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ABSTRACT

Astronomical seeing is quantified by a single parametehulence integral, in
the framework of the Kolmogorov turbulence model. This pagter can be routinely
measured by a Differential Image Motion Monitor, DIMM. A nemstrument, Multi-
Aperture Scintillation Sensor (MASS), permits to meastiegeeing in the free atmo-
sphere above-0.5km and, together with a DIMM, to estimate the ground-tsgeing.
The absolute accuracy of both methods is studied here usalgtecal theory, numerical
simulation, and experiments. A modification of the MASS gatacessing to compensate
for partially saturated scintillation is developed. We fthdt the DIMM can be severely
biased by optical aberrations (e.g. defocus) and propagadieeing measurements with
DIMM and MASS can reach absolute accuracy.df0% when their biases are carefully
controlled. Pushing this limit to 1% appears unrealisticshese the seeing itself is just a
model-dependent parameter of a non-stationary randonegsoc

Key words: site testing — atmospheric effects

1 INTRODUCTION surements becomes critical for the site comparison, where t
differences are often below 10%.

In principle, both DIMM and MASS should give accurate
results when their instrument parameters are set corraotly
their intrinsic biases are understood and removed. Herenwe i
vestigate these biases in detail, quantify them, and peopos
rections. Biases of the DIMM method have been already ad-
dressed in the literaturé (Martin 1987; Tokovinin 2002ak W
continue by considering additional effects such as lighppga-
tion and optical aberrations. The analysis of the MASS niétho
given byl Tokovinin et al.[(2003) is extended by studying $mal
departures from the weak-scintillation theory which caasgs-

Measurements of astronomical “seeing” are performed for se
lecting new sites and supporting operation of existing-tele
scopes. Recently, a standard Differential Image Motion Mon
itor (DIMM) method (Martin| 1987 Sarazin & Roddier 1990)
has been complemented with a new technique, Multi-Aperture
Scintillation Sensor (MASS) (Kornilov et al. 2003). Thiswe
instrument is based on the analysis of scintillation andngtsr
to measure the seeing in the free atmosphere, isoplanatie,an
and adaptive-optics (AO) time constant. Both MASS and DIMM
require only a small telescope and can be combined in a single
instrument |(Kornilov et al. 2007). MASS-DIMM site monitors U . .
gradually become a new standard. tematic blas,_ over-shoots”, and can be corrected by a neatlifi
We can evaluate the ground-layer (GL) seeing produced in dat@ processing.
the first 0.5 km above the observatory by subtracting theuturb This work has been stimulated by the need to get accurate
lence integrals measured with DIMM and MASS. It is impor-  results from the existing suite of MASS-DIMM instruments; d
tant to measure the GL seeing for evaluating the performance Scribed in the accompanying paper (Kornilov et al. 2007)-Co
of Ground-Layer Adaptive Optics (GLAO). However, subtrac- r'ect setting and operation of these instruments, alsaatitor
tion only works when both methods are accurate, i.e. deliver getting accurate data, is addressed in that paper. Here mve co

results on the absolute scale. Absolute accuracy of seeirag m  centrate on the theoretical analysis and simulationsngryo
formulate practical recommendations and recipes whilédavo

ing mathematical complexity as much as possible.

* E-mail: atokovinin@ctio.noao.edu We begin by asking the question “what is seeing and how
t E-mail: victor@sai.msu.ru accurately can it be defined and measured?” in Bect. 2. If&ect
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Table 1. Quantities relevant to seeing

Quantity Units  Formula
Seeing (FWHM) rad ep =0.98\/rg
i 3 - 2
Turbulence integral A J = fpath Ci(z)dz
Fried parameter m  ro = [0.423(2w/\)2J]~3/5
ro = 1.01\/eg
Phase power spectrum  2m &, (f) = C |f|~11/3,

C = 0.00969(27/\)2J
C = 0.0220r;°/?

the MASS method is studied under conditions of realistid (no
weak) scintillation. Then in Sedt] 4 we address two previous
neglected effects in a DIMM — propagation and optical aberra
tions — and show that they can cause a significant bias, in ad-
dition to the known DIMM biases. Our conclusions and recom-
mendations are formulated in Sddt. 5.

2 WHAT IS MEASURED BY A SEEING MONITOR?

2.1 Turbulence parameters
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Figure 1. Schematic representation of a seeing monitor. The exclamat
marks and text in italics show approximations or unceriggnpresent in
any seeing measurements.

a monitor and a telescope can be only made in a statistical
sense, with associated non-stationarity errors. Fortlyah a

Turbulence_measurements are based on the standard theoryiASS-DIMM instrument both channels sample the same turbu-

(Tatarskiil 1961} Roddier 1981). For convenience, majoroatm
spheric parameters are recalled in Téble 1. These defigition
sume a scale-free Kolmogorov turbulence spectrum with only
one parameter, turbulence strength. This single pararoaidoe
expressed equivalently kay, ro, or J. These quantities (except
J) depend on the imaging wavelengttwhich is assumed here
to be 500 nm if not specified. Accurate measurement of this sin
gle parameter (called “seeing” in a broad sense) is the gerpb

a seeing monitor. The atmosphere can be split into an anpitra

number of zones (or layers), and we also want to measure the

seeing produced by each of the layers — the turbulence profile
Other atmospheric parameters (time constant, isoplaaagjie),
not considered here, are also of interest to modern astypnom

The seeingy is often considered to be the angular image
spread caused by the atmosphere. This interpretationyisapal
proximate because even in a perfect telescope the actug lon
exposure point spread function (PSF) depends on several add
tional parameters (outer scale, wavelength, telescopaeté,
guiding). Current seeing monitors measure only one numbger
which is necessary, but not sufficient for accurate preatictf
the atmospheric PSF or other turbulence-related opticahtiu
ties.

