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PERMUTATIONS OF STRONGLY SELF-ABSORBING

C∗-ALGEBRAS

ILAN HIRSHBERG AND WILHELM WINTER

Abstract. Let G be a finite group acting on {1, ..., n}. For any C∗-algebra A,
this defines an action of α of G on A⊗n. We show that if A tensorially absorbs a
UHF algebra of infinite type, the Jiang-Su algebra, or is approximately divisible,
then A×α G has the corresponding property as well.

1. Introduction

Recall (see [TW1]) that a separable, unital infinite dimensional C∗-algebra D is
said to be strongly self-absorbing if the embedding D → D ⊗D given by d 7→ d⊗ 1
is approximately unitarily equivalent to an isomorphism (regardless of which tensor
product one a-priori uses, any such D must be nuclear, and thus there is no ambiguity
in the definition). The list of known examples of such algebras is quite short. It
consists of UHF algebras of ‘infinite type’ (i.e., ones for which all the primes that
appear in the supernatural number do so with infinite multiplicity), the Jiang-Su
algebra Z ([JS]), the Cuntz algebras O2 and O∞, and tensor products of O∞ by
UHF algebras of infinite type.

A C∗-algebra A is said to be D-absorbing for a given strongly self-absorbing C∗-
algebra D if A ∼= A⊗ D. This concept plays an important role in structure theory
of C∗-algebras, particularly in relation to the Elliott program.

Various permanence properties of strongly self-absorbing C∗-algebras were stud-
ied in [TW1], [HW] and [HRW]. While the property of D-absorption does remain
permanent under many constructions, it does not pass in general to crossed products;
one can find counterexamples for D = O2 as well as for UHF algebras. However, it
was shown in [HW] that D-absorption does pass to crossed products by Z, R or by
compact groups provided the group action has a Rokhlin property (see [I1, I2, I3];
for the non-compact cases, one needs to assume that D is K1-injective). We do not
know whether there is an example in which Z-absorption does not pass to crossed
products.

The Rokhlin property for finite groups is very restrictive, and it seems desirable
to try to look at other examples of group actions. In this note, we consider the
following kinds of actions. Suppose G is a finite group acting on {1, ..., n}. Let A
be a separable C∗-algebra. We have an induced action α : G→ Aut(A⊗n) given by

αg(a1 ⊗ a2 ⊗ · · · ⊗ an) = ag(1) ⊗ ag(2) ⊗ · · · ⊗ ag(n)

(any tensor product can be used here). We note that in many cases of interest,
such an action will fail to have the Rokhlin property; for instance, if A = Z, then
A⊗n ∼= Z is projectionless, and thus no action on it could have the Rokhlin property
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(in other cases, in which projections do exist, the action typically will not have the
Rokhlin property, but might have the weaker tracial Rokhlin property, see [P]).

For any C∗-algebra A, we denote

A∞ = ℓ∞(N,A)/C0(N,A) .

A may be embedded into ℓ∞(N,A) and into A∞ in a canonical way (as constant
sequences).

If α : G → Aut(A) is an action of a finite group G on a C∗-algebra A, then we
have naturally induced actions of G on M(A), and therefore also on ℓ∞(N,M(A)),
M(A)∞ and M(A)∞ ∩A′, respectively – those actions will all be denoted by ᾱ.

The main result here is the following.

Theorem 1.1. Let D be one of the known strongly self-absorbing C∗-algebras. Let

α be an action of the finite group G on the separable C∗-algebra A, and suppose G
acts on the set {1, .., n}. Suppose furthermore there exists a unital homomorphism

ψ : D⊗n → M(A)∞ ∩ A′ which is G-equivariant with respect to the permutation

action on D⊗n and the induced action ᾱ on M(A)∞. Then, A×αG is D-absorbing.

Replacing D by a finite direct sum of matrix algebras other than C in the preceding

hypotheses, it follows that A×α G is approximately divisible.

In particular, if A is D-stable, or A is approximately divisible, then so is A⊗n×G,
where G acts on A⊗n by permutation.

To prove the theorem, we shall show that for D a UHF algebra of infinite type,
the Jiang-Su algebra, or an algebra of the form Mp ⊕Mq for p, q > n, there exists
a unital embedding of D into the fixed point subalgebra of D⊗n under the action of
the symmetric group Sn.

