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Abstract

Let G be a group generated by a finite &and equipped with the associated left-invariant word
metricds. For a Banach spack let a5 (G) (respectivelyy’f((G)) be the supremum over all > 0 such
that there exists a Lipschitz mapping (respectively anvegigint mapping¥ : G — X andc > 0 such
that for allx,y € G we have||f(X) — ()|l = c- ds(X ¥)*. In particular, theHilbert compression expo-
nent(respectively theequivariant Hilbert compression expongnf G is o*(G) = QEZ(G) (respectively
o*(G) = af (G)). We show that iX has modulus of smoothness of power typehena(G) < %
Heres*(G) Is the largesB > 0 for which there exists a set of generat8ref G andc > 0 such t%ﬁat for
allt € N we haveE[dg(W, €)] > ct, where{W};?, is the canonical simple random walk on the Cayley
graph ofG determined bys, starting at the identity element. This result is sharp wKenL,, general-
izes a theorem of Guentner and Kaminkeri [20], and answergstign posed by Tessefa [37]. We also
show that ifa*(G) > % thena*(GZ) > zj”(é()?l This improves the previous bound due to Stalder and
Valette [36]. We deduce that if we writgy) = Z andZ.1) = Zy t Z thena*(Zy) = 5%, and use
this result to answer a question posed by Tessefa In [37]eoretation between the Hilbert compression
exponent and the isoperimetric profile of the ball&inwWe also show that the cyclic lamplighter groups
C, 1 C, embed intd_; with uniformly bounded distortion, answering a questiosgubby Lee, Naor and
Peres in[[25]. Finally, we use these results to show that &tigk&ov type need not imply Enflo type.

1 Introduction

Let G be a finitely generated grdﬂ.p Fix a finite set of generatolS C G, which we will always assume
to be symmetric (.Lese S & s e S). Letdg be the left-invariant word metric induced Syon G.
Given a Banach spack let o (G) denote the supremum over all> 0 such that there exists a Lipschitz
mappingf : G —» X andc > 0 such that for allx,y € G we have||[f(x) — f(y)|| > c- ds(Xy)*. For
p>1we Writeaip(G) = ap(G) and whenp = 2 we writea;(G) = a*(G). The parametet*(G) is called
the Hilbert compression exponenf G. This quasi-isometric group invariant was introduced bye@oer
and Kaminker in[[20]. We refer to the papers][20] 11/, 3,[14/28736,[13] and the references therein for
background on this topic and several interesting apptioati

Analogously to the above definition, one can consideretiigivariant compression exponefﬁ(G), which
is defined exactly as}(G) with the additional requirement that the embeddingG — X is equivariant
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(see Sectiohl2 for the definition). As above, we introducenttationa’y(G) = of (G) anda™(G) = a(G).
p

Clearlyaf((G) < ay(G). In the Hilbertian case, whe@ is amenable we have*(G) = a*(G). This was
proved by by Aharoni, Maurey and Mityaginl[1] (see also Chkaj@ in [9]) whenG is Abelian, and by
Gromov for general amenable groups (see [14]).

The modulus of uniform smoothness of a Banach spaisedefined forr > 0 as

X+ 1yl +|x—7
o) = sup{ DI 3y = iy = 2. )

Xis said to be uniformly smooth if lig,g ”XT(T) = 0. FurthermoreX is said to have modulus of smoothness
of power typep if there exists a constai€ such thatox(r) < KzP for all = > 0. It is straightforward to
check that in this case necessailx 2. A deep theorem of Pisi€r [31] states thaXifs uniformly smooth
then there exists some<d p < 2 such thaiX admits an equivalent norm which has modulus of smoothness
of power typep. For concreteness we note thathas modulus of smoothness of power type {pj@}. See
Sectior 2 for more information on this topic.

Defines*(G) to be the supremum over @l> 0O for which there exists a symmetric set of genera®of G
andc > 0 such that for alt e N,

E[dg(W, €)] > ¢, (2)

where here, and in what follow$y\};° , is the canonical simple random walk on the Cayley grapfs of
determined byS, starting at the identity elemem In [4] Austin, Naor and Peres used the method of
Markov typeto show that ifG is amenable anX has modulus of smoothness of power typten

1
pB*(G)’
Ouir first result, which is proved in Sectibh 2, establishessiime bound als](3) for the equivariant compres-
sion exponentyﬁ"((G), even wherG is not necessarily amenable.

ax(G) < (3)

Theorem 1.1. Let X be a Banach space which has modulus of smoothness of iypee. Then

1

B G )

cxit((G) <

Since wherG is amenabler*(G) = o*(G), Theoreni 11 is a generalization &f (3) whénr:= L.

A theorem of Guentner and Kaminkér [20] states that*fG) > % thenG is amenable. Since for a non-
amenable grouf we haves*(G) = 1 (seel[25, 43]), Theorem 1.1 implies the Guentner-Kamittkeorem,
while generalizing it to non-Hilbertian targets (when theget spac& is a Hilbert space our method yields a
very simple new proof of the Guentner-Kaminker theorem—Remark 2.5). Note that both known proofs
of the Guentner-Kaminker theorem, namely the original pP¢20] and the new proof discovered by de
Cornulier, Tessera and Valette in [14], rely crucially oe flact thatX is a Hilbert space. It follows in
particular from Theorer 1.1 that for2 p < o, if of3(G) > 3 thenG is amenable. This is sharp, since in
Sectior 2 we show that for the free group on two generdtgrfor every 2< p < co we havea#p(IF‘g) = %
This answers a question posed by Tessera (see Question[28)in



Theoreni L1 isolates a geometric property (uniform smasbnof the target spagewhich lies at the heart
of the phenomenon discovered by Guentner and Kaminker. @uaf 5 a modification of the martingale
method developed by Naor, Peres, Schramm andfi8liein [28] for estimating the speed of stationary
reversible Markov chains in uniformly smooth Banach spa@éss method requires several adaptations in
the present setting since the random wak};°  is not stationary—we refer to Sectibh 2 for the details.

Given two groupss andH, the wreath produdB @ H is the group of all pairsf( x) wheref : H — G has
finite support (i.e.f(2) = eg for all but finitely manyz € H) andx € H, equipped with the product
(£.%(a.Y) = (z~ F@a(x'2).xy).

If Gis generated by the s& c G andH is generated by the s&tc H thenG H is generated by the set
{(egH,t) 1 teTIU{(6s,en) : s€ S}. Unless otherwise stated we will always assume @t is equipped
with the word metric associated with this canonical set ofegators (although in most cases our assertions
will be independent of the choice of generators).

The behavior of the Hilbert compression exponent under thneoducts was investigated in [3,/37] 36, 4].
In particular, Stalder and Valette proved|(in[[36] that

a’(G)
a*(G)+ 1

Here we obtain the following improvement of this bound:

a*(GrZ) > (5)

Theorem 1.2. For every finitely generated group we have,

2*(G) z% — 0'(GZ) > Zj‘zT()Gil ©6)
and
+*(G) s% — o"(G1Z) = " (G). )

We refer to Theorerh 3.3 for an analogous bounddgfG ¢ Z), as well as a more general estimate for
ap(G tH). In addition to improvingl(b), we will see below instancesahich () is actually an equality. In
fact, we conjecture that(6) holds as an equality for evergraable groujis.