It is always implicitly assumed that the statistical prdjesr
of turbulence are stationary, while in fact they are not. Arsa-
surement refers only to the particular moment in time anthéo t
particular viewing direction. The non-stationarity prgbés very
precise measurements of atmospheric parameters becairse av
aging over a larger spatial or temporal sample of turbuleloes
not lead to the improved statistical precision. This aspaitén
overlooked, also makes seeing measurements intrinsicedly
producible. Comparisons between seeing monitors or betwee

lent path, hence non-stationarity does not affect the gi@tiof
the GL seeing estimate.

The seeing is not a well-defined physical quantity like
length or mass, so the intrinsic accuracy of seeing mondzns
not be arbitrarily high. It is unrealistic to expect a relatiac-
curacy better than 1% because the “seeing” cannot be defined
with such a high accuracy. It is shown below that keepingdsias
within few percent is not easy.

2.2 Seeing monitors

A seeing monitor measures some statistical properties aseh
and/or amplitude of a light wave at the ground and interprets
them in terms of the model parameter, seeing. Several approx
mations are involved in this process, as illustrated in[Bignd
discussed below.

Both DIMM and MASS are sensitive to phase distortions
with spatial scales below 1 m where the Kolmogorov model
works well. A DIMM with small apertures is not affected by
the finite turbulence outer scalg, (less than 1% bias on vari-
ance forLo > 4 m, cf.|Borgnino, Martin, & Ziad 1992). On the
other hand, the absolute image motion in a small 10-cm tele-
scope is influenced by a finife,, typically at~10% level. Thus,

a site-testing instrument based on the absolute (nonreliffel)
image motion gives a biased estimate ifL, is not known. In
practise, such seeing monitors are no longer used becaggse th
are also affected by mechanical errors (wind shake, trg¥kin
For the same reasons, the theoretically perfect interfetom
method of seeing measuremerits (Dainty & Scaddan| 1975) has
not become widely adopted.

(© 2007 RAS, MNRASD00, [THI3
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Figure 2. Intensity screens of 1 fnsize produced by a single turbulent
layer and 10 km propagation in conditions of weak scintdiai(left, 0’2
seeing) and strong scintillation (right, seeing). Wavelength 0.48m.

2.3 Propagation

Seeing measurements are affected by the light propagatios:-t
forming pure phase distortions to a mixture of phase andiampl
tude distributions. The spatial spectra of the light phasend
logarithm of amplitudey after passing through a weak turbulent
layer and propagation over a distancare

P, (f) @
P (f) @)

The spectrum of intensity fluctuations (scintillation)®s =

4®,.. The amplitude and phase are not correlated at any given

point, but their cross-spectrum is not zerafat# 0, being pro-

portional to the product of the sine and cosine terms.
Thescintillation indexs? is defined as

¥ = (A% /(1)

0.0229 1o >3 £| 7112 cos® (2| 1),
0.0229 7y °/3|£|711/% sin?(wAz| £]?).

®)

where I is the instantaneous light intensity received through
some apertureAT7 is its fluctuation. In the small-perturbation
regime,s? < 1, formula [3) is equivalent to the variance of
thelogI = 2x. The scintillation index is calculated then by
integrating the amplitude spectrufd (2) with a suitable aper
filter. The effect of several turbulent layers is simply divei

The equationd {1) andl(2) are only approximate for a real
(not weak) turbulence. Even near the zenith, scintillatimtices
s? > 1 were measured. This regime of strong scintillation cor-
responds to the onset of focusing when the deviations fram th
standard theory become quite significant. Figlites Z7nd & sho
simulated scintillation signals and their spatial powercipa for
weak and strong scintillation (cf. SeEf._P.4). In the lattase,
the pattern is dominated by small spikes due to focusingef th
light by the “lenses” created by the high-atmosphere tunce.
The size of these spikes is less than the size of the lensea@and
cordingly, the power at high spatial frequencies increases-
pared to the weak-scintillation spectruf (2), while at loe-f
quencies it decreases. The appearance of extra power can be e
plained qualitatively in the following way. Under weak dtifia-
tion, each sinusoidal component of the phase screen ciieates
tensity modulation with the same frequency. As the ampéitofd
the phase perturbation increases, the phase gratingsospaa-
duce second and higher-order or crossed harmonics in - int
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Figure 3. Radially-averaged power spectra of scintillation coroeep

ing to the two cases of Fii] 2. “Noisy” curves — simulated, stha@urves
— weak-perturbation theory, Hg. 2.

sity distribution at the ground. Individual layers are noder in-
dependent but cross-modulate each other. The phase itedffec
by the saturation in a similar way as the amplitude.

2.4 Simulation tool

Given the lack of accurate wave-propagation theory, thé bes
way to study higher-order propagation effects is by nunadric
simulation. Simulations are also indispensable in evaigatar-
ious instrumental effects.

We use the Fourier method of generating random phase
screens with Kolmogorov statistics. A 2-dimensional arody
zero-mean Gaussian complex random numbers is created, thei
amplitudesx /C|f| =1/ (f is the spatial frequency; is the
coefficient from Tablé1l) and phases distributed unifornmly i
the interval(—, 7). The Fourier transform (FT) of this array
creates the phase screen. It is well known that this methed un
derestimates the low-frequency components of turbuleag,
notably, produces wrong phase structure functions. Theorea
is that any function obtained by discrete FT is periodic hvat
period equal to the grid size. However, the effects of theemm
ical outer scale can be neglected if the aperture size is d sma
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fraction of the screen size. Indeed, we checked that in thekwe
perturbation regime our numerical simulations reprodheean-
alytical scintillation spectra and DIMM response to witl2ith.

The propagation of wave-fronts is calculated by the spec-
tral technique. IU; () is the amplitude of the light wave before
propagation, and/; (f) is its FT, then the FT of the amplitude
Us(f) after propagation over a distaneeis obtained by fre-
quency filtering:

Uz(f) = Ur(f) exp(—imzA| £[?). @)

This method is computationally fast, involving only two
FTs. Its drawback is that in fact it describes the propagatio
in a waveguide with a cross-section equal to the simulation
grid and reflective walls. However, the propagation of pdico

phase screens does not present problems near the grid bound-

aries because the amplitude “wraps around” the simulated do
main boundaries and does not produce artifacts.

