl’)(xl@yl,...,xn@yn;k‘,e,Pl,...,Pr),
Thus,
Voo(rgop)(l'l@yl’ e ’xn@yN? k7€? Pl? s -,Pr))(&)) 2 VOO(Pgop)(yly e ,yn;k_klaey Pl, .. -,Pr)72w)-

It follows that
5top(x1 ©® Y1y, Tn ©® yn) Z 5top(y1a s ayn)
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Similarly,
Otop(T1 D Y1, -+, T D Yn) = Opop(T1, .+, Tnr).
Hence we have proved the result of the lemma. 0

Theorem 4.1. Suppose that A and B are two unital C* algebras and x1®yy, . . ., T, By, s a fam-
ily of self-adjoint elements that generates A@ B. If one of diop(x1, ..., xn) and Oop(Y1s - - -, Yn)
1s larger than or equal to 1, then

Otop(T1 B Y1, -« oy Ty B Yn) = MaAX{St0p(T1, - -+, T0), Oop (Y1, - -y Yn) }

PRrROOF. The result follows directly from Proposition 4.2 and Lemma 4.4.
O

4.3. Both of topological free entropy dimensions < 1. We start this subsection with
the following definition.

Definition 4.1. Suppose that A is a unital C* algebra and 1, ..., x, is a family of self-adjoint
elements in A. The family of elements x4, ..., x, is called stable if for any o < Oyop(1, ..., Ty)
there are positive numbers C3 > 0 and wg > 0, 19 € N, kg € N so that

. 1 roy2 (1)@
VOO(ng)(ZL'l,...,ZEn;Q'ko,;,Pl,...,Pr),W) Z C?(,ko)Q (a) ,\V/O <w < Wy, T > To,(JEN-

Example 4.1. (1) From the inequality (3.8.1), it follows that any family of self-adjoint
generators 1, ..., x, of M,(C) is stable.
(2) A self-adjoint element x in a unital C* algebra is stable (see [12]).
(3) Suppose that K is the algebra of all compact operators in a separable Hilbert space H and
unital C* algebra A is the unitization of KC. Then any family of self-adjoint generators
T1, ..., %, of A is stable since Oyop(21,...,2,) =0 (see Theorem 5.6 in [13]).

Notation 4.1. Suppose that A € My, (C) and B € My, (C). We denote the element

A 0
( 0 B) € My 41, (C)
by A B.
Notation 4.2. Suppose that I'y C (My, (C))" and I'y C (My,(C))™*. We denote the set

A 0 A, O
{( 0 Bl)’...’< O B) |(A17"'7An)EF1, (Bl,,Bn)EF2}

m (MkH_kQ (C))n by Fl D Fg.
The main goal of this subsection is to prove the following result.

Proposition 4.3. Suppose that A and B are two unital C* algebras and x1 B yy, ..., T, P Y, is
a family of self-adjoint elements that generates A@ B as a C* algebra. Assume

$ = Otop(X1, ..., xp) < 1 and t=0wp(y1, .-, yn) < L.
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If both families {x1,...,x,} and {y1,...,yn} are stable, then

Stop(T1 ® oy = L
op(T e Ty DY) = )
top\L1 n Y s+t—2
Moreover, the family of elements x1 @ y1, ..., T, DY, 1S also stable.

Remark 4.1. The difficulty to prove the preceding result lies in the fact that 14 ® 0 might not
be in the x-algebra generated by x1 D Y1, ..., Ty B Yn.

The proof of Proposition 4.3 will be postponed after we prove some lemmas firstly. Recall
the definition of the packing number of a set in a metric space as follows.

Definition 4.2. Suppose that X is a metric space with a metric distance d. The packing number
of a set K by d-balls in X, denoted by Packy(K,J), is the maximal cardinality of the subsets F
in K satisfying for all a,b in F either a =b or d(a,b) > 0.

The following result follows easily from the definition of packing number.