Ershler [17] (see alsd [34]) proved thai(G Z) > “ﬁT*(G). More generally, in Sectidd 6 we show that

4+8°(G)

ﬁ*(GzH)z{ 1 2

if H has linear growth,
otherwise.

(8)
Since ifG is amenable the@ @ Z is also amenable (see elg.[[30] 24]) it follows that for anraabée group
G,
(G1Z) < — ©)
¢ S1+5©)
Corollary 1.3. If G is amenable and*(G) = ﬁ then
1 _ 227(G)
28<(GZ)  2a*(G)+ 1

a’(GZz) =
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In particular, if we define iteratively {g) := G and Gg.1) := Gy ¢ Z, then for all k> 1,

2k—1a,* (G)
-2 (@) 1

" (Gy) =

Corollary[1.3 follows immediately from Theordm11.2 and tloeibd [9). Additional results along these lines
are obtained in Sectidd 4; for example (see Rernark 3.4) weageithaty* (Z 0 Zz) = %

Forr € N let J(r) be the smallest constadt> 0 such that for every : G — R which vanishes outside the
ball B(e,r) = {xe G: ds(x €) <r}, we have

1/2 1/2
[Z f(x)z) <J. (ZZ 1f(sX) — f(x)|2] .

xeG XeG s€S

Let &(G) be the supremum over al > 0 for which there existg > 0 such that for altr € N we have

J(r) > cr?. Tessera proved in [37] that'(G) > a'(G) and asked if it is true that*(G) = a*(G) for every

amenable grous (see Question 1.4 in_[37]). Corollafy 1.3 implies that thewer to this question is
negative. Indeed, Corollafy 1.3 implies that the amenaldemZ @ Z) ¢ Z satisfies

cx*((ZzZ)zZ):%1 yet a*((ZzZ)zZ)s%. (10)

In fact, the ratio &G)/a*(G) can be arbitrarily small, since if we dendt@) := Z andZ,1) := Zy) 1 Z then
fork > 2,

yet d&(Zg) < (12)

1
221k k-1
To prove [11), and hence also its special casé (10), notehbatssertion ir (11) about (Z(,) is a conse-
quence of Corollarl 113. To prove the upper bound @Z@®) in (11) we note that iG is a finitely generated
group such that the probability of return of the standardioam walk{\W};°, satisfies

@ (Zw) =

P[W, = €] < exp(-Ct") (12)

for someC, y € (0,1) and allt € N, then

a(G) < 122 (13)
2y

This implies [11) since Pittet and Sél€Coste [32] proved that for ak > 2 there existg, C > 0 such that
for G = Z) we have for alk > 1

exp(—Cttl—i (log t)kf_l) <P[W =€ < exp(—ctﬁl—i (Iogt)kf_l). (14)

The bound[{IB) is essentially known. Indeed, assumeliinat- cr? for everyr > 1. Following the notation
of Coulhon [12], forv > 1 let A(V) denote the largest constafit> 0 such that for all2 € G with [Q] < v,
everyf : G — R which vanishes outsid@ satisfies

A- Z f(x)?2 < ZZlf(sx} — f)2

xeG xeG s€S
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Since forr > 2 we havelB(e,r)| < |S[", it follows immediately from the definitions thal(r)? < ﬁ

Theorem 7.1 in[[12] implies that there exists a constant 0 such that iek?” > |S| then,

Kt

dv oo log|S| oo

og 0g
tzf :f dr>lo |S|f J(r)?dr
s VAW _J. agsp@rE'eesl ) 0

Kt 2a+1
’ oos o, c?log|S|(( Kt ~
>C Iog|S|fl redr = 2a+1) |\iog[s] 1].

Lettingt — oo it follows that (22 + 1)y < 1, implying (13).

Remark 1.4. In [37] Tessera asserted that if the opposite inequalityI®) holds true, i.e. if we have
P[W; = €] > exp(—Kt?) for somey € (0,1), K > 0, and everyt > 1, then &(G) > 1 - y. Unfortunately, this
claim is false in generg.lndeed, if it were true, then using{|14) we would deduce that

a(((zrz)r 2)12) = & (Zw) 2 g

but from [11) we know that'@Zs)) < % Oninspection of the proof of Proposition 7.2 [n_[37] we dea the

argument given there actually yields the lower boun@Ga > 1;27 (note the squares in the first equation of
the proof of Proposition 7.2 ithfttp: //arxiv.org/abs/math/0603138v3]). Thus, the original argument
presented in [37] to establish the lower boun(Zaz) > % only proves that4ZZ) > % Nevertheless, the
lower bound ofé, which was used crucially in [4], is correct, as follows frauar Theoreni 1J2. After the
present paper was posted and sent to Tessera, he replaag@ihal argument in [37] for the lower bound
a*(ZZ) > :% by a correct argument, along the same lines as our proof afréh@1.2. <

In Section 4 we show that the cyclic lamplighter grodp: C,, admits a bi-Lipschitz embedding intg
with distortion independent af (here, and in what follow€,, denotes the cyclic group of orda). This
answers a question posed [in[26] and(ih [5]. In Sedtion 5 wethes@otion of Hilbert space compression
to show thaZ : Z has edge Markov typp for any p < %, but it does not have Enflo typefor any p > 1.
We refer to Sectiohl5 for the relevant definitions. This reshibws that there is no metric analogue of the
well known Banach space phenomenon “equal horm Rademagtep implies Rademachegy’ for every

p’ < p” (see [38]). Finally, in Sectiohl7 we present several opablems that arise from our work.

2 Equivariant compression and random walks

In what follows we will use< andx, > to denote, respectively, equality or the correspondinguadty up
to some positive multiplicative constant.

Let X be a Banach space. We denote the group of linear isometomanphisms ofX by IsomX). Fix a
homomorphisnmr : G — Isom(X), i.e. an action of5 on X by linear isometries. A functiori : G — Xis
called a 1-cocycle with respect #aif for every x,y € G we havef(xy) = #(X)f(y) + f(x). The space of all
1-cocycles with respect tois denotedZ(G, ). Equivalently,f € ZX(G, r) if and only if v — m(X)v + f(X)

is an action ofG on X by dfine isometries. A functiorf : G — X is called a 1-cocycle if there exists a

2This remark concerns the versitmtp://arxiv.org/abs/math/0603138v3] of [37]; after we informed the author of this
mistake, it was corrected in later versions pf |[37] .
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homomorphismr : G — Isom(X) such thatf € Z(G, ). A mappingy : G — X is called equivariant
if it is given by the orbit of a vector € X under an fine isometric action o6 on X, or equivalently
(X)) = 7(X)v + f(X) for some homomorphism : G — Isom(X) and f € ZXG, ). Note that since the
function x — n(X)v is bounded, the compression exponentgafnd f coincide. Therefore in order to
bound the equivariant compression exponer® af X it suffices to study the growth rate of 1-cocycles.