We generate large screens of complex light amplitudes at

the ground resulting from the propagation through one or sev
eral turbulent layers at various altitudes. Typically, wit024

Step 1.The sequences of photon counts from 4 apertures
with individual micro-exposure of 1 ms are acquired and pro-
cessed to calculate Kintillation indices— normal indicess%
for each aperture A and 6 differential indiceky for pairs of
apertures A and B. The formulae for calculating the indiges a
subtracting the bias caused by the photon noise are given in
(Tokovinin et al.| 2003). The indicesi and s3 are equal to
the variance of the natural logarithriag 74 andlog(Za/Ig) in
the limit of small fluctuations of the light intensitida and Iz,

s? <« 1. The turbulence theory usually operates with the vari-
ance of the logarithm. However, we measure the photon counts
which can be zero and fluctuate even at constant light, héwece t
indices should be calculated from the normal (non-loganiti
variances.

Step 2.A linear relation between the observables (indices)
and the turbulence profil€’2(z) is established by the weak-
perturbation theory,

3= / Wi(2) C2(2)dz, 5)

points and 0.5 cm sampling the grid size is 5.12m. To simulate where theweighting function(WF) W3 (z) describes the alti-

the data sequence of a seeing monitor, the screens aralshifte
both coordinates by r, whereV is the wind speed and is
the sampling time interval. The shift is directed at somelsma
angle with respect to the-axis. In this way, the aperture moves
mostly inz but is displaced iy by ~ 0.2 m per line, eventually

tude response of a given aperture or aperture combindtion
For a weak Kolmogorov turbulence, the WF depeondsy on

the aperture geometry and spectrum of detected radiatidn an
can be derived from[{2) (Tokovinin 2002b, 2003). A normal
index for an aperture of diametdd, corresponds to the low-

covering the whole screen one or several times. There are nopass filtering of scintillation, passing’| < 1/Da, whereas a

adverse effects at the borders because the screens argiqerio
The statistical averaging is sufficient to simulate typitahin
measurements.

The complex amplitude of light at the aperture of a seeing

differential index corresponds to a band-pass spatial filith
1/Ds < |f| < 1/Da. Thus, MASS with its centimetric aper-
tures is sensitive to the turbulence of centimetric scalesrev
the Kolmogorov model is adequate.

It has been shown that the differential index in two con-

monitor is re-sampled on a finer grid and used to calculate the
measured quantities such as the spot images in DIMM or fluxes centric annular apertures is almost independent of theaprop
in MASS. The effects of finite CCD pixels and detector noise gation distance: for z > zap = Dip/\, whereDap =

can be studied as well. The current simulator has some lmita (Da + Dg)/2 is the average aperture diameter (Tokovinin
tions. The wind speed is common to all layers. The blur during 12002b,| 2003). It means that the scintillation index gives-a d

a finite exposure time in DIMM is not simulated. In MASS, we
simulate the exposure time by a linear blur of the apertures
over a distanc® 7. The simulation is usually monochromatic.

3 ACCURACY OF THE MASS METHOD
3.1 From scintillation to seeing

The MASS instrument is based on the spatial analysis of inten
sity fluctuations at the ground level. The spatial scale efttin-
tillation “speckle” produced by turbulence at a distancis of
the order of the Fresnel radius = vz, i.e.~ 10cm for a

rect measure of the turbulence integral, hence seeingupeod
at distances beyoneas. On the other hand, normal scintilla-
tion indices increase ag’, with 3 = 5/6 for small distance
z < D?/XandB = 2 for z > D?/) (Roddier 1981). Accord-
ingly, most of the scintillation is produced by the high legie
Step 3.Using the known WFs, the set of 10 indices is fitted
with a model of 6 thin turbulent layers at altitudesof 0.5, 1,
2, 4, 8, and 16 km, with turbulence integralsin each layer as
parameterd (Tokovinin etial. 2003). The zenith angie taken
into account by the model, = hsec+. In reality, the turbu-
lence is distributed continuously in altitude with a profilg(h).
The integralsJ; delivered by MASS are approximately equal to
| Cr(h)Ri(h)dh, where theresponse functiong; (h) resem-

10-km propagation. (Roddler 1981). The spectrliin (2) reaches pje triangles irlog h coordinate centred oh; (Tokovinin et al.

maximum at the spatial frequengf| ~ r;l.

Light from a bright star is detected in MASS with four con-
centric annular apertures with diameters from 2cm (inner) t
8cm (outer). The size of these apertures is of the ordefzof
and they act jointly as a spatial filter, permitting to digaeyle
scintillation originating at different altitudes. Thisashieved in
several steps.

2003). The sum of alR; (k) is close to one foh > 0.5 km.

3.2 Over-shoots and their correction

MASS relies on the small-perturbation theory, assumingttie
scintillation is weak,s? < 1, and that the combined effect of

(© 2007 RAS, MNRASD00, [THI3
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Figure 4. Ratio of measured to modelled scintillation indices. Sel@éaormal (top row) and differential (bottom row) indicessome MASS apertures
as determined from the simulations without correctigh trosses) or after correcting by [Edl.45 (empty squares) are divided by the weak-scintillation
indiceSS(%. The dotted vertical line marks the correction Iimﬁ =0.7.

several turbulent layers is additive (4. 5). In practismtilla- tor of measured indices? — the vector of theoretical indices
tion is not always weak (Se¢t_2.3). In this case, profileomast expected in the linear theory without saturation, add- the
tion by the linear method, as implemented in MASS, leadsdo th  vector of corrected indices. A rather general correctiomfda
over-estimated total turbulence integral (free-atmospleee- can be written as
ing) and to the shift of the restored profile to lower altitside 2