Lemma 4.5. For any subset K of ((Mg(C))", | - ), we have
Packo(K,§) > v (K,20) > Packs (K, 49),
where Packs (K, 0) is the packing number of the set K by d-|| ||-balls in (M(C))™.
Lemma 4.6. Let
Iy € (Mg, (C))" [y C (M, (C))".
Then, for é >0,
PCLC]{ZOO(Fl D Fg, 5) Z Voo(Fh 25) . VOO(FQ, 25),
where I'y @ 'y is as in Notation 4.2.
PROOF. By Lemma 4.5, there exists a family of elements { (A3}, ..., AN} ren, or {(B?, ..., B?)}ses,
in I'7, or in I'y respectively, such that
(A, ..., AM) — (A2, ... A2)|| > 6, VAL # X EA
|(Bf*,...,B") — (By?,...,B?)| > 9, YV oy # 09 € 3
and
Card(A) > vs(I'1,20), Card(X) > ve(I's, 20),
where Card(A), or Card(X), is the cardinality of the set A, or ¥ respectively. Thus, if A\; # Ay
or o1 # 03,

A0 AM 0 AP0 A0
0 By)7 0 B 0 B 0 B

= maX{H(Ai\la---aAi\zl) - (Ai\2""aAi\z2)||> ||(Bf1>"'>Bgl) - (Bimw"aBZz)H}
> ).

Hence
Packoo(Fl S7) F2,5) 2 Voo(rla25) . VOO(FQ, 25)
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O

Definition 4.3. Let ki, ks, s be some positive integers such that ki > 2s, ko > 2s. Define
Q(ky, ko, s) be the collection of all these ky X ko matrices T satisfying ||T'|| < 2 and rank(T') < 2s,
where rank(T) is the rank of the matriz T .

Sublemma 4.3.1. Let k, ki, ks, s be some positive integers such that ky > 2s, ky > 2s and
k = ki + ko. Let v be the embedding of My, r,(C) into My(C) by the mapping

0 A
L A—>(0 O)

for any A in My, 1,(C) . For any 6 > 0, we have

)

C4 4S(k1+k2)+28
Ok e 9).0) < ()

where Cy is a constant independent of kq, ko and s.

PROOF. For any T in Q(ky, ko, s), by Definition 4.3 we have ||T|| < 2 and rank(T) < 2s.
Thus by polar decomposition, there are partial isometry V; in My, x,(C), a unitary matrix V5
in My, (C) and a family of numbers 0 < Ay, ..., Ay, < 2 such that,

T =Vi diag(\y, ..., Aes,0,...,0) Vi
:(‘/1(]23 ) 0- ]k2_23>> dz’ag(Al, ey )\23, 0, coey O) (‘/2([25 () 0- [k2—2s))*-
Now it is a standard argument (for example see [23]) to show that

C4 4S(k1+k2)+28
I/Q(L(Q(k‘l, k’g, S)), 5) S (—)

Y

J

where Cy is a constant independent of ki, ks and s. O
Let s1, s9, 53 be positive integers so that s; > s3, 59 > s3.

Definition 4.4. Define R(s1, s3) be the collection of all these self-adjoint matrices Q in Mg, 1,(C)
satisfying: there are some unitary matriz Uy in Mg, .4, (C) and real numbers
Alyeoey sy e ey Asptss

such that (i)

Q =Uidiag(M, ..., Asyy -y Asyass) Ut
and (ii)

)\222, ‘v’1§2§51
Define Q(sa, s3) be the collection of all these self-adjoint matrices Q in M, s,(C) satisfying:

there are some unitary matriz Us in Mg, s,(C) and real numbers

Hiyeees Msgy e vy Hsotss

such that (i)
Q = Usdiag(pn, - - -y fsys - - - s fsytss)Us;
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and (ii)
I\ <1, V1<i<ss.
Sublemma 4.3.2. Let § > 0 be a positive number. Let sq, s9, S3 be positive integers so that

S1 > 83,89 > 83. Let k1 = 81+ 83, ko = So+ 83 and k = ki + ko. Suppose X is a ki X ko complex
matriz such that, (i) || X|| < 1; and (ii) for some Q1 in R(s1,s3) and Q2 in Q(sa, S3),

Tr((Q1 X — XQ2)" (1 X — XQs))
k

Then, there is some T in Q(ky, ko, s3) (as defined in Definition 4.3) such that
Tr(X —=T)"(X —=1))
k

PROOF. By the definitions of R(s;, s3) and Q(ss, s3), we know there are some unitary matrix
Uy in U(ky), Uz in U(ks), and families of real numbers Ay, ..., A\g, and pq, ..., pg, such that (i)

Ql = dezag()m ey )\kl)Ul
Qg = U;dlag(,ul, e ,uk2)U2;

<.