Recall the definition[{1) of the modulus of uniform smoottees(r), and thatX is said to have modulus of
smoothness of power typeif there exists a constalt such thapy(r) < KzP for all = > 0. By Proposition
7 in [8], X has modulus of smoothness of power typié and only if there exists a consta8t> 0 such that
for everyx,y € X

X+ YIP + X = YIP < 2[IX[P + 2SP |iylP. (15)

The infimum over alB for which (15) holds is called the-smoothness constant ¥f and is denote®,(X).

It was shown in[[8] (see also [118]) th&b(Lp) < y/p—1for2< p < oo andSp(Lp) < 1forl< p< 2 (the
order of magnitude of these constants was first calculat§ilj.

Our proof of Theorerh 111 is based on the following inequalitiiich is of independent interest. Its proof is
a modification of the method that was usedin! [28] to study tlakdv type of uniformly smooth Banach
spaces.

Theorem 2.1. Let X be a Banach space with modulus of smoothness of powemtyand assume that
f : G - Xis al-cocycle. Then for every timestN,

E[If(MDIP] < Cp(X)t- E[IIF(W)IIP],

22PS(X)P

where G(X) = ==

Theorem 2.1l shows that images{@#};°, under 1-cocycles satisfy an inequality similar to the Markpe
inequality (note that (Wp) = f(e) = f(e-e) = n(e)f(e) + f(e) = 2f(e), whencef(e) = 0). We stress that
one cannot apply Markov type directly in this case becaugbeofack of stationarity of the Markov chain
{f(W)}:2,- We overcome this problem by crucially using the fact tha a 1-cocycle.

Before proving Theorein 2.1 we show how it implies Theotem 1.1

Proof of Theorerh 1110bserve that {4) is trivial itxf((G) < %) (sinceps*(G) < 1). So, we may assume that
*(G) > %) Fix lp <a< af((G) and O< B < B*(G). Then there exists a 1-cocycfe: G — X satisfying

xyeG = de(xy)* < If(x) - fYI < ds(x. ).
In addition we know thaE [dg (W, €)] > t?. An application of Theorermn 2.1 yields
E [If (WOIIP] < tE[IIf (Wo)IIP] = tE [IIf (W) - F(E)IIP] < tE [de(WA, ©)P] = t. (16)
On the other hand, singar > 1 we may use Jensen’s inequality to deduce that
E[If(WIP] = E [IIf (W) — f(&)IIP] 2 E [do(We, ©™'] = (E [da(Wh, €)] )™ 2 tP. 17)

Combining [16) and (17), and letting— oo, implies thatpag < 1, as required. i
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Remark 2.2. Theoreni LIl is optimal for the class lof spaces. Indeed I8 denote the free group on two
generators. We claim that for evepy> 1,

@p(F2) = max{%, ?1)} (18)

Observe that since (trivially}*(F2) = 1, Theoreni 1]l implies thatf(Fz) < max{%, %} In the reverse
direction Guentner and Kaminker [20] gave a simple consraaf an equivariant mapping : F» — L,
satisfyingl|f(x) — f(Y)llp > dg, (X, y)/P for all x,y € F,. This implies [I8) for 1< p < 2. The case > 2
follows from Lemmd 2.3 below. <

Lemma 2.3. For every finitely generated group G and everg g we haveaﬁ(G) > a*z"(G).

Proof. In what follows we denote the standard orthonormal basi&@f) by (g; ‘J"; ;- Lety denote the

standard Gaussian measure @n Consider the countable produ@t := C™, equipped with the product
measure: = yN. Let H denote the subspace b(Q, x) consisting of all linear functions. Thus, if we
consider the coordinate functiogg: Q — C given byg(z, 2, . ..) = z; thenH is the space of all functions
h:Q — C of the formh = Z‘j’il a;gj, where the sequence;f;’, c C satisfiesz‘;‘;1 |aj|2 < o0, i.e. ('31]-)‘1?‘;1 €

£>(C). Note that we are using here the standard probabilistic($ae [15]) thaE‘j’iO a;jg;j converges almost

everywhere, and has the same distributior(§$:’1 |ai|2)1/2 01 (since{gj}‘]?‘;l are i.i.d. standard complex
Gaussian random variables). This fact also implies thagv¥ery unitary operatdd : £»(C) — £2(C),

(o)

e Q,
k=1

Uz:= [Z(Ua(, &)z
k=1

is well defined for almost € Q, and therefordJ can be thought of as a measure preserving automorphism
U : Q — Q (we are slightly abusing notation here, but this will notateeany confusion).

Fix a unitary representation: G — Isom(£(C)) and a cocycle € Z1(G, r) which satisfies

xyeG = da(%y)" s If(X) = fWlleyc) < da(X.Y). (19)

Forx € G andh € Lp(Q,u) definer(x)h € Lp(Q,u) by n(X)h(2) = h(z(X)2). By the above reasoning,
sincen(x) is a measure preserving automorphism@fy), 7(x) is a linear isometry ok ,(Q2, 1), and hence
71 G — Isom(Lp(Q,u)) is a homomorphism. Note that since all the element$idiave a Gaussian
distribution, all of their moments are finite. HenldecC L (€2, 7). We can therefore define: G — Lp(2, 1)

by F(X) = £524(f(x).€))gj € H C Lp(Q. ). Itis immediate to check that ¢ ZX(G,7) and that for every

X,y € Gwe have”f~(x) - f~(y)H = 10l @ - 1T () = FWlle,(c)- Henceratisfies[(IlQ) aswell. O

Lp(Qall)
Remark 2.4. LemmalZ.8 actually establishes the following fact: theristexa measure spac®,() and

a subspacél C (Mps1 Lp(€2, 1) Which is closed inLp(€, i) for all 1 < p < co and such that thep(Q, u)
norm restricted taH is proportional to thd »(Q, x) norm. For any grougs, any unitary representation
n: G — IsomH) can be extended to a homomorphigm G — Isom(Ly(€, 1)). The spaceH is widely
used in Banach space theory, and is known as3hessian Hilbert spaceThe above corollary about the
extension of group actions was previously noted In [6] urideradditional restriction that¢ p ¢ 2Z, as a
simple corollary of an abstract extension theorem due taidd22] (alternatively this is also a corollary of



the classical Plotkin-Rudin theorem [33) 35]). Lenima 2 @hthat no restriction op is necessary, while
the theorem of Hardin used inl[6] does require the aboveictstr on p. The key point here is the use of
the particular subspade C L(Q, 1) for which unitary operators have a simple explicit extendo a linear
isometric automorphism dfp(€, i) for any 1< p < 0. <

We shall now pass to the proof of Theoreml2.1. We will use umfemoothness via the following famous
inequality due to Pisier [31] (for the explicit constantd&lsee Theorem 4.2 in [28]).