Although the theory of strong scintillation has been ad- =15z S5 (6)
dressed in many papers (e.g. Andrews etal. 1999, and refer-
ences therein), there is no quantitative description ofiriten- The rationale for selecting this formula is that it autorcalty
sity power spectrum available. In order to extend MASS oper- removes correction for weak scintillation, and that thigetyof
ation to moderately strong scintillation, we rely excledjvon formula works well for the differential indices. Herg, is the
numerical simulations (Se€t_2.4). Poly-chromatic lighaswsim- 10 x 10 correction matrix
ulated by an equal mix of three wavelengths of 0.4, 0.45, and We determine the correction matiZxempirically from the
0.55 um. One or two phase screens at various altitudes were results of simulations, by least-squares fitting. The fitiis re-
simulated. The physical size of simulated phase screen§im2  Stricted to the relevant scintillation rangel < s3 < 0.7 be-
across, with 2.5mm pixels. The power spectrum of intensity cause weak scintillation does not need correction (but atids
fluctuations at the ground was computed (e.g. Fig. 3) and con- tistical noise), while correcting stronger scintillatisrhopeless.
verted into normal and differential scintillation indiceSMASS The matrixZ is found by least squares as
by integrating it with suitable spatial filters. _ T\—1/aT _

The values of the measured indices inform us on the Z=(S1)(8Y), Y=5/So—1,
strength of the scintillation. Our approach is to correet iea-
sured indices semi-empirically and to bring them into agreet
with the weak-scintillation theory. Le® be the 10-element vec-

2
Sx

@)

where the matriceS, Sy, Y have dimension$0 x M, M being
the number of simulated cases. We simulated both single and
double layers at various altitudes with various strengfreach

(© 2007 RAS, MNRASD00, [THI3
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layer. All results were mixed together in calculating thetrina
Z, with a total of M = 35 cases satisfying the conditianl <
53 <0.7.

Figure[4 demonstrates the success of this approach with
plots of the simulated (pluses) and corrected (squares}asd
divided by the weak-scintillation ones. The average rafis?
of all indices differs from 1 by less than 1% after correction
the scatter is also significantly reduced. The best comeds
achieved fors2 5, rmss? /s3 scatter 1.6%, and the worst correc-
tion — for s3, rms scatter 4.6%.

The correction of indices with the matr&“learned” from
the simulations is implemented in the current version of the
MASS software,TURBINA. Old data can be re-processed with
this program. An example of successive “overshoot” coimact
is shown in Figlb. Our empirical correction technique wdiks
53 < 0.7. The correction matrix is determined only for the typ-
ical aperture diameters and bandpass used in MASS, ithas to b
revised if these parameters change.

A simplified method of correcting MASS seeing for over-
shoots has been established earlier and works quite well. If
ro,mAss iS the Fried parameter of the free-atmosphere seeing
measured with the old MASS software, then the correeted
will be

)0.6‘

8)

ro & ro,mass (1+0.7sa

3.3 Temporal sampling

The photon counts in MASS are sampled with the exposure time
At = 1 ms. Averaging the signals duriny¢ reduces the fluctu-
ations, causing a bias in the measured indices. This biaw-s ¢
rected in the software by calculating the indices with exppes
time At and 2At and extrapolating linearly to zero exposure.
This extrapolation is calculated a§ = 1.5s7 — 0.5p1, where

57 is the measured index apd is the covariance with a time lag

of 1 sampling period_(Tokovinin et al. 2003).

In October 2004 we recorded MASS signals with a faster
samplingAt = 0.25ms under rapid-turbulence conditions. It
turned out that the linear extrapolation actually overects the
indicess3 ands%p by as much as- 6%. An analytical study
made earlier (Tokovinin 2002b) also concluded that a |lesstidr
correction works better. Accordingly, in the new MASS saftey
the correction is halvedg = 1.25s7 — 0.25p1. The remaining
bias is under 2% even on the fastest indiggsainds? ;.

3.4 Innerturbulence scale

Turbulence spectrum at high spatial frequencies (compmtab
the turbulence inner scale) may have excess power compared t
the Kolmogorov model, the so-callétlll bump (Andrews et al.
1999). The inner scale is usually of the order of few millinest
but it can reach centimetric values in the upper atmosphiéis.
phenomenon can potentially increase the scintillation laad
to over-shoots.

Apart from the extra scintillation, small distortions unac
counted for by the Kolmogorov model must cause excessive
image blur, appearing as an extra halo of the PSF. We tried to
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a diffraction-limited OTF.

2 _
detect such effect by analysing average re-centred imafjes o 9.t =

a star in the DIMM channel of a MASS-DIMM. With 10-cm
DIMM apertures, the spots are always diffraction-limitedlar

propagation through turbulence was calculated with 1 cm-sam
pling (Sect[2Z}). The same amplitude screens can be re-used
with varying DIMM parameters (e.g. aberrations). The simu-
lated baseline is 0.24 m (even number of pixels). The ceahtroi
window follows the spot, as in typical DIMM instruments, be-
cause otherwise the spots would move with respect to the win-
dow and the response under bad seeing would be diminished.
With 4000 spot pairs in a typical simulation, the statidtaaor

of the differential variance (hence of the derived respaossfi-
cients) is 1.6%. Apart from the statistical errors, sub#d&ads of

the algorithm and its implementation may influence the tesul
of simulations, which are n@xactin the absolute sense.