<.

and (ii)
)\2227 |/J“]|§1a V1§Z§81a1§j§82

U, XU S = H 2 S M ((C)
! 2 521 )22 Fkz 7

where Y11 € My, 5,(C), Yi2 € My, 5,(C), Yo, € My, 5,(C) and Yoo € Mg, 4, (C).

From the facts that
Tr((Q1 X — XQ2)" (1 X — X(Qy)) <
2 <

J,
and
)\1227 |/’L]‘§17 V1§Z§8171§j§827

we know that
T

T1 == <O }/12 ) .
Yo Yo
Then ||7}]] < 2||X|| <2, rank(T}) < 2s3, and
Tr{(X — UTU (X — UFTUR) _ Te(¥iYi) _

k k -
Let T' = U;T1U; and we finished the proof of the sublemma.

Let
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Lemma 4.7. Let sy, so, 83 be positive integers so that s; > S3, 82 > s3, and R(s1,s3), Q(s2, S3)
be defined in Definition 4.4. Let ky = s1+ 83, kg = S+ s3 and k = k1 + ko. Then there exists a
family of unitary matrices {U, } ez in My(C) so that (i) when vy, # v, € I,

U2 (Q1 @ Q2)Uy, — UZ(Q1® Q2)Un, || =6, V Q1,Q1 € R(s1, 53), Q2,Q2 € Q(52,83);

and (ii)
C )—(S%+s%+883+12(k183+k283))

Card(Z) > (Cg - 1306) " - <§

where C5, Cg are some constants independent of k, s1, S, s3; and Q1 ® Qs, Q16 Qy are defined
as i Notation 4.1.

Y

As we will see, Lemma 4.7 is a consequence of the Sublemma 4.3.3, Sublemma 4.3.4 and
Sublemma 4.3.5, which we will prove first. Following the notations as before, let s, ss, s3,
ki1 = s1 + 83, kg = 89 + s3, and k = ki + ko be as above.

Definition 4.5. Define S(s1, sq,83) to be the collection of all these matrices

Sll 512
S = € M,(C),
(&1$J +(C)

where Sij € My, x;(C) for 1 <i,j < 2, satisfying (i) ||Sij|| < 2 for 1 < 4,5 < 2; (i) Siz €
Q(kq, ko, s3) and Say € Qka, k1, s3), where Q(ky, ko, s3) and Q(ks, k1, s3) are defined in Definition
4.3

Sublemma 4.3.3. Suppose that 6 > 0 and Uy, Us are unitary matrices in M. (C) so that the
following holds: there are some Q1,Q1 € R(s1,$3), and Qz, Qs € Q(s2, s3) such that

U7 (Q1 @ Q2)Ur — Uz (Q1 & Q2)Us| <6,

where R(s1, s3), Q(s2, s3) are defined in Definition 4.4 and Q1 ® Qa, Q1 ® Qs are as in Notation
4.1. Then, there is some S in S(s1, S2, s3) such that

U, — UsS]ls < 26.

PROOF. Let
Un U12)

%“:<w1w2

where Uj; is k; X k; complex matrix for 1 < 4,7 < 2. By the conditions on U, U;, we know that
||U12|| S 1 and

TT((U12Q2 - Q1U12)*(U12Q2 - ©1U12))
k
By Sublemma 4.3.2, we know that there is some Ti5 in Q(kq, ks, s3) so that

Tr((Ura — Ti2)*(Ura — Th2))
k

< 62

< 62
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Similarly, there is some Ty in Q(ko, k1, s3) so that
TT((U21 - T21>*(U21 - Tzl))
k

5 (Un le)
Ty Uz
be in M (C). Now it is not hard to check that S is in S(s1, s9, s3) and
U1 — UsS||a < 26.

< 62

Let

Sublemma 4.3.4. For any 0 > 0, let
Ss(s1, 52,83) = {5 € S(s1,2,83) | 3U € U(k) such that ||[U — S||2 < 26}.
We have

C ) S%+S%+883+12(k1 +k2)83
7

1/2(35(81, S2, 83), 645) S (75

where Cy is some constant independent of k, s1, Sa, S3.