Theorem 2.5(Pisier) Fix 1 < p < 2and let{My};_, € X be a martingale in X. Then

S (X)p n-1
i1 D ElIMie — MdP].
77 k=0

E [IIMn = MollP] <

Proof of Theorerh 211By assumptionf(x) € Z(G, n) for some homomorphism : G — Isom(X). Let
{0k, b€ 1.i.d. random variables uniformly distributed o&rThen fort > 1 W; has the same distribution
as the random produet; - - - o¢

For everyt > 1 the following identity holds true:
t
2f (W) =Z7r Wj_1) f Zn (20)

We shall prove[(20) by induction dn Note that everyk € G satisfies 0= f(e) = f (x‘1 . x) = 7(X)~1f(X) +
f(x2),ie. f(x) = —n(x)f (x°t). This implies [2D) when = 1. Hence, assuming the validity 6T {20) for
we can use the identityf2xy) = 2f(x) + =(x) f(y) - 7(xy) f (y*) to deduce that

2f (\Nt+l) = Zf(\NtO'Hl)

2 (W) + (W) F(07t41) — (Wi f (a;fl)
t t

= 2 r(Wia) Zn ) + (W (o) = 7(When) F (07h)
j=1 =1
i+1 t+1
= 2 m(Wia) o) = 2w (Wi) (7).
=1 =1
proving (20).
Define . .
Me= > 7 (Wiea) (F (o) =v) = D m(ora o) (F (o) = V).
=1 j=1
and



wherev := E [ f(W;)] € X. Note that sinc& is symmetrico-j‘l has the same distribution ag, and therefore
N; has the same distribution &. Moreover, [20) implies that2(W,) = My — 7(W,)N; — v + 7(W,)v. Since
n(W) is an isometry, we deduce that
2PE[IIf (W) IP] < 4P E[IMdIP] + 4P E [IINGIP] + 2- 4P
=2 4P [IMIP] + 2 4P HBLFW)]||” < 2- 4P B [IMP] + 2- 4P B[ (Wa)IP]. (1)

Note that for every > 1,

E[Mt|0'0,...,a't_1] =E Zﬂ((ro---o-j_l)(f((rj)—v)|0'0,...,0't_1
=1

= Mt—1+7T(0'0”‘0't—1)(E[f(ij)]—V) = Mi_1,

Hence{My}2, is a martingale with respect to the filtration induced{by},’ ,. By theoreni 2.5,

—
=

Sp(X)P
E[IMdIP] < 2;2 0 7 D ElMes = MdP] = > E[lf(0w) - vIP]
k=0 k=0
Sp(X)P 2PS,(X)P
< zpﬁg_) 7 2L E WP + IMIP) < pr—(_)l AE[IFWDIPT. (22)

Combining [21) and{22) completes the proof of Theokem 2.1. m|

Remark 2.6. When the target spaceis Hilbert space one can prove Theollem 1.1 via the followingpker
argument. Using the notation in the proof of Theolem 2.1 wetkat for eaclt € N the random vari-
ablesW; ! = oyt o7t andW Wi = 041 - - - o are independent and have the same distributiontas

ThereforeY; = f (Wt) andYs = f (W 2War) = (W 2) f(War) + (W, 2) are iiid., and hence satisfy
B[t (Wl = B[ (Wi ) 1 (Wzt)||2] = B[IY1 - Yal?| = B [IVal2 - 2(Y1, Y2) + V2l
= 2B[If(WOIP| - 2[[E [FW)]|]* < 28 [ F I
By induction it follows that for everk € N,
B[ oo ?| < 2B 1T (Wl

This implies Theorerh 111, and hence also the Guentner-Kaniteorem[[20], by arguing exactly as in
the conclusion of the proof of Theordm11.1. <

3 The behavior ofL, compression under wreath products

Given two groups$s, H let 45 (H) denote the wreath produGt: H where the set of generators®fis taken
to beG \ {€} (i.e. any two distinct elements & are at distance 1 from each other). With this definition it is
immediate to check (see for example the proof of Lemma 2/8]ithat

(£.1).(9.]) € Z6(2) = dz@((1.1).(9. 1) < li - jl+ max{lkl + 1 : (k) # g(k)}. (23)

The casds = C, corresponds to the classical lamplighter grougHon
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Lemma 3.1. For every group G we have*(%s(2)) = 1.

Proof. As shown by Tessera in [37d,(C2:Z) = 1 (we provide an alternative explicit embedding exhibiting
this fact in Sectionl4 below). Therefore for everye (0, 1) there is a mapping : C, Z — L satisfying

(X9 I)’ (y’ J) € C2 L = dCzZZ((Xa I)’ (y’ j))a s “0(X, I) - e(y’ J)||2 < dCzZZ((X9 I)’ (y’ J)) (24)

Let {e;)c be i.i.d. {0, 1} valued Bernoulli random variables, defined on some proibalsibace 2, P). For
every f : Z — G define a random mapping : Z — C, by e¢(K) = e¢). We now define an embedding
F: %(Z) - Ly(Q,Ly) by

F(f,i) == 0(et,i).

Fix (f,1),(9, ]) € Z(Z) and letkmax € Z satisfy f(kmax) # 9(Kmax) andlkmax = max{lk| : f(k) # g(k)}.
Then
IF(F,1) = F (@ I o) = E 1661, 1) = 0(eq, D] < E [depz((et. 1), (eg, )]
(1 - i1+ maxiik+ 1 : 219 # sa9))| < [ = i1 + e + 7] B direar (). (@ D)

In the reverse direction note that sin€&max) # 9(Kmax) With probability% we havest (kg # Egkna)-
Therefore
- N2 , ai2] @ : N2
IF(E.i) = F(@ DI, = E[I10(1.1) - 0(eg. DIB] 2 E [deyz((er. 1), (5g. )]
(7<) i i 2 H H (01 (7)) : . (01
= E[(u — jl+ max{ld + 1 2149 # £gi}) ] 2 (i = 1+ ke + D] 'S de@(F.1). (0. )"
This completes the proof of LemrhaB.1. m|

Remark 3.2. In [37] Tessera shows thatlit has volume growth of ordet then
. 1
a" (Zs(H)) > g (25)

Note that Tessera makes this assertion#@(H), whereF is finite (see Section 5.1 ih [37], and specifically
Remark 5.2 there). But, it is immediate from the proofLinl [8¥dt the constant factors in Tessera’s embed-
ding do not depend on the cardinality I6f and therefore[(25) holds in full generality. Observe t2&) (s

a generalization of Lemnia_3.1, but we believe that the arg@iine_Lemmd 3.1l which reduces the problem
to the cas& = C, is of independent interest.