4.1 Response coefficient of an ideal DIMM

In a DIMM, two circular portions of the wavefront are isoldte
The variance of the differential wave-front tilts in longgtinal

(parallel to the basey? and transverse? directions is related
to the Fried parameter, as (Martin 1987, Sarazin & Roddier

1990; Tokovinin 2002a)
K (\/D)* (D/r0)**. )

Theresponse coefficientf DIMM K; and K; depend on
the B/ D ratio and on the kind of the tilt measured. Usually, the

good seeing, but become broadened as the seeing degragies. Fi it is evaluated from the centroids of two stellar imagesrfed
ure[6 shows an example of the 1-dimensional optical transfer py the sub-apertures; in this case it corresponds to the -wave

function (OTF) of average re-centred DIMM spots in spat@l ¢
ordinater = Af. It is compared to the product of the short-
exposure atmospheric and diffraction-limited TFs calwddor

A = 0.55 um with o measured by both MASS and DIMM.
We do not notice any departure from the DIMM model at cen-
timetric scales and conclude that the8” seeing adequately
described the spot profile, without any perceptible effetthe
“Hill bump”. On the other hand, MASS over-estimated the see-
ing because of the un-corrected over-shoots. This analyesss
repeated several times on other nights. We conclude thatfthe
fect of the finite inner scale on MASS can be safely neglected.

4 ACCURACY OF THE DIMM METHOD

DIMM has a reputation of a “fool-proof” technique for mea-
suring seeing. However, this is not true because its reandts
affected by optical propagation, centroid algorithm, adéons,
exposure time, noise, etc. Some of these effects can cauas a b
much larger than 10%. The accuracy of the DIMM method is
studied below by both numerical simulations and analyticet
ory. The analytics is useful for understanding the smajhai
response of a DIMM which turns out to be rather different from
the usual assumption that DIMM measures tilts. On the other
hand, simulations reveal the faults of the weak-pertuopathe-
ory, as for the MASS.

We consider here a DIMM instrument with typical parame-
ters: aperture diametd? = 10 cm and baseling = 25cm. In
the numerical simulations, we selected a pixel scalé’82Gnd
a field size ofl0” around each spot. The complex amplitude of
the monochromaticX = 0.5 um) light waves at the ground after

(© 2007 RAS, MNRASD00, [THI3

front gradient (G-tilt). The response coefficients for théilGas
a function ofb = B/D can be approximated by the formulae
(Tokovinin|2002a)

Ky = 0.340 (1 — 0.5706~/3 — 0.0406~7/3)

. . 10
K, = 0.340 (1 — 0.8556~1/3 4+ 0.0306~7/3). (10)

For our exampleb = 2.5, K; = 0.1956, and K = 0.1270.

Thero parameter (and seeing) is computed from the mea-
sured differential image-motion varianeg by inverting Eq[®.
Hence, it is proportional to the response coefficients tgtveer
3/5. A 10% error in the response entails a 6% error in seeing.

4.2 Response of the centroid algorithm

In a real DIMM instrument, the image motion is estimated by
calculating centroids of the spots. Only a sub-set of detguik-

els is used in order to reduce the influence of the noise. These
pixels are selected either by setting a threshold well alboge
background noise or by defining a window around the brightest
pixel. Both approaches can be expressed by a general formula

Co = E wi ;%15 /To, To = E wijlij,
i irj

wherec, is the estimated centroigd-coordinate,l; ; are pixel
intensities,z; ; are theirz-coordinates. The weights; ; equal
one for selected pixels and zero otherwise, although a nmwre s
phisticated weighting scheme could be adopted. Here weexpl
circular windows wherev = 1 for pixels at a distance less than
0A/D from the spot centre. The parametedefines the radius
of the centroid window in units of the diffraction spot sizgD.

(11)
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-0.5

Figure 7. Cuts through the centroid filter functiong, (x) in the z-
direction are plotted in arbitrary units against normalisecoordinate,
where+1 corresponds to the pupil border. Two centroid windows: nar-
row § = 1 and wided = 5. No aberrationsD = 0.1 m.

Formula [(I1) is only an approximation to the true image
centroid. As a result, the response coefficient of a DIMM it no
exactly equal to its theoretical value for G-tilt, but ratdepends
on the details of centroid calculation. We developed anyainal
cal formula relating the distribution of the light phase amadpli-
tude at the pupil to the change of the image centdid (Ap-
pendix[A), valid for small perturbations. It is analogousthe
Taylor expansion of PSF developed for high-contrast imggin
(Perrin et al. 2003). The centroid shiftc,. is equal to the sum of
the integrals of atmospheric perturbatiamge) and x(x) mul-
tiplied by thefilter functions F,(x) and F (x), respectively.
Knowing the spectra of the perturbations, we calculatertiedls
signal response coefficients of a DIMM with Eg.]A9. The rela-
tive accuracy of our calculation is 3% or less.

FigurelT shows the filter functions of the centroid estimator
(@) in the pupil plane calculated by Egs.JA7]A8. For a narrow
(6 = 1) centroid window, the filter resembles remotely a Zernike
tilt, while for a wide ¢ = 5) window it is closer to a gradi-

ent averaged over the aperture (opposite spikes at the Jedges

The DIMM optics is assumed perfect, therefore the centrid i
insensitive to amplitude fluctuations at the pupil (sciation),
F(x)=0.

010 T T T T T

Phase
Amplitude

0.05

0.00

—0.05

-0o1oLn sy
-1.0 -0.5 0.0

0.5

Figure 8. Centroid filter functionsF, () and Fy («) for a defocus of
1radian rms and = 5. Compare with Fid.17.

Figure 9. Sequences of simulated spot pairs produced by a turbulent
layer at 10 km withrg = 0.1 m in a DIMM with perfect optics (top) and
with a defocus of 1rad (bottom). The same phase screen isubeth
cases.

of the feeding telescope. For example, a coma or spheriead ab
ration in the telescope causes mostly astigmatism in theNDIM
sub-apertures. Generally, the aberrations of both sulitape
are not equal, but, to simplify, we assume here their equalit

4.3 Propagation effects in DIMM

The situation becomes more complicated when we consider The standard DIMM theoryl (Marlin 1987; Sarazin & Roddier

a realistic DIMM instrument with some optical aberratiofrs.
this case, the centroid. is affected by both phase and amplitude
fluctuations at the pupil (Fidll 8). This effect can be undedt
qualitatively: a defocused spot resembles a pupil imagecée
the centroid estimator becomes sensitive to the gradigmijf
illumination. Sequences of simulated spot images (Bigl@-i
trate this situation. In a DIMM with perfect optics, the spare
sharp, while their intensities fluctuate because of thetilain

1990) considers only near-field turbulence and neglectsriye
agation effects. DIMM is afected by three different phenome
related to propagation.