For D = O2 or O∞, this is already known (see [I1, Theorems 4.2 and Section 5]
and [KK, Lemma 10] – for O2, one can show that the action of Sn has the Rokhlin
property, and for O∞, this follows from the much more general fact that the fixed
point subalgebra of O∞ under any finite group action is a finite direct sum of simple
purely infinite C∗-algebras).

We wish to point out that the arguments we have use the actual structure of the
specific strongly self-absorbing C∗-algebras. It remains an open problem to find a
proof that works for any strongly self-absorbing C∗-algebra.

The first author would like to thank A. Besser, Y. Glasner and N. Gurevich for
some helpful pointers.

2. Preliminaries

If α : G→ Aut(A) is an action, we shall denote by Aα, or by AG, the fixed point
subalgebra (we’ll use the latter when it is clear what the action is).

We have the following characterization of D-absorption (based on ideas of Elliott
and of Kirchberg), which appears as Theorem 7.2.2 in [R1]. We note that the
statement in [R1] refers to the relative commutant of A in an ultrapower of M(A);
however, it is easy to see that the characterization still holds as stated below.

Theorem 2.1. Let D be a strongly self-absorbing and A be any separable C∗-algebra.

Then, A is D-absorbing if and only if D admits a unital homomorphism to M(A)∞∩
A′.
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Note that since any strongly self-absorbing C∗-algebra has to be simple, it follows
that unless A = 0, the ∗-homomorphism above must be an embedding (of course, 0
is D-absorbing for any D).

We note that in the above theorem, if instead of strongly self-absorbing we take
D = Mp ⊕Mq for some p, q > 1, then D-absorption should be replaced by approxi-
mate divisibility. It is furthermore easy to show that if M(A)∞∩A′ admits a unital
homomorphism fromMp, then it also admits a unital homomorphism from the UHF
algebra Mp∞ .

A simple modification of Lemma 2.3 from [HW] gives us the following.

Lemma 2.2. Let A, D be unital separable C∗-algebras. Let G be a finite group

and α : G→ Aut(A) be an action. Suppose D admits a unital homomorphism into

(A∞∩A′)ᾱ. Then, D admits a unital homomorphism into (M(A×αG))∞∩(A×αG)
′.

In particular, it follows that if D = Mp above, then A ×α G absorbs Mp∞. If

D =Mp ⊕Mq for some p, q > 1, then A×α G is approximately divisible.

Remark 2.3. In the situation of Theorem 1.1, note that, since ψ is G-equivariant,
the Sn-invariant subalgebra of the copy of D⊗n in M(A)∞ ∩A′ is clearly contained
in the fixed point subalgebra of M(A)∞ ∩ A′ under the action of G. It will thus

suffice for us to show that there is a unital embedding of D into (D⊗n)
Sn

Henceforth, therefore, we assume that G = Sn, and that α is given by permutation
of the tensor factors.

We shall also require a result from [HRW] concerning C(X)-algebras. Recall that,
for a compact Hausdorff space X, a C(X)-algebra is a C∗-algebra A, along with
a fixed unital homomorphism from C(X) to the center of M(A). The fiber over
x ∈ X, denoted Ax, is the quotient A/C0(X \ {x})A.

Theorem 2.4 ([HRW], Theorem 4.6). Let D be a K1-injective strongly self-absorbing

C∗-algebra. Let X be a compact metrizable space of finite covering dimension. Let

A be a separable C(X)-algebra. It follows that A is D-absorbing if and only if Ax

is D-absorbing for each x ∈ X.

3. Proof of the main theorem

Lemma 3.1. For some m,n ∈ N, consider the action α of Sn on M⊗n
m given by

permutation of the factors. Suppose there are p, k ∈ N are such that p is prime,

pk|m and pk 6 |n!. Then, there exists a unital embedding of Mp into (M⊗n
m )

Sn.

Proof. Denote V = C
m. Note that M⊗n

m
∼= B(V ⊗n). We have a unitary representa-

tion U of Sn on V ⊗n given by

Ug(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξg(1) ⊗ ξg(2) ⊗ · · · ⊗ ξg(n)

Note that αg(a) = UgaU
∗
g . Thus, the fixed point subalgebra is

{Ug | g ∈ Sn}
′ ∼=

⊕

ρ∈Ŝn

Mµ(ρ)

where Ŝn is the set of (equivalence classes of) irreducible representations of Sn,
and µ(ρ) is the multiplicity of the representation ρ as a subrepresentation of U .