The caseH = Z2in (28) can be proved via the following explicit embeddingr Bimplicity we describe it
whenG = C,. Fix0 < a < 3 and let

{vy,r,g cyeZ? reNU{0), g:y+[-rr]>—>{0,1}, gz O}

be an orthonormal system of vectord in For simplicity we also writey, o = 0. definey : CZ? — R%sL,
by
o max{1 — 2r/[IX = Yile, O}

p(f.0 =xo| >

%—2&
yez?\{x} r=0 X - ll&
An elementary (though a little tedious) case analysis shbais/ is Lipschitz and has compressian <«

yr, f TH_”]z .
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The following theorem, in combination with Lemrfa13.1, caméaTheoreni_1]2 as a special case (note
that [7) follows from[(26) since clearly*(G t H) < a*(G)).

Theorem 3.3. Let G, H be groups and - 1. Then

pap(G)ap(Ls(H))
pap(G) + pap(Le(H)) -1

min{cx;(G),a;(.,SfG(H))}z%) = aj(GtH) >
and

min{ap(G), ap(Zs(H))) s% = (G H) 2 min{ap(G), ap(Le(H))}. (26)

Proof. We shall start with some useful preliminary observationst (X, dx) be a metric spacey > 1, and
let Q be a set. We denote by (Q2, X) the metric space of all finitely supported functiohs: Q — X,
equipped with the metric

1/p
dryia(f. Q) = [Z (). g(w))p) .

we

It is immediate to verify that for everyf(x), (g,y) € Gt H we have

dGZH((f’ X)? (g’ y)) = df/G(H)((f’ X)’ (g’ Y)) + dfl(HaG)(f’ g) (27)

Indeed, it sifices to verify the equivalence (27) whem ) is the identity elemente(€) of G H. In this
casel[(2l7) simply says that in order to move fraye] to (f, X) one needs to visit the locatiomss H where
f(2 # e, and in each of these locations one must move wi@ifnom e to the appropriate group element
f(2 € G.

Another basic fact that we will use is that for evefy X), (g,y) € Gt H,
ize H: (2 # 9@} < dzer)((F. %, (@, ) (28)

Once more, this fact is entirely obvious: in order to movedg(H) from (f, X) to (g, y) once must visit all
the locations wherd andg differ.

We shall now proceed to the proof of Theorem 3.3. &k a,(G) andb < a},(Z(H)). Then there exists a
functiony : G — Lp such that

uveG = dg(u,v)® < Iy (u) — yW)llp < ds(u, V). (29)
We also know that there exists a functipn -#g(H) — L, which satisfies

uve Zo(H) = degUv)° s 1lg(u) — oMlip S dggmy(U, V). (30)

Define a functiorF : GXH — Ly @ {p(H, Lp) by

F(f,x) =¢(f, )@ (yo f).

11



Fix (f,x),(9.y) € Gt H and denoten := dg;n)((f, X), (9,y)) andn := dg, ) (f,9). We know from [(Z7)
thatdg,1((f, X), (8. y)) < m+ n. Now,

1/p
IF(f, %) = F(@ Wllp = |llg(f, %) - ¢(@ VIE + > (D) - w(g(z))nﬁ]

zeH
@9 (E0)
<le(f, ) = @@ Wlp + > IW(F@) —w(@@lp = m+n = dam((f, %), (G.Y).
zeH
In the reverse direction we have the lower bound
@@ , o)’
IF(.)-F@Wlp 2 |[mPP+ > ds(f@.0@)*| . (31)
zeH

If ap < 1thenY n ds(f(2),9(2)2P > (3 ,en da(f(2), 9(2))?P = n?P and [31) implies that

IF(E,%) = F@ Wil = (MPP +1P)7" 2 (m+ n)™a8) 2 g ((F, %), (g, )™ (32)

Assume thaap > 1. It follows from (28) that|{ze H: f(2 # g(z)}| < m. Thus, using Holder’s inequality,
we see that

a

ap p
2, delf (2.9 > e [EH] dG(f(z),g(z»] - (33)

napP

Note thatmPP + 1=
separately. Hence,

ab;)2 i i i ap ap
> narbp1 which follows by considering the casas > nardr1 andm < napbp-I

31 ap \1/p .
IF(f,X) = F(@,9)llp )2@ (mbp+ mr;H) > max{mb, nap++fu}

2 (m+ " P ] < deu((f, %), ()Pl (34)
Note that wherap > 1, if b < apfggl thenbp < 1. Therefore[(32) and (B4) imply TheorémI3.3. O

Remark 3.4. Theoreni 3.B, in combination with Remark13.2 and the restil&eation 6 below, imply that
if G is amenable anHl has quadratic growth then

a"(GrH) = min{%,a*(G)}. (35)
Thus, in particular,
1
% 2\ _ o« 2\ _ =
" (Co2Z?) =" (z22%) = 5

To see[(3b) note that by Theordm16.1 in Secfibn 6 we @ : H) = 1. Using [3) we deduce that
a*(GH) < % and the inequality* (Gt H) < o*(G) is obvious. The reverse inequality [n {35) is a corollary
of Theoren 3.8 and Remark 3.2. <
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4 Embedding the lamplighter group into L,

In this section we show that the lamplighter group onrkmycle, C, : C,, embeds intd_; with distortion
independent of. This implies via a standard limiting argument that a3 Z embeds bi-Lipschitzly into

L1. We present two embeddings©@$:C,, into L;. Our first embedding is a variant of the embedding method
used in[5]. In[[5] there is a detailed explanation of how seambeddings can be discovered by looking
at the irreducible representations@f : C,,. The embedding below can be motivated analogously, and we
refer the interested reader [0 [5] for the details. Here wsepuesent the resulting embedding, which is very
simple. Our second embedding is motivated by direct gedmetasoning rather than the “dual” point of
view in [5].

In what follows we slightly abuse the notation by considgratements X, i) € C,: C, as an index € C,,
and a subsex c C,,. For the sake of simplicity we will denote the metric Gpe C, by p. The metricdc,
will denote the canonical metric on timecycle C,. It is easy to check (see Lemma 2.1[in [5]) that

(X’ J)’ (y’ 5) € C2 t Cn == p((X, J)’ (y’ f)) = an(j’ k) + IEQXaA))E(an(O’ k) + 1) (36)

First embedding of C; : C,, into L;. We denote by : C, — C, the shifta(j) = j + 1. Let us writef
for the family of all arcs (i.e. connected subsetsigqfof length|n/3] (of which there aran). We define an

embeddingf : C22Ch — P, P ag €2(Cn) by

N nak(r , LK+ J) +nle i (k+ )
) =P ((_1)|A ol s )kgcn .

lel Acl

It is immediate to check that the metric @a:C,, given by||f (X, j)— f(X, j)l1 is CoCp-invariant. Therefore
it suffices to show thatf(x, j) — f(0, 0)ll1 < p((X, ), (0, 0)) for all (x, j) € C2 2 C,,.