Diffraction: part of the small-scale phase distortions are
converted into amplitude fluctuations (scintillation) aating
to Eq.[1 and, as a result, the small-signal response of a DIMM
slightly decreases with the propagation distanc€he decrease
becomes noticeable far\z > D (Tokovinin2002a), as can be

tion. The defocused spots look more distorted by the same see seen in Figd_10=12 and]14.

ing and their centroids move more, biasing the measurements

Saturation.The second, even stronger effect is caused by

The aberrations are characterised here by the amplitude ofthe departure from the weak-perturbation theory and besome

the Zernike polynomials representing the phasesach DIMM

important as soon as the scintillation indgxexceeds 0.1. Sim-

sub-apertureThey should not be confused with the aberrations ulations show that the response of a perfect DIMM to high-

(© 2007 RAS, MNRASD00, [THI3
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altitude turbulence is non-linear, i.e. the coefficieAtsand K,
depend on the seeing (Fig]10). AtDseeing, in the small-signal
regime, the response is reduced only by diffraction. Theraat
tion causes additional loss of response, depending on &iregse
and layer altitude. On the other hand, the response to the nea
ground turbulence remains constant even f8if aeeing, despite
strong distortions of the spots which split into severalcipes.
In practise, situations witk3 > 0.2 are not uncommon and a
DIMM is expected to “under-shoot”. We could model this effec
in the same way as we did for the MASS. In order to correct for
the under-shoots, we need to know the turbulence profile.
Aberrationstogether with propagation cause a complex
bias considered in the next Section. It would be premature to
correct DIMM for saturation and diffraction before the ataer
tion bias is addressed.

4.4 Aberrated DIMM and propagation

Small-signal response coefficients of an ideal and abekrate
DIMMs are calculated witl (A9) and translated into the bias i
the seeing /o derived from average longitudinal and transverse
image motion,

e/eo = [(Ki/Ki0)*® + (Ki/K:0)*'"]/2, (12)

where the coefficient&; o and K¢, of an ideal DIMM are cal-
culated by Eq10. This bias is plotted in FAig] 11 as a function
of the centroid window radiué for two cases, turbulence at the
ground (near field) and at 10 km distance. Both DIMM apertures
have the same aberration. In the near-field case, the resfgons
relatively stable against aberrations, as long as the aenirin-
dow is wide enoughy > 2.5.

When the spots are aberrated, the variance of the differen-
tial image motion produced by a high turbulent layer depemds
the type of the aberration, its amplitude, propagationadist,
and the radius of the centroid windaw(Fig.[11).

The dependence of the DIMM bias on the defocus ampli-
tude is further explored in Fig_12. Even for zero defocustetis
a small difference in the response between 0 andz = 10km
because of the diffraction. The difference becomes layetd-
focused spots. The influence of a small defocus depends on its
sign: on one side of the focus, the response decreases arid DIM
“under-shoots”, on the other side it increases. A defoctgela
than 0.8 rad always causes a positive bias. These analgtital
culations are confirmed by simulations. When= 0.5 m, the
simulated response closely follows the small-signal csir#er
ro = 0.1 m, the near-field response still matches the theory,
but the 10-km response is reduced additionally by the sidara
(Fig.[10).

A negative bias caused by the combination of propagation
and small defocus may appear counter-intuitive: we expett t
scintillation adds something to the image motion producgd b
the phase. Figurie_13 illustrates this effect from the gedmet
optics perspective. Suppose that longitudinal image matia
DIMM is created by a sinusoidal wavefront with a perisd2B.
After propagation, the phase is reduced only slightly, e
amplitude fluctuations are created, positive where the caps
verge and negative where they diverge (amplitude fluctoatio
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Figure 13. lllustration of the propagation effects in a DIMM (see text)
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The behaviour of the transverse coefficient is similar.

are proportional to the wave-front curvature). The gradigh

the amplitude at DIMM apertures is correlated with the phase
gradient (i.e. image motion). A perfect DIMM is insensitiie

the amplitude fluctuations, but in a defocused DIMM the cen-
troids are affected by the amplitude gradients. Dependinipe

sign of the defocus, the amplitude gradient either increase
decreases the measured image motion and thus creates a posi-
tive or negative bias.

A positive bias caused by strong defocus (and other aber-
rations) has been confirmed experimentally by direct compar
isons between well-aligned and aberrated DIMMs _(Wanglet al.
2006). The negative bias found here has not been suspected be
fore. A defocus of 0.3rad rms (24nm for = 0.5 um) cor-
responds to a Strehl ratio of 0.91, i.e. practically diffraa-
limited spots. Yet, such a DIMM can have response coeffisient
reduced or increased by20%, and will produce seeing data bi-
ased by~ £12% when most of the turbulence is concentrated
at 10 km. Optical aberrations other than defocus are exgpecte
cause a similarly complex bias. We conclude et response
of a DIMM to high-altitude turbulence is intrinsically inaa-
rate. The saturation makes things even worse, introducing de-
pendence of the response on turbulence profile.

We simulated the centroid calculation tyesholdingnu-
merically and found that its behaviour is very similar to tie-
dowing method considered above. For turbulence at the groun
the response is insensitive to aberration, but slightiyedep on
the threshold (a bias 6£10% in K; and K, for a threshold of
0.1). The asymmetric dependence of response to highehtitu
turbulence on the defocus (Figl]12) is also preserved.

