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Abstract

A study of certain Hamiltonian systems has lead Y. Long to conjec-
ture the existence of infinitely many primes of the form p = 2 ⌊αn⌋+1,
where 1 < α < 2 is a fixed irrational number. An argument of
P. Ribenboim coupled with classical results about the distribution
of fractional parts of irrational multiples of primes in an arithmetic
progression immediately imply that this conjecture holds in a much
more precise asymptotic form. Motivated by this observation, we give
an asymptotic formula for the number of primes p = q ⌊αn + β⌋ + a

with n 6 N , where α, β are real numbers such that α is positive and
irrational of finite type (which is true for almost all α) and a, q are
integers with 0 6 a < q 6 Nκ and gcd(a, q) = 1, where κ > 0 depends
only on α. We also prove a similar result for primes p = ⌊αn+ β⌋
such that p ≡ a (mod q).
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1 Introduction

For two fixed real numbers α and β, the corresponding non-homogeneous
Beatty sequence is the sequence of integers defined by

Bα,β = (⌊αn+ β⌋)∞n=1 .

Beatty sequences appear in a variety of apparently unrelated mathematical
settings, and because of their versatility, the arithmetic properties of these
sequences have been extensively explored in the literature; see, for example,
[1, 3, 4, 5, 7, 11, 12, 18, 19, 24] and the references contained therein.

In 2000, while investigating the Maslov-type index theory for Hamiltonian
systems, Long [17] made the following conjecture:

Conjecture. For every irrational number 1 < α < 2, there are
infinitely many prime numbers of the form p = 2 ⌊αn⌋ + 1 for
some n ∈ N.

Jia [9] has given a lower bound for the number of such primes p in the interval
(x/2, x]. We remark that, using a simple modification to an argument given
by Ribenboim [20, Chapter 4.V], one can show further that the number of
such primes p 6 x is asymptotic to α−1π(x) as x → ∞; see also [16]. More-
over, Ribenboim’s method also applies to the general problem of estimating

Nα,β;q,a(x) = #
{

n 6 x : p = q ⌊αn+ β⌋+ a is prime
}

,

where α, β are fixed real numbers such that α is positive and irrational, and
a, q are integers with 0 6 a < q and gcd(a, q) = 1. In fact, if a and q are
fixed, one easily derives the asymptotic formula

Nα,β;q,a(x) = (1 + o(1))
q

ϕ(q)
π(x) (x→ ∞),

where the function implied by o(·) depends on α, β and q, and ϕ(·) is the
Euler function. Motivated by this observation, we consider here the problem
of finding uniform estimates for Nα,β;q,a(x) if q is allowed to grow with x. We
also consider the same problem for the counting function

Mα,β;q,a(x) = #
{

n 6 x : p = ⌊αn+ β⌋ is prime, and p ≡ a (mod q)
}

.

In particular, in the case that α is of finite type (which is true for almost all α
in sense of Lebesgue measure), our main results yield (by partial summation)
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nontrivial results for both Nα,β;q,a(x) and Mα,β;q,a(x) even if q grows as a
certain power of x.
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boim [20] on primes in a Beatty sequence, and Ahmet Güloğlu for pointing
out a mistake in the original version of the manuscript. During the prepara-
tion of this paper, I. S. was supported in part by ARC grant DP0556431.

2 Notation

The notation ‖x‖ is used to denote the distance from the real number x to
the nearest integer; that is,

‖x‖ = min
n∈Z

|x− n| (x ∈ R).

As usual, we denote by ⌊x⌋, ⌈x⌉, and {x} the greatest integer 6 x, the least
integer > x, and the fractional part of x, respectively.

We also put e(x) = e2πix for all real numbers x and use Λ(·) to denote
the von Mangoldt function:

Λ(n) =

{

log p if n is a power of a prime p;

0 otherwise.

Throughout the paper, the implied constants in symbols O, ≪ and ≫
may depend on the parameters α and β but are absolute unless indicated
otherwise. We recall that the notations A ≪ B, B ≫ A and A = O(B) are
all equivalent to the statement that |A| 6 c|B| for some constant c > 0.
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3 Preliminaries

Recall that the discrepancy D(M) of a sequence of (not necessarily distinct)
real numbers a1, a2, . . . , aM ∈ [0, 1) is defined by

D(M) = sup
I⊆[0,1)

∣

∣

∣

∣

V (I,M)

M
− |I|

∣

∣

∣

∣

, (1)

where the supremum is taken all subintervals I = (c, d) of the interval [0, 1),
V (I,M) is the number of positive integers m 6 M such that am ∈ I, and
|I| = d− c is the length of I.