Now,

X

||f(X, J) _ f(@, O)”l Z |{k € Cn . 1I (k) + ll (k+ J) = 1}| 4 Z 1| (k) + nlCn\I(k)
lel ACl

n2n/3 = n22n/3
|ANaX(x)| odd
. 1
= 4o, (0.1) + = D, D lIAS T IAN @ () odd)] - (1K) + e (K)
n lel keCy
. 1
= A, @D+ D (LK) +nleu(K). (37)
leI keCp
1NaX ()20

It suffices to prove the Lipschitz conditidii(x, j) — (0, 0)ll1 < p((X, j), (0, 0)) for the generators af,:C,,
i.e. when &, j) € {({0},0),(0,1)}. This follows immediately from[(37) since whenr, () = (0, 1) then the
second summand ifL(B7) is empty, and therefidi@, 1) — f(0,0)|l1 < 1 = p((0, 1), (0, 0)), and

I£101,0) £(0, 00l = = > 3" (1:() + il (K) = 1.5 (10}, 0), (0.0))

lel kel
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To prove the lower bounflif (x, j)— (@, 0)ll1 = p((X; j), (0, 0)) suppose that € xis a point ofx at a maximal
distance from 0 irC,. By considering only the terms iiL{B7) for whiaf(¢) € | we see that

1101 - 10,0 2 de, 0 1)+ 5 3 3 (1409 + ey ()

leT kea=((I)
L1 _ 1 - . .
=de, (0. ) + = D [T na M)+ = > o )\ 1] 2 do,(0.1) + (1 + de, (0.0)) 2 p (x. ). (0.0)).
lel lel
This completes the proof thditis bi-Lipschitz withO(1) distortion. m|

Remark 4.1. Fix se€ (1/2, 1) and consider the embedditig C,:C, — EBIE] EBAQ £2(Cy) given by

fe )= DP (~1)A 0L L(k+ ) + VA [de, (k+ j.1)]*?

n/6
lel Acl n2 keCp

Arguing similarly to [5] (and the above) shows thgt, v)° < ||f(u) — f(V)|l2 < p(u,V) for all u,v € C2 Cy,
where the implied constants are independemt &y a standard limiting argument it follows that(C»Z) =
1. This fact was first proved by Tesseralinl[37] via figtent approach. <

Second embedding ofC, ¢ C,, into L;. Let J be the set of all arcs i€,. In what follows forJ € J we
let J° denote the interior of. Let{vyja: J € 9, A C J} be disjointly supported unit vectors In. Define

f :szCn—>C®L1by
. 27ij 1
f(X, j) = (ne “J ) (&) [ﬁ Z 1{]¢J°}VJ’XQJ} .
Jeg
As before, since the metric &y : C,, given by||f(x, j) — f(X, j’)Il1 is C, t Cy-invariant, it suifices to show

that[|f(x, j) - £(0,0)il. < p((x, j), (0,0)) for all (x, j) € C2 2 Cy. Now,

. . 1
(% j) = £(@,0)l1 =< dc, (O, j) + n Z || Ljea)Vaxna = LiogaeyVaol,

JeT
L1 1
= e, (0. ) + — D ies) = Liogan | + = D (Ljew + Loean) . (38)
JeJ Jeg
XNJ=0 XNJ#0

We check the Lipschitz condition for the generatd¥slj and (0O}, 0) as follows:

1
1£0.1) - 1.0, D1+ = |{J eJ: 0N = 1}| = 1= p((0, 1), (0,0)),
and
@9 1
1£(01.0) - £(0.00h B = |13 € 7 : 0 3\ 3| = 1= p(((0), 0) (0, 0).

Hencel|f(x, j) = £(0,0)ll1 < p((, }), (0,0)) for all (x, j) € C22 C,,.
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To prove the lower bounflif (x, j)— (@, 0)ll1 = p((X; j), (0, 0)) suppose that € xis a point ofx at a maximal
distance from 0 irC,. Then

_ @) 1 1 R
116 =10, 0l 2 de, (0, P+ Z(l{jw}+1{0¢J°})Xdcn(0, J)+ﬁ|{~]€53 £ed A {0, 1\ J° #0)
JeT
ted

2 dc, (0, J) + = dc, (0, ) +dc, (0. 6) + 1 = p((%, }), (0,0)), (39)

+1Mn-10)
n

Where in [39) we used the fact that the interfigsb] : a< {0,...,¢}, be{¢,...,n—1}} do not contain O

in their interior, but do contaif. O

Remark 4.2. A separable metric space embeds with distorfioimto L, if and only if all its finite subsets
do. Therefore our embeddings 16g : C,, into L1 imply thatC,Z admits a bi-Lipschitz embedding intq.
This can also be seen via the explicit embeddts, j) := j ® (¥ (X, j) — ¥(0, 0)), where

FOG) = ) Mkeopotke) + | V(oo Kxn(-oo k-
k> j k<j

and{vja : J € {[k, 00)}kez U {(—o0, Kl }kez, A C J} are disjointly supported unit vectors in. <

5 Edge Markov type need not imply Enflo type

A Markov chain{Z:}*, with transition probabilitiesj := P(Z,1 = j | Z; = i) on the state spad4,...,n} is
stationaryif = := P(Z; = i) does not depend drand it isreversibleif 7; aj = 7j aji for everyi, j € {1,...,n}.
Given a metric space(dy) andp € [1, «), we say thaK hasMarkov type pf there exists a constakt > 0
such that for every stationary reversible Markov cHa@if®, on{1,...,n}, every mappind : {1,...,n} — X
and every time € N,

E[dx(f(Zy). f(Z0))P] < KPLE[dx(f(Z1). F(Z0))"]- (40)

The least sucK is called the Markov typ@ constant o, and is denotet,(X). Similarly, givenD > 0 we
let MgD(X) denote the least constaftsatisfying [40) with the additional restriction théit (f(Zo), f(Z1)) <
D holds pointwise. We caIMﬁD(X) the D-bounded increment Markov type constant ofX. Finally, if
(X, dx) is an unweighted graph equipped with the shortest pathartben theedge Markov type ponstant
of X, denotedVI,e)dge(X), is the least constat satisfying [4D) with the additional restriction th&Zo) f (Z1)
is an edge (pointwise).

The fact thal., has Markov type 2 with constant 1, first noted by K. B@all [7]ldws from a simple spectral
argument (see also inequality (8) [N [28]). Since fok [1,2] the metric spacéLy, [|Ix— y||§/2) embeds
isometrically intoL, (see [[42]), it follows thal_, has Markov typep with constant 1. Fop > 2 it was
shown in [28] thatl, has Markov type 2 with constan@( yp). We refer to[[28] for a computation of the
Markov type of various additional classes of metric spaces.

A metric spaceX, dx) is said to havéEnflo type @f there exists a constamt such that for every € N and
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everyf : {-1,1}" - X,
E [dx(f(e), f(~£))P]

n
p
STPZE[dx(f(sl,...,8j_1,8j,8j+1,...,8n), f(sl,...,sj_l,—sj,8j+1,...,gn)) ], (41)
=1

where the expectation is with respect to the uniform measnfe 1, 1}". In [29] it was shown that Markov
type p implies Enflo typep. We define analogously to the case of Markov type the notidrizoonded
increment Enflo type and edge Enflo type.