S Sie
S = )
(521 522)

is in Ss(s1, S2, s3), where S;; is k; X k; complex matrix for 1 <14, j < 2.
Assume that

PROOF. Assume

S = HuWn
is the polar decompositions of elements S1; in My, (C), where Wiy is unitary matrix in My, (C)
and Hy; is a positive matrix in My, (C). From the fact that ||U — S||» < 24, it follows that

(168)° > ((S ~ U)S"[la + [U(S = U)"[12)* > [ISS" ~ L}
L Tr((3 = (I, — $051,)))
> : .

Let

22N 22> 2N 20,
be the eigenvalues of Hj; in My, (C) arranged in the decreasing order. Note that Sio is in
Q(kq, ko, s3). By the Definition 4.3, Si5 is a ki X ks complex matrix satisfying ||S12]] < 2 and
rank(S12) < 2s3. We can assume that

A2 > g > v > figgy 20>+ >0

are eigenvalues of S1257, in My, (C) arranged in the decreasing order. By Lemma 4.1 in [25],
we have
k1—2s3 k1 k1—2s3
R(160)° > Tr((Hpy — (I, — S1285))") = Y IN=1P+ Y [N4m—1P> > [n—1]
i=1 i=1

i=k1—2s3+1
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Thus, there is some
Uy € Z/{(k‘l)/(U(k’l — 283) D [253)

such that
Tr(Hy — Undiag(1, 1,1 Ay aggen, o5 M) Un)? 300 (A — 1P < (1657 (43.1)
k k
Similarly, assume that
Sao = HaaWas

is the polar decomposition of Sas in My, (C) where Wo, is a unitary matrix and Has is a positive
matrix in My, (C). Then there are some

U22 € Z/{(l{?Q)/<u<]€2 — 283) ) ]233)

and some 0 < 0p, 25541, - - -, Ok, < 2 such that

TT(HQQ — Ué‘zdzag(l, 1, . ]; 1, O'k2_253+1, e ,UkQ)U22)2 S (166)2 (432)

Define the mapping p from the space

X = (Uk), ”Q“{’“) < (U(ks), ”J'ETW < Uk Uk — 255) & Ly), ”J'ETW

X (U(k)/(U(ky — 2s3) @ Is,), H;/HETT) X (Qk1, ko, s3), H;/HETT) X (Q(ka, k1, s3), ”;/HETT)

X {(Ak1—283+17"'7>\k1> ‘ 0 S >\j S 2,V ]{71 —283—|—1 Sj S ]{51}
X {(Oky—2s341, -5 0k,) | 0 <05 <2,V hy — 283+ 1< j < ky}

into S by sending
(W117W227 U117 U227 5127 5217 ()\kl—283+17 R )\kl)7 (0k2—233+17 sy Ukz)) S X

to

~ <Uf1ﬁf11U11W11 S12

= . S Mk(C),
521 U22H22 U22 W22

where
I:Il = d’LCLg(l, 1, cey 1, )\k1—233+17 ce )\kl) ﬁg = dzag(l, 1, ey 1, Okg—2s341s Uk2).
By inequalities (4.3.1) and (4.3.2), we know for any S € Sy, there is some x € X satisfying

IS = px)l2 < 16v/20.
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Computing the covering number of p(&X’) by combining with Sublemma 4.3.1 and Lemma 2.1,
we get

C5 k%-{-kg-‘rk%—(kl —283)2+k%—(k2—253)2+8(k1 +k2)83+483+483
V2(S5(51, 52, 83),600) < 5

05 k%+k%+883+12(k‘183+k283)

J

where Cj is some constant independent of k, s, $o, 3.

Y

Sublemma 4.3.5. For every U € U(k), let
SU)={W elU(k) |3 S € S(s1,89,83) such that ||W —US||» < 2§}.
Then the volume of 3(U) is bounded by the following:

)

o

where p is the normalized Haar measure on the unitary group U(k) and Cs, Cs are some constants
independent of k, sy, Sa, S3.

C ) 8%4—8% +883+12(k21 s3+ko 83)

W(EU)) < (Cy - 1308)" (—5

Proor. For any ¢ > 0, let
Ss(s1,52,83) = {5 € S(s1,52,83) | 3U € U(k) such that ||[U — 5|2 < 26}.