It suffices, therefore, to show that p|µ(ρ) for all ρ ∈ Ŝn. To this effect, we shall
compute the character χ of the representation U .
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Suppose g ∈ Sn is represented as ℓ disjoint cycles (including cycles of length 1).
Let ξ1, ..., ξm be an orthonormal basis for V . So, {ξi1⊗· · ·⊗ξin | i1, ..., in ∈ {1, ...,m}}
form an orthonormal basis for V ⊗n. So, we have

χ(g) =
∑

i1,...,in∈{1,...,m}

〈

ξi1 ⊗ · · · ⊗ ξin , ξg(i1) ⊗ · · · ⊗ ξg(in)
〉

=
∑

i1,...,in∈{1,...,m}

δ(i1,...,in),(g(i1),...,g(in)),

where the last expression is simply the number of n-tuples of elements from {1, ...,m}
which are fixed under the permutation g. An n-tuple is fixed if and only if it is
constant on each of the cycles of g, and there are ℓ of those. Thus

χ(g) = mℓ.

Recall that the characters of the irreducible representations of Sn are all integer-
valued (this follows immediately from the Frobenius character formula; see, for
instance, chapter 4 of [FH]). Thus, suppose ρ is an irreducible representation, and
its character is χρ, then

µ(ρ) =
1

n!
〈χρ, χ〉

Since all the entries of χ are integers divisible bym, and hence by pk, and χρ consists

of integer entries, we see that 〈χρ, χ〉 is an integer and pk| 〈χρ, χ〉, and since pk 6 |n!,
we have that p|µ(ρ), as required. �

The following is now immediate.

Corollary 3.2. If D is a strongly self absorbing UHF algebra, and p is a prime

which appears in the supernatural number associated to D, then there is a unital

embedding of Mp∞ into the fixed point subalgebra of D⊗n under the action of Sn.

Proof. The preceding lemma clearly yields an embedding of Mp into the fixed point
algebra of D⊗n, hence an embedding ofMp∞ into the fixed point algebra of (D⊗∞)n.
Identifying D with D⊗∞, we obtain the result. �

In view of Remark 2.3 and Lemma 2.2, we thus proved Theorem 1.1 for the case
of UHF algebras of infinite type.

For D the tensor product of O∞ with a UHF algebra B of infinite type, we
may apply Theorem 1.1 for O∞ and B separately, using ψ ◦ (idO∞

⊗ 1B)
⊗n and

ψ ◦ (1O∞
⊗ idB)

⊗n, respectively, in place of ψ to show that A×αG absorbs both O∞

and B. But then it is straightforward to conclude from Theorem 2.1 that A ×α G
also absorbs O∞ ⊗ B.

We now turn to the case of approximate divisibility. We first need a simple
technical lemma. The proof is done via a standard diagonalization trick, which we
leave to the reader. Any tensor product can be taken in the lemma below.

Lemma 3.3. Let A, D be C∗-algebras, and let α : G → Aut(A) be an action

of a finite group. Suppose D is separable, and let C be a separable subspace of

M(A)∞ ∩ A′. Suppose there exists a unital homomorphism

ψ : D⊗n → M(A)∞ ∩ A′

such that

ᾱg(ψ(d1 ⊗ d2 ⊗ · · · ⊗ dn)) = ψ(dg(1) ⊗ dg(2) ⊗ · · · ⊗ dg(n))
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for all g ∈ G and d1, ..., dn in D. Then, there exists a unital homomorphism

ψ′ : D⊗n → M(A)∞ ∩ A′ ∩ C′

which satisfies the same property with respect to the action ᾱ.

Corollary 3.4. Under the hypotheses of Theorem 1.1, for D a finite direct sum of

matrix algebras other than C, we have that A×α G is approximately divisible.

Proof. Choose two different prime numbers p, q greater than n. By a repeated
application of Lemma 3.3, we see that for any m, we can find unital homomorphisms
ψ1, ..., ψm : D⊗n → M(A)∞ ∩ A′ with commuting ranges such that

ᾱg(ψk(d1 ⊗ d2 ⊗ · · · ⊗ dn)) = ψk(dg(1) ⊗ dg(2) ⊗ · · · ⊗ dg(n))

for all k = 1, ...,m, g ∈ G and d1, ..., dn in D. Define ψ : (D⊗m)
⊗n

→ M(A)∞ ∩ A′

by ψ = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψm, then we have

ᾱg(ψ(d1 ⊗ d2 ⊗ · · · dn)) = ψ(dg(1) ⊗ dg(2) ⊗ · · · dg(n))

for all g ∈ G and d1, ..., dn in D⊗m. Of course, if D0 is any unital subalgebra of
D⊗m, we could restrict ψ to D0 to get an embedding with similar properties, using
D0 instead of D.