The notions of Enflo type and Markov type were introduced aslim®ar analogues of the fundamental
Banach space notion &ademacher typene refer tol[[16 10,]7. 29, 217, 28] and the references thdogin
background on this topic and many applications. In Banaelgespheory the notion analogous to bounded
increment Markov type is known asqual norm Rademacher typdt is well known (see[[38]) that for
Banach spaces equal norm Rademacher type 2 implies Rademnigpoh 2 and that for k p < 2 equal
norm Rademacher typp implies Rademacher typg for everyq < p (but is does notgenerally imply
Rademacher typp). It is natural to ask whether the analogous phenomenorstiald for the above metric
analogues of Rademacher type. Here we show that this is ectite.

It follows from Theoren{ 12 that*(Z:Z) > :% Therefore for every < a < % there is a mapping
F:Z Z — L, such that

XY E€ZIZ = dzz(Xy)" SIIF(X) = F)ll2 < dzz(X,y).
Fix a stationary reversible Markov chaj@:};°, on {1,...,n} and a mappindg : {1,...,n} — ZZ such
thatdzz (f(Zo), f(Z1)) < D holds pointwise. Using the fact thap has Markov type 2 with constant 1 we
deduce that
E|dzz(1(20), F(Z0))*"] S BIIF o £(Z) = F o F(Zo)ll3| < tE[IIF o £(Z2) - F o f(Zo)I3]
< UE [dzz((Z2). £(20))°] s D*&NE [da(f(20). 1(20))*]

Thus
MsP(z:Z) s D

. . 4
In particularZ @ Z hasD-bounded increment Markov tygeand edge Markov type for everyp < 3.

On the other hand we claim th&e Z does not have Enflo typefor any p > 1. This is seen via an argument
that was used by Arzhantseva, Guba and Sapirlin [3]nFxXN and definef : {-1,1}" - Z:Z by

2n
f(e1,...,&n) = [ Z 8j_nn5j,0], (42)
j=n+1
whered; is the delta function supported atThen for everyg e {1, 1}",
dzz(f(e), f(-g)) = n? (43)
and for everyj € {1,...,n},
dZZZ (f(815 ceey 8j—la 8]5 8j+la ceey 3n), f(gl’ ey 8]—1a _8ja 8j+15 ceey 8”)) = n. (44)

Therefore ifZ2Z has Enflo typep, i.e. if (@1) holds true, then for everye N we haven?? < nP*1, implying
thatp < 1. m|
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6 A lower bound ong*(Gt H)

In this section we shall prov&l(8), which is a generalizatibrshler's work [17]. Namely, we will prove
the following theorem:

Theorem 6.1. Let G and H be finitely generated groups. If H has linear gro(mhequivale*ntly, by Gro-
mov’s theorem[[19], H has a subgroup of finite index isomarbiz) theng*(G ¢ H) > “BT(G). For all
other finitely generated groups H we ha&&G : H) = 1.

Assume thaG is generated by a finite symmetric § € G andH is generated by a finite symmetric set
Sy € H. We also letes, ey denote the identity elements GfandH, respectively. Givemy;, g, € G and
h € H define a mappindg ,, : H — G by

0 if x=ey,
fhe=1{ g ifx=h
ez otherwise

It is immediate to check that the set
SGiH = {fé]l,gz . 01,02 € Sg andh e SH}
is symmetric and generat& H.

From now on, we will assume that the metrics GnH and G H are induced bySg, Sy and Sg4,
respectively. Analogously we shall denote {lka}k:o, {WkH}kzo and{WkG’H}k:0 the corresponding random
walks, starting at the corresponding identity elements.

Theorem 6.2. Assume that for songee [0, 1] we have
E[ds (WS es)] 2 . (45)
where the implied constant may depend en B H has linear growth then
1+8
E [dem (W, g )| 2 n'Z . (46)
If H has quadratic growth then

, n
E [dGzH (W,? H, erH)] 2 W 47

If the random walWi{}” is transient then

E [dew (WS, egn )| 2 n. (48)
The implied constants i@8), (47) and (48) may depend on&and .

Theoreni 6.1 is a consequence of Theokem 6.2 since by Vamgadlebrated result [39, 41] (which relies
on Gromov’s growth theorem [19]. See [24] and][43] for a dethidiscussion), the three possibilities in
Theorenl 6.P are exhaustive for infinite finitely generatesgsH. In the case when the random walk on
H is transient, Theorein 8.2 was previously proved by Kainaehoand Vershik in[[24].

The following lemma will be used in the proof of Theorem|6.2.
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Lemma 6.3. Define for ne N,

4/n if H has linear growth,
Yu(n) :=1{ 1l+logn if H has quadratic growth,
1 otherwise.
Then
E“{O <k<n:W!'= eH}|ﬂ] > yn(ny,
and

E“\N['E;n]” 2 ﬁ’

where Wi | = {W(')*, . Wr',*}

Proof. By a theorem of Varapoulos [40,141] (see alsd [23] and Theatdnin [43]) for everyk > 0,

—L_ if H has linear growth
PIWH =ey| +P[WH, =ey| <{ vkt ’
[ = e + 2 Wil = e { = if H has quadratic growth,

and ifH has super-quadratic growth thgly’ ; P [WH = eH] < o0, Hence, if we denote

n

o= [fosk<n: W =eu)| = 3 L,

then it follows that

Using Holder’s inequality we deduce that

2= 1 1 1 2-28

n(0) = B0 =07 % | < (2P () < (=) e ®.

This simplifies ta8 [Xf| 2 wn(n)?, which is precisely[(9).

(49)

(50)

(51)

(52)

We now pass to the proof df (50). For evédry {1,...,n} denote by, ..., Vi the firstk elements oH that

were visited by the wallfWJH}(;: . Write
Yy = |{o§ j<niwh e {vl,...,vk}}|.
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Then o
EH{Osjsn:WjH:VJ H Z D ).

=1 r=0

M=

E[Yd] =

Therefore for everk € N,

W < k| <P[Yizn] < E[:k] < kmr.](n)‘

Hence we can choodex

YH (n)

for whichP “ o]

> k] > £, implying (50). O

Proof of Theorerh 612We may assume that > 4. LetQy : Gt H — H be the natural projection, i.e.
Qu(f,X) = x. Also, for everyx € H let Qf : Gt H — G be the projectiorQ¥(f,y) = f(x).

Fix n € N. For everyh € H denote
Th = |{0§ k<n: QH(WE’H) = h}|

The set of generatorSg,4 was constructed so that the random walk®nH can be informally described
as follows: at each step thél“coordinate” is multiplied by a random elemdn& Sy. The “G coordinate”
is multiplied by a random elemeqi € Sg at the originaH coordinate of the walker, arelsoby a random
elementg, € Sg (which is independent af;) at the newH coordinate of the walker. This immediately
implies that the projectiofiQy (WG‘H)} has the same distribution z{lWH} _,+ Moreover, conditioned

on {Thiher and onQu (WSH), if h e H \ {eH Qn (W)} then the elemen@ (WS™) e G has the same
distribution asng. . If h e {eH Qu (WG’H)} andey # Qu (WS) thenQl} (WG’H) has the same distribution

asWg om0 and ifen = Qu (W) thenQll (W) has the same distribution e .