It follows from the preceding sublemma that

C ) S%+S%+883+12(k‘183+k‘283)

vo(S5(s1, 52, 83),600) < (75

where (5 is a constant independent of si, so, s3. Thus, by Lemma 2.1, the covering number of
the set 3(U) by the 1300-|| - ||2-balls in M (C) is bounded by

C S%+S§+883+12(k1 53+k283)
n(S(U),1300) < (-5) :

But the ball of radius 1309 in (k) has a volume bounded by
p(ball of radius 1306 in U(k)) < (Cg - 1308)*,

where Cg is a universal constant. Thus

o

05 ) 8%4—8% +883+12(k21 s3+ko 83)

W(EU)) < (Cy - 1308)" (
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PROOF OF LEMMA 4.7: For every U € U(k), define
S(U)={W eU(k) | IS € S(s1, 82, 83), such that |[W —US||» < 26}.
By previous lemma, we have
Cs ) s2+53+8s3+12(k1s3+kass)

W(EU)) < (Cy - 1308)" (7

A “parking” (or exhausting) argument will show the existence of a family of unitary elements
{UIY, Cc U(k) such that
) 05 —(s%+s%+883+12(k133+k233))
N > (Cg - 1308)7% - (7)

and
U; is not contained in UZ L 2(U)).

Hence
||Uz — U]SHQ > 25, VSe 8(81,82,83), with V1 <7< < N.
By Sublemma 4.3.3, we know that forall 1 < j <i < N
HUi*(Ql ) Q2)Ui - U;(@l D Qz)UjH >0, V Q17@1 € R(Sh 83), Q2, @2 € Q(Sz, 83);

i.e. there exists a family of unitary matrices {U,},ez in My(C) so that (i) when v; # 72 € Z,

U3, (@1 © Q2)U,, — U;‘Q(Ql @ Q2)Uy2|| >3, V¥ Q1,Q1 € R(s1,83), Qa,Qa € Q(s9,53);
and (ii)

Y

C ) —(s2453+8s3+12(k153+k253))

Card(Z) > (Cg - 1305) % - (f

where C5, Cg are some constants independent of k, s1, s9, s3 and R(s1, s3), Q(s2, $3) are defined
in Definition 4.4. OJ

Lemma 4.8. Let ki, m > 2 be some positive integers. Suppose that () is a self-adjoint element
in Mi*(C) such that

2
Q= 3l < —,

where Iy, is the identity matriz of My, (C). Then Q is in R(ky — %, 25 where R(k; — &}, 25
1s defined in Definition 4.4.

PROOF. Suppose that A\; > Ay > ... > \;, are the eigenvalues of (). Let
1

and
T2 = {172a"'ak1}\T1'



29

By Lemma 4.1 in [25], we have

2\° 1\2
k1 (@) >Tr(Q—3Iy)") > > |N=3P7> (E) card(Ty),
7 E{l ..... kl}\Tl
where card(Ty) is the cardinality of the set T5. Thus
4k
card(Ty) < I

Hence, by Definition 4.3, we have @ is in R(k; — 28 k1),

mi’ m

Similarly, we have the following result.

Lemma 4.9. Let ko, m > 2 be some positive integers. Suppose that Q) is a self-adjoint element
in My (C) such that

2
QI < 25
Then Q is in Q(ky — fnif, fnif), where Q (ks — fnif, fnif) is defined in Definition 4.4.

Lemma 4.10. Suppose that A and B are two unital C* algebras and x1 ® y1, ..., T, D Yp 1S
family of self-adjoint elements that generates A@ B. For m > 2, choose

Zm :Pm(xl@ylw'-axn@yn)
to be a self-adjoint element in A@ B, where P, (x1 ® y1,...,Ty @ yn) is a noncommutative
polynomial of x1 D y1, ..., %, D Y, satisfying
1
[2m — 314 & 0| < —.
m
Then
5top(I1 ©® Y1y, Tn ©® Yn, Zm) S 6top(I1 ©® Y1yo ooy Tn > yn)
PRrROOF. The result can be proved in the similar fashion as the one of Lemma 5.1 in [13]. O

Now we are ready to present the proof of Proposition 4.3.