We recall that there is a natural number N such that for any natural number
k ≥ N there are positive integers a, b such that ap + bq = k, and therefore there is
a unital embedding of Mp ⊕Mq into Mk. Now, if ℓ > 1 is the size of the smallest
matrix algebra summand in D, the size of the smallest matrix algebra summand in
D⊗m is ℓm, and thus, for sufficiently large m, there exists a unital embedding of
Mp ⊕Mq into D⊗m. We may therefore assume that we had D ∼=Mp ⊕Mq to begin
with.

We now show that there is a unital embedding ofMp⊕Mq into ((Mp ⊕Mq)
⊗n)

Sn .
Note that we can obviously identify

(Mp ⊕Mq)
⊗n ∼=

⊕

v∈{0,1}n

n
⊗

i=1

Mpv(i) ⊗Mq1−v(i)

(where we write elements of {0, 1}n as functions from {1, 2, ..., n} to {0, 1}). Consider
the algebra

B =
n

⊕

k=0

(

M⊗n−k
p

)Sn−k

⊗
(

M⊗k
q

)Sk

where the superscript denotes that we are considering the fixed point subalgebra
under the corresponding action of the symmetric subgroup of Sn. For b ∈ B, we
denote by b(k) the component of b in the summand

(

M⊗n−k
p

)Sn−k

⊗
(

M⊗k
q

)Sk

⊆M⊗n−k
p ⊗M⊗k

q .

We have a unital embedding of B into
⊕

v∈{0,1}n
⊗n

i=1Mp1−v(i) ⊗Mqv(i) defined

as follows. For

a ∈
⊕

v∈{0,1}n

n
⊗

i=1

Mp1−v(i) ⊗Mqv(i)
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we denote by a(v) the v’th component of a ∈ (Mp ⊕ Mq)
⊗n, v ∈ {0, 1}n. Write

kv =
∑n

i=1 v(i), and let wv ∈ {0, 1}n be given by

wv(i) =

{

0 | i ≤ n− k
1 | i > n− k

Let g ∈ Sn be a permutation such that g(wv) = v, where we consider the naturally
induced permutation action of Sn on {0, 1}⊗n. We define

βg :M⊗n−kv
p ⊗M⊗kv

q →

n
⊗

i=1

Mp1−v(i) ⊗Mqv(i)

by

βg(a1 ⊗ a2 ⊗ · · · ⊗ an) = ag(1) ⊗ · · · ⊗ ag(n)

We note that if x ∈
(

M⊗n−k
p

)Sn−k ⊗
(

M⊗k
q

)Sk ⊆ M⊗n−kv
p ⊗ M⊗kv

q and g(wv) =
h(wv) = v then βg(x) = βh(x).

We can define

ψ : B →
⊕

v∈{0,1}n

n
⊗

i=1

Mp1−v(i) ⊗Mqv(i)

by

ψ(b)(v) = βgv(b(kv))

where gv is an element of Sn which satisfies that gv(wv) = v. In particular, if v = wv,
then we simply have ψ(b)(v) = b(kv).

For any g ∈ Sn, we have

αg(ψ(b))(v) = βh1β
−1
h2

(ψ(b)(g−1(v)))

where h1, h2 are such that h2(g
−1(v)) = wg−1(v) = wv, and h1(wv) = v. Note further

that ψ(b)(g−1(v)) = βh2b(kg−1(v)) and that kg−1(v) = kv, and thus

αg(ψ(b))(v) = βh1β
−1
h2

(βh2b(kv)) = βh1(b(kv)) = ψ(b)(v),

so indeed the image of ψ is fixed under αg for all g ∈ G.
It thus suffices to construct a unital embedding ϕ : Mp ⊕Mq → B. For this, it

will suffice, for each k = 0, 1, ..., n, to construct a unital homomorphism

ϕk :Mp ⊕Mq →
(

M⊗n−k
p

)Sn−k

⊗
(

M⊗k
q

)Sk

.