Figure[14 shows how the small-signal response depends on
the propagation distance For un-aberrated spots, the response
slowly decreases witlr. On the other hand, defocused spots
show both positive and negative bias. A real DIMM instrument
can either “over-shoot” or “under-shoot”, depending ongtate
of its optics and the turbulence profile.

(© 2007 RAS, MNRASD00, [THI3
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Itis clear that the quality of the DIMM optics and focus has
to be strictly controlled in order to get unbiased result®aM
surement of the spot Strehl ratio (SR) suggested in (Tokovin
2002a) is helpful, with SR 0.5 usually indicating acceptable
quality (Wang et al. 2006). However, the SR is reduced under
poor seeing even in a perfect DIMM, so if the data with poor
SRs are rejected, the seeing statistics will be biased. iYet a
other way to quantify the aberrations in a DIMM will be to

weightsw; ; take values of either 1 or 0, we simply restrict the
summation to pixels where; ; = 1. The result is

1 o 2 2
2 (zij —ca) 07, ;
D
0

D (@i — ca)* (R + 1,5/G)

%)

2
Oc

i
h

(15)

take long exposures of defocused spots and to analyse themHerel, is the sum of intensities over pixels in the centroid win-

with the method described by Tokovinin & Heathc¢ate (2006).
Needless to say that a DIMM working always out-of-focus (e.g
Bally et al.. 1996) will never measure the seeing accurately.

4.5 Exposure-time bias

Finite exposure time in a DIMM reduces the differential iraag
motion, biasing the measured seeing to smaller values. ffhe e
fect can be quite strong, as noted by Mairtin (1987). Thisis
modelled in detail in/(Tokovinih 2002a). Short (e.g. 5 mP@x
sures reduce the bias, but do not eliminate it completelhdf
data is acquired continuously, an extrapolation to zefmsre
can be done from the variances of time-binned signal, eliier
fitting an exponential curve to the dependence of the vagianc
on exposure time_(Wang etlal. 2006) or by using a simple lin-
ear formula as in MASS or GSM (Ziad et al. 2000). The linear
extrapolation appears too strong, though.

If the image sequence is not continuous, a method of inter-
laced single and double exposures should be used. In tlisaas
“modified exponential correction” was developed|in (Tokowi
20023@. If £1 ande2 are the seeing values calculated with nom-
inal and double exposure time, the de-biased sesing esti-
mated from

€0 ~ 0.5(c1e1 + 01/352), (13)

wherec; = (e1/£2)*/*. To reduce the statistical noise, the fac-

dow.

The sum entering il {15) can be computed in advance if the
centroid window has a well-defined size and the image prdfile i
known. This is not the case when a thresholding method is used
However, even with thresholding the centroid noise of eadh i
vidual spot can be evaluated wifh{15) during centroid caiapu
tion. Variations of the flux caused by scintillation or clsuchn
be accounted for as well.

Obviously, the noise variance of both centroids in the
DIMM has to be evaluated and subtracted from the measured
differential variance before calculating the seeing Wi (t
would be wrong to express the noise in arc-seconds and sub-
tract it later from the measured seeing, because the efiects
the longitudinal and transverse directions are not the saime
noise depends on the stellar flux, hence subtracting a fixed “i
strumental noise” is not correct. Typically, the noise isirand
its subtraction or not does not matter. However, the noise ca
significantly bias DIMM results under good seeing or for fain
stars. The flux in the interlaced single and double expossres
different, hence if the noise variance is not properly saditd,
it will bias (over-estimate) the correction {13).

To reduce the noise, especially the term relate®tdhe
smallest number of pixels must be used, favouring a narrow ce
troid window with§ ~ 1 or, equivalently, a high threshold. How-
ever, we have seen in Sect.]4.2 that such choice leads to a very
uncertain response coefficient in presence of even smalt abe
rations. The noise is usually much less of a problem than the

tor ¢; is averaged (smoothed) over time and its average value is aberrations, so a wide centroid window with> 2.5 or a low

then used in(13) to correct individual measurements.

4.6 Centroid noise

Even in the absence of atmospheric image motion, the mehsure
centroids fluctuate because of the errors caused by therphoto
noise and detector readout noise. The errors of intendities

are independent in each pixel and equal to the sum of readout

and Poisson noise, expressed in the signal counts (ADU):

o7, =R*+1;/G, (14)

wereR is readout noise in ADU, and@ — the CCD camera con-
version factor (gain) ire”/ADU. The influence of these errors
on the calculated centroid is easily evaluated by diffeating

threshold are preferable, contrary to the recommendafigng
in (Tokovinini2002a).

Both the measurement noise and the noise caused by the
scintillation are isotropic and affect longitudinal andrisverse
image motion equally. The effect on the calculated seeiog; h
ever, will be different becaus&; > K. If the DIMM signal
contains a significant noise component, the “transverse® se
ing will always be larger than the “longitudinal” seeing.i¥h
effect could be mistakenly interpreted as a manifestatioa o
non-Kolmogorov turbulence spectrum.

5 CONCLUSIONS

This work complements previous studies of two methods to

Eq.[11 and using independence of noise in each pixel. As the measure seeing — DIMM and MASS — and focuses on the

1 Formula 13 in|(Tokovinin_2002a) contains a typographic ercor-
rected here

(© 2007 RAS, MNRASD00, [THI3

achievable accuracy. The “seeing” itself cannot be defirgy v
accurately, being a model-dependent parameter of a randdm a
non-stationary process. Taking aside this caveat, we tigete
potential instrumental biases by simulating both turbcéeand
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the instruments numerically. The true seeing is known éxact
permitting to calibrate the methods on the absolute scale.