Proof of Proposition 4.3: Let R > max{4, [|[z1 ®v1]],....||z, P ynll} be a positive num-
ber. Since both families of x1,...,x, and yy,...,y, are stable, if
a < Oop(T1, ..., 2p)

B < 5t0p(y17 .. '7yn>7

then there are some constants C; > 0 and wy > 0, 79 > 1, kq, ko > 1 so that
Y 1 . 1 a-q-k1
Voo(Fg p)(xl, e X q -k, =, Py P w) > CF h (—) Vw < wo,m >10,q €N, (4.3.3)
w

r

Y 1 ) 1 B-q-k2
Voo(rg p)(ylu s Yny g k27 ;7P17 .- '7P7‘)7w) > C’?kQ (5) 7vw < Wwo,T >To,q € N. (434)
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For such «, 8 > 0, define
fla)=aa® +B(1—a)*+1—a®>—(1—-a)?, YVO0<a<l

Since a < 1 and § < 1, we know

af —1
qax fla) = =

For any v > 0, let b, ¢ be some positive integers such that
bk -1
bl{il + C]fg a + ﬁ -1

Zm = Qm(I1 @yla ceey Ty @yn)
to be a self-adjoint element in A @ B, where Q,,(x1 B y1, ..., 2, D y,) is a self-adjoint noncom-
mutative polynomial of x; & y1, ..., x, B y,, satisfying

For m > 2, choose

1
|2m — 314 @ 0] < —,
m
i.e. 1
|Quar, ) = BLall < —

1
1@ Y1yl < —-

For any given r > 1 and € > 0, by the definition of topological free entropy dimension, there
exist ' > r and ¢’ < e such that the following hold: V ¢ € N, if

(Ar, ... A) €Tz, x,iqbky, €, P,... P)) =T,
(By,...,B,) € Fgop)(%, e Yn; qCko € Py, ... Pu) =Ty,
then
(A1®By, ..., Ay®By, Qu(A1®By, ..., Ay®B,)) € TV (11@y1, ..., 20 ®Yn, 2ms ko€, PL,y ..., P,

where k = gbki + qcks.
Let

QI,Ty) ={U (A1 @ By, ..., A, ® By, Qu(A1 @ By,..., A, @ B,))U |
Uel(k), (Ar,...,Ay) €Ty, (By,...,B,) €'q}.
By Lemma 4.6, there is a family of elements {(A7, ..., A))}xen, or {(BY,...,B%)}sesx , in
I'y, or I's respectively, so that
(A} @ BY,..., A ®B%)—(AY @BY,...,AX®B)| >w, ¥ (\,o)# (N,0') € AxX; (4.3.5)

and
Card(A)Card(X) > ve(I'1,2w) « Voo (s, 2w).
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Note, for any (A, 0) € A x X, we have
2
||Qm(Ai\7 SRR A?L) - 3Iqbk1|| < HQm(xlv cee ,.f(fn) - 3IA|| te< W

o o 2
||Qm(BluvBl)|| S HQm(yluayn)H te< ﬁ

By Lemma 4.8 and Lemma 4.9, we have that

4k, 4k 4k 4k
Qm(A}, ..., A)) € R(qbk, — m—; m—;) C Rgbky — —3, ) (4.3.6)
and
o " 4k, 4k 4k 4k
Qn(BY,...,B) € R(gbki— ﬁj’ ﬁj) C Q(gcks — 0 m)- (4.3.7)

On the other hand, from Lemma 4.7, there exists a family of unitary matrices {U, },ez in My, (C)
so that (i) when vy # v, € Z,

U2, (@1 @ Q2)Usy — U2 (Q1 @ @)U, || > w,
. ak 4k - ak 4k
V Q1,Q1 € R(gbky — ey ﬁ)v Q2, Q2 € Q(qcky — — ﬁ); (4.3.8)
and (ii)
C )‘((qbkl—%)2+(qck2—;—’34)2+8;—’?(+12(k%))

Card(T) > (Cs - 130w) ™" - (—5

w

72k2 )

) C5 —((qbk1)2+(qck2)2+m—
> (Cp - 130w)~F . (—)

w

where C5, (s are some constants independent of k, m.
Consider the family of matrices

{U::(Ai\ D Bf) IO A?L > Bfw Qm(Ai\ D Bf) ey A?L D Bg))U’Y})\EA,UEZ,VEI

in Q(I'y,Ty). By (4.3.6), (4.3.7) and (4.3.8) we know that, if v; # o € Z, then for any (A, 07)
and (Mg, 09) in A x X,
U Qm (A @ BT, ..., A) @ B)U,,
—U,Qu(AY? @ B?,..., A% ® BP)U,,|| > w.
Combining with (4.3.5), we have
Packo(2(I'1, ), w) > Card(A)Card(X)Card(T)
05) —((qbh)2+(geka) 2+ 1262

> Voo (T'1, 2w ) oo (T2, 2w) (Cg - 130w) ™ - ( »
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By inequalities (4.3.3) and (4.3.4), when w, € are small, V ¢ € N we have

VOO(FgOp)(l’l B UYLy T DYn, Zms k€, Py, .o, Pr)),w/2)
> Packs (2T, T2),w)

2
N O —(@bh)? ~(qcka)? 257
2<ﬁ@“y<—) -ka”g(—) -(nmcaw‘“-<—3)
w

w w

2

(25— Tk

1 Q+5 2 'm4

> CF <—) , (4.3.9)
w

where k = qbk; + qcks and Cy is a constant independent of k£, w. Then, it induces that

log (1a, (TP T D Y, 2mi ko€, Ly P,
hmsupinfhmsup Og(l/ ( R (xl@ylu , L @y y ”msy R, €, 177, ) ))7w))
w—0t TEN koo —k?logw

af —1 72
Ta+p—-2 R

Since v, m are arbitrary, we obtain

Otop(T1 B YL, -+, Ty B Yny 2m) > %.
Hence, by Lemma 4.10,
Otop(T1 @ Y1, -+, T D Yn) > G1op(T1 B Y1, -+ - T D Yny 2m) = g,
s+1—2

where
$ = Otop(®1,...,xn) and  t = Gop(Y1,- -, Yn)-
(i) Combining with Proposition 4.2, we have that
st —1
Oto e T D Yp) = ——————,
top(T1 B Y1 T D Yn) P

where
$ = Otop(®1,...,xn) and  t = Gop(Y1,- .-, Yn)-

(ii) Moreover, by inequality (4.3.9), we know that 1 @ y1, ..., T, B Yn, 2m is a stable family.
Since z,, is a polynomial of 1 ® yq,...,x, ® y,, we know that x1 ® y1,...,2x, Dy, is also a
stable family.

O

Remark 4.2. If I4 ® 0 is in the x-algebra generated by x1 D y1,..., T, D Yn, i.e. there is a
non-commutative polynomial P such that [4®0 = P(x1®y1,..., T, Dyy,), then a much simpler
proof can be provided by using Lemma 3.3 in [13] instead of Lemma 4.7 here.
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4.4. Conclusion. As a summary, we have the following result.

Theorem 4.2. Suppose that A and B are two unital C* algebras and x1 ® yq,...,Tn B Yp 1S @
family of self-adjoint elements that generates A@ B. Assume

$ = Otop(T1, ..., Tp) and t = 0top(Y1, -+, Yn)-
(i) If s> 1 ort>1, then
Otop(T1 B Y1, - -, Tny B Yn) = MaAX{Stop(T1, - - -, Tn), Otop(Y1s - - - YUn) }
(ii) If s <1, t <1 and both families {x1,...,x}, {y1,...,yn} are stable, then

op\T sy dn n )
t 1 yl y S 2
and the famzly Of elements xr1 D Y1y, Tp D Yn s also stable.

5. Topological free entropy dimension of finite dimensional C* algebras

In this section, we are going to compute the topological free entropy dimension of a family
of self-adjoint generators of a finite dimensional C* algebra.

Theorem 5.1. Suppose that A is a finite dimensional C* algebra and dimc A is the complex
dimension of A. If xq,...,x, is a family of self-adjoint generators of A, then
1
dich'

Otop(T1y .. xy) =1

PROOF. It is well known that

A2 M (© P M © P P M., ().

for a sequence of positive integers ny,...,n,,. By Theorem 3.1 and Theorem 4.2, we have
1 1
Otop(T1, .o yy) =1 — ———— =1— — .
top (11 ) ni+---+n dimcA

Similarly, we have the following result.

Theorem 5.2. Suppose that K is the algebra of all compact operators in a separable Hilbert
space H. Suppose that A is the unitization of IC and B is a finite dimensional C* algebra. If
X1y .oy Ty 18 @ family of self-adjoint elements that generates A@ B as a C* algebra, then

1

Srop(T1s e y) =1 —
tp(zl l’) d’ﬂ?’ch"‘l
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