These observations imply, usirlg__(45), that for evrg H we haveE [d (Q} (WS™).es)| 2 E[TZ].
writing A¢ = {h = W' A h¢ WH ) | we see that

Ln/2] Ln/2]

B[T¢]> ) 20 -B[TA] S YT BA) - wn(n/2) = B[ne W o |um(/2Y.
=0 =0
Hence,
E o (WS, ccn)| 2 2o (@ (WE™). ) = Y E[TE]
heH heH
(00)
2un (0 3 B[ e WG oy | = wn( - E[WE ] Wg)l—ﬁ‘
heH
This is precisely the assertion of Theorem 6.2. m]

Remark 6.4. In [13] de Cornulier, Stalder and Valette show thaBifs a finite group then for everg > 1
we havea#(Gz Frn) > 5 1 whereF, denotes the free group or> 2 generators. Note that in combination with

Lemma 2.8 this |mpI|es that we actualify(G ¢ Fy) > max{Z, 3}. This bound is sharp due to Theorgml1.1
and the fact thgg" (G F,) = 1
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In fact, we have the following stronger result: Xf is a Banach space with modulus of smoothness of
power typep, G is a nontrivial group, andH is a group whose volume growth is at least quadratic, then
ay(GrH) < lp In particularap(G ¢ F2) = max %) %} To prove the above assertion note that it is enough
to deal with the cas& = C,. If H is amenable then by Theordm 6.1 we hgVéC, : H) = 1, so that
the required result follows from the result of [4] and thetfdwat X has Markov typep [28]. If H is
nonamenable then it has exponential growth (see [30]). Fhaslim,_« |B(en, NIY" > 1, whereB(x,r)
denotes the ball of radiuscentered ak in the word metric orH (note that the existence of the limit follows

from submultiplicativity). Fixé € (0, 1) such thay = (11?527 > 1 and letky € N be such that for ak > kg
we have [(1- 6)y]* < |B(en, K)| < [(1 + 6)y]¥. Fork > ko let {xy, ..., xn} be a maximal subset &(ey, 2K)
such that the ball&B(x;, k/2)}i’\i1 are disjoint. Maximality implies that the bali8(x;, k)}i'\:'l coverB(x, 2k),

so that

N

JBo6.K

i=1

[(1 +6)yI“N = N|B(en, K)| > > |B(en, 2K)| > [(L - 6)y]%,

which simplifies to give the lower bourid > 7. Thusk < log N.

Fix @ € [0, 1] and assume thdt : Co,t H — X satisfies
XYye€CotH = de,i(X )" S IIF(X) = FY)II < depan (X, ).

Our goal is to prove that < r_ln For everys = (g1,...,en) € {—1, 1}N definey, : H — Co by y.(x) = %
andy,(X) = 0if X ¢ {Xq,...,xn}). Let f : {=1, }N — C, t H be given byf(¢) = (f,, ey). It is immediate

to check that for alk, &’ € {-1, I}N we have‘§<||s - & < If(e) = f(&)l < 4Kl|le — &'|l1. Metric spaces
with Markov type p also have Enflo type [29], i.e. they satisfy[(41). Thus we can apply the Enflo type
inequality [41) to the mapping o f : {-1,1}N — X and deduce thatNK)*®? < NkP. Consequently,
N?P < NkP < N(log N)P. Since the last inequality holds for arbitrarily larlye we infer thatep < 1. <

7 Discussion and further questions

In this section we discuss some natural questions that faoisethe results obtained in this paper. We start
with the following potential converse tbl(3):

Question 7.1.1s it true that for every finitely generated amenable group G,

1

@)= 220

If true, Questiori_7]1, in combination with Corolldry 1.3, wid imply a positive solution to the following
guestion:

Question 7.2.1s it true that for every finitely generated amenable group G,

2a%(G)

il S S
20*(G) +1

a*(Gz) =

Additionally, sinces*(G) < 1, a positive solution to Questidn ¥.1 would imply a posits@ution to the
following question:
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Question 7.3.1s it true that for every finitely generated amenable group G,

1
a"(G) > > ?
Using [27), and arguing analogously to Lenimd 3.1 while utiied.; embedding ofc;:Z in SectioriL 4, we
have the following fact:
Lemma 7.4. If a finitely generated group G admits a bi-Lipschitz embeddnto L; then so does GZ.
Question 7.5.Is it true that for every finitely generated amenable group &havee; (G) = 17
Since the metric spac(di;l, M) embeds isometrically intb, (seel[42]), a positive solution to Ques-

tion[Z.8 would imply a positive solution to Question|7.3.

Our repertoire of group& for which we know the exact value of (G) is currently very limited. In partic-
ular, we do not know the answer to the following question:

Question 7.6. Does there exist a finitely generated amenable group G foclw#ii(G) is irrational? Does
there exist a finitely generated amenable group G for Wlﬁieha*(G) <1?

In [44] Yu proved that for every finitely generated hyperbajroupG there exists a largp > 2 for which
o}(G) > lp In view of Theoreni T]1 it is natural to ask:

Question 7.7.1s it true that for every finitely generated hyperbolic gro@pthere exists some p 1 for
whicha)(G) > 3?
We do not know the value ef(Z 2 Z) for 1 < p < 2. The following lemma contains some bounds for this

number:

Lemma 7.8. Foreveryl < p < 2,

p N . [p+1 4
zp_lSap(ZzZ)Smm{ 25 ’Bp}' (53)

Proof. The lower bound in[(83) is an immediate corollary of Theofeth Jinces*(ZZ) > %, the upper
bounda(ZZ) < ip follows immediately from the results dfl[4] (or alternatiyel heorenL.1l), using the
fact thatlp, 1 < p < 2, has Markov typg. The remaining upper bound is an application of the factithjat
1 < p < 2, has Enflo typep, which is similar to an argument inl[3]. Indeed, fix a mapplgZZ — L,
such that

XYEZIZ = dzz(Xy)" < IIF(X) = F(Y)llp < dzez(X. ).

Let f : {-1,1}" - ZZ be as in[(4R). Plugging the bounds [n](43) and (44) into thecBgfie p inequal-

ity (1)) for the mapping- o f : {-1,1}" — L,, we see that for alh € N we haven?® < nP*1 implying that

p+l
a< D O

Question 7.9. Evaluateap(Z 1 Z) for 1< p < 2.
We end with the following question which arises naturallynfrthe discussion in Sectidh 5:
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Question 7.10.Does there exist a finitely generated group G which has edg&dweaype2 but does not
have Enflo type p for any p 1?

We do not even know whether there exists a finitely generatealpds which has edge Markov type 2 but
does not have Markov type 2. Note that the results of Selctiompfy thatif 1 < p < % then the metric space

(Z UZ, d%) has bounded increment Markov type 2, but does not have Emftmtfor anyq > % However,

this metric is not a graph metric.
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