Our conclusions and recommendations can be summarised
as follows:

e The departure from the weak-perturbation theory affects
the MASS method seriously, but it is correctable for a nat-to
strong scintillations3 < 0.7.

e The effects of finite exposure time and inner turbulence
scale in MASS can be neglected.

e The DIMM method is very robust and tolerant to aberra-
tions for the near-ground turbulence, provided that therogh
calculation uses a large enough radits2.5A/D.

e Optical propagation causes a non-linear response of DIMM
(saturation), not present in the near-field case.

e Combination of propagation and aberrations in a DIMM
leads to a complex bias. By controlling the DIMM optical qual
ity (Strehl ratio> 0.5), we can keep the seeing bias to within
+12%, but making the control tighter appears impractical.

e Centroid noise in a DIMM should be computed and sub-
tracted from the measured variance. To do so, the detecidr re
out noise and gain must be known.

e The exposure-time bias in a DIMM should be corrected us-
ing one of several known recipes.

The sensitivity of the DIMM to propagation and aberra-
tions comes as a surprise, although neither of these effiexts
accounted for by the standard, near-field DIMM theory. The
bias on high-altitude seeing is so complex that removingrit
pletely seems unrealistic.

It has been demonstrated that two identical DIMM instru-
ments with good optics can give seeing measurements concor-
dant to within few percent (Wang etlal. 2006). Are these mea-
surementgccurateto the same level? Not necessarily. A seeing
of 1” coming from 10 km could be measured by both instru-
ments with a bias of 0.83 (Fif._1L0), whereas the same seeing
originating near the ground will be measured correctly.

The response of a DIMM depends on both instrumental fac-
tors and observing conditions. Two different DIMMs can &gre
on one night (e.g. seeing dominated by low layers) and dis-
agree on another night or at another site. Two identical DEVIM
can be biased in a different way at two different sites. Thus,
inter-comparison between DIMM (or MASS) instruments can-
not guarantee that they aeecurate Their mutual agreement
is a necessary, but not sufficient condition. Only a careful-c
trol of biases can ensure accurate seeing data. Howeven-ins
ment inter-comparisons are useful for debugging and chexudts
should be pursued whenever possible.

A combination of MASS and DIMM in one instrument has
stimulated this research. These instruments, when propaH
ibrated, agree very well for a seeing dominated by high kyer
(Kornilov et alll2007). This is a triumph of the optical prgsa
tion theory enabling us to interpret both scintillation anthge
motion with a common model and a single parameigrAt the
same time, the agreement between two instruments basefi on di
ferent principles and with different biases is a strong argnt
that both areaccurate i.e. measure the seeing on the absolute
scale.
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APPENDIX A: RESPONSE OF A CENTROID
ESTIMATOR IN THE PUPIL PLANE

The centroid signat for each DIMM spot is obtained from the
weighted PSH (a) as

c=1Iy" /d2a I(a) M(a), (A1)
wherea is a 2-dimensional vector of angular coordinate§.a )
is some functionmask and I is the total intensity (flux). All
integrals are in infinite limits and exist because all fuoics

and
Alx) =2 (V1) ™" U(w)/de' U*(x +x') M(x

The response is independent of the normalisation of theiampl
tudeU because it is divided by the flux.

This result contains an implicit assumption that the fluctua
tions of the denominataf, can be neglected. This is not always
true. The signal has the form= A/B, hence its fluctuations
areAc = AA/B — ¢(AB/B). The fluctuations of the denom-
inator AB can be neglected if the average signak 0 (they

'/A) (AB)

are supposed to have limited support. The PSF is not neces- will be a second-order term then). This condition is enfdrce
sarily an ideal one, but may include some aberrations. For- PY the choice of/(a) = a.w(a) appropriate for a windowed

mula [AT) is rather general and applies to many situatiomngs, e

curvature sensing. For centroid calculation, we need a mask

M(a) = a,w(a) to match EqCIN. We keep (A1) in a general
form useful for other applications.

Let « be the coordinate vector in the pupil plane. The com-
plex amplitude of the initial un-perturbed field at the puigil
U(z). It includes the pupil function (possibly with aberratipns
and is normalised arbitrarily. Suppose that the amplittdis
changed by a small phase aberratip(x) and a small log-
amplitude perturbatiory () and becomes/ () e'#(T)+x(®),
What would be the change of the sigist caused by this aber-
ration?

We find a small change in the signal by linearising the
known expression of the OTE (Goodrian 1985)

I(f)=15" /d% U(z)U" (z + \f) (A2)

with respect to small perturbatiops< 1 andy < 1, so-called
PSF Taylor expansioPerrin et al. 2003):

AI(f) = I" /d%U(m)U*(w +Af) (A3)
x  lip(®) + x(®) —ip(x + Af) + x(x + Af)]
The signal increment is
Ac= / d*f AI(F)M(f). (A4)

We put [A3) into [A3) and re-group the terms. The first term in
the square brackets containifg(x) leads to

i(A\’1o)~ /d2 /d%:’U x')
X M('/) ()

wherez’ = \f. The 3-rd term containingip(z -+ f) leads to
the complex-conjugate of the expressionl(A5) with inveiga.s
Collecting all 4 terms, we write the result as

AC1 =

(A5)

Ac= / e Fy(w) plz) + / e Fy(@) (@), (A6)
where thdilter functionsF are

Fy(x) = Im[A(z)], Fx(z) = Re[A(z)] (A7)
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centroid.

If the mask)/ is correctly dimensioned to compute the cen-
troid ¢ in pixels and the angular size of the pixeljsthen it
follows that the longitudinal response coefficigtit is

Ki = (pD/N? (ro/D)"? / a5

X |Fo(F)I? @o(f)[2sin(rBf.)]”, (A9)

where both centroid measurement direction and baselirgare
allel to thex axis. To calculate the transverse respohAsewe
replacef, with f,. To take into account both propagation and
sensitivity to scintillation, we make a replacement

| (F)I7 = |Fo(f) cos(mhz| £I*)+Fy (f) sin(mrz|£]*)]?.(A10)

This modification automatically accounts for the correlatbe-
tween phase and amplitude.

This paper has been typeset fromgXTATEX file prepared by
the author.
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