For an irrational number γ, we define its type τ by the relation

τ = sup
{

̺ ∈ R : lim inf
n→∞
(n∈N)

n̺ ‖γn‖ = 0
}

.

Using Dirichlet’s approximation theorem, it is easily seen that τ > 1 for
every irrational number γ. The celebrated theorems of Khinchin [10] and
of Roth [21, 22] assert that τ = 1 for almost all real (in the sense of the
Lebesgue measure) and all irrational algebraic numbers γ, respectively; see
also [6, 23].

For every irrational number γ, it is well known that the sequence of
fractional parts {γ}, {2γ}, {3γ}, . . . , is uniformly distributed modulo 1 (for
instance, see [14, Example 2.1, Chapter 1]). If γ is of finite type, this state-
ment can be made more precise. Let Dγ,δ(M) denote the discrepancy of the
sequence of fractional parts ({γm+δ})Mm=1. By [14, Theorem 3.2, Chapter 2]
we have:

Lemma 3.1. Let γ be a fixed irrational number of finite type τ <∞. Then,
for all δ ∈ R the following bound holds:

Dγ,δ(M) 6M−1/τ+o(1) (M → ∞),

where the function implied by o(·) depends only on γ.

The following elementary result characterizes the set of numbers that
occur in a Beatty sequence Bα,β in the case that α > 1:

Lemma 3.2. Let α, β ∈ R with α > 1. Then, an integer m has the form
m = ⌊αn+ β⌋ for some integer n if and only if

0 <
{

α−1(m− β + 1)
}

6 α−1.

The value of n is determined uniquely by m.

4



Proof. It is easy to see that an integer m has the form m = ⌊αn+ β⌋ for
some integer n if and only if the inequalities

m− β

α
6 n <

m− β + 1

α

hold, and since α > 1 the value of n is determined uniquely.

We also need the following statement, which is a simplified and weakened
version of a theorem of Balog and Perelli [2] (see also [15]):

Lemma 3.3. For an arbitrary real number ϑ and coprime integers a, q with
0 6 a < q, if |ϑ− b/d| 6 1/L and gcd(b, d) = 1, then the bound

∑

n6L
n≡a (mod q)

Λ(n) e(ϑn) ≪

(

L

d1/2
+ d1/2L1/2 + L4/5

)

(logL)3

holds, where the implied constant is absolute.

Finally, we use the Siegel–Walfisz theorem (see, for example, the book [8]
by Huxley), which asserts that for any fixed constant B > 0 and uniformly
for integers L > 3 and 0 6 a < q 6 (logL)B with gcd(a, q) = 1, one has

∑

n6L
n≡a (mod q)

Λ(n) =
L

ϕ(q)
+O

(

L exp
(

−CB

√

logL
))

, (2)

where CB > 0 is an absolute constant that depends only on B.

4 Bounds on exponential sums

The following result may be well known but does not seem to be recorded in
the literature. Thus, we present it here with a complete proof.

Theorem 4.1. Let γ be a fixed irrational number of finite type τ <∞. Then,
for every real number 0 < ε < 1/(8τ), there is a number η > 0 such that the
bound

∣

∣

∣

∣

∣

∑

m6M

Λ(qm+ a) e(γkm)

∣

∣

∣

∣

∣

6M1−η

holds for all integers 1 6 k 6 Mε and 0 6 a < q 6 Mε/4 with gcd(a, q) = 1
provided that M is sufficiently large.
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Proof. Fix a constant ̺ such that

1 6 τ < ̺ <
1

8ε
(3)

Since γ is of type τ , for some constant c > 0 we have

‖γd‖ > cd−̺ (d > 1). (4)

Let k, a, q be integers with the properties stated in the proposition, and
write

∑

m6M

Λ(qm+ a) e(γkm) = e(−ϑa)
∑

n6L
n≡a (mod q)

Λ(n) e(ϑn), (5)

where ϑ = γk/q and L = qM+a. Let b/d be the convergent in the continued
fraction expansion of ϑ which has the largest denominator d not exceeding
L1−ε; then,

∣

∣

∣

∣

γk

q
−
b

d

∣

∣

∣

∣

6
1

dL1−ε
. (6)

Multiplying by qd, we get from (4):

q

L1−ε
> |γkd− bq| > ‖γkd‖ > c(kd)−̺.

Thus, since k 6 Lε and q 6 Lε/4 