By Lemma 3.1, for k < n, we have a unital embedding of Mp into
(

M⊗n−k
p

)Sn−k ⊗

C1 ⊆
(

M⊗n−k
p

)Sn−k⊗
(

M⊗k
q

)Sk , and thus we may select ϕk to be such a non-injective
unital homomorphism, which annihilates the summandMq. For n = k, we have that
(

M⊗n−k
p

)Sn−k ⊗
(

M⊗k
q

)Sk ∼=
(

M⊗n
q

)Sn , and again by Lemma 3.1 we can choose a
unital embedding of Mq into this summand, and by annihilating the summand Mp,
we have a unital homomorphism from Mp ⊕ Mq. Put together, we get a unital
homomorphism ϕ =

⊕n
k=0 ϕk, which has a trivial kernel.

�

We now turn to the proof for D = Z.
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Proof of Theorem 1.1 for the case D = Z. We denote

E = {f ∈ C([0, 1],M2∞ ⊗M3∞) | f(0) ∈M2∞ ⊗ 1 , f(1) ∈ 1⊗M3∞}

By Proposition 2.2 from [R2], we know that one can embed E unitally into Z. Thus,

it suffices for us to construct a unital homomorphism from Z to (E⊗n)
Sn .

E can naturally be regarded as a C([0, 1])-algebra (the center of E can be identified
in the obvious way with C([0, 1])), where the fiber E0 isM2∞ , the fiber E1 isM3∞ , and
the fibers Et for 0 < t < 1 areM2∞ ⊗M3∞ . We may thus regard E⊗n as a C([0, 1]n)-
algebra, where the fiber over ~t = (t1, t2, ..., tn) is isomorphic to Et1 ⊗ Et2 ⊗ · · · ⊗ Etn
(see Proposition 1.6 of [HRW] for a discussion of these matters). We shall denote
E~t = Et1 ⊗ Et2 ⊗ · · · ⊗ Etn .

The unital inclusion

E⊗n ⊇
(

E⊗n
)Sn ⊇

(

C([0, 1])⊗n
)Sn ∼= C([0, 1]n/Sn) ∼= C(∆)

gives (E⊗n)
Sn and E⊗n the structure of C(∆)-algebras, where

∆ = {(t1, t2, ..., tn) ∈ [0, 1]n | t1 ≤ t2 ≤ · · · ≤ tn}.

Let ~t ∈ ∆ be a point, and let H be the isotropy group of ~t. Note that a function
f ∈ C0(∆r {~t}), thought of as a function on [0, 1]n, is a function which vanishes on
the Sn-orbit of ~t (i.e. on |G/H| points), and hence, thought of as a C(∆)-algebra,
we have E⊗n

~t
∼=

⊕

~s∈Sn(~t)
E~s. As the Sn action drops to this quotient, we have that

(E⊗n)
Sn

~t
⊆ E⊗n

~t
∼=

⊕

~s∈Sn(~t)
E~s and consists of the Sn-invariants elements there. Each

Sn-invariant element in
⊕

~s∈Sn(~t)
E~s is determined by its summand in E~t, and thus

(E⊗n)
Sn

~t
is isomorphic to EH

~t
.

Denoting {s1, · · · , sℓ} = {t1, · · · , tn}, where s1 < s2 < · · · < sℓ and each sj
appears kj times in the ordered n-tuple (t1, · · · , tn), we have that H is a direct
product of the symmetric groups Skj , j = 1, ..., ℓ, and

EH
~t

∼=

ℓ
⊗

j=1

(

E
⊗kj
sj

)Skj
.

It follows from Corollary 3.2 that
(

E
⊗kj
sj

)Skj
absorbs a UHF algebra (of type 2∞

or 3∞), and therefore, so does
⊗ℓ

j=1

(

E
⊗kj
sj

)Skj
. By [JS, Theorem 5], any infinite

dimensional UHF algebra is Z-absorbing, and therefore, EH
~t

is Z-absorbing as well.

We thus see that all the fibers of the C(∆)-algebra (E⊗n)
Sn are Z-absorbing.

From Theorem 2.4, since ∆ has finite covering dimension, we see that (E⊗n)
Sn must

be Z-absorbing, and in particular, admits a unital embedding of Z. Therefore, there

is a unital embedding of Z into (Z⊗n)
Sn , as required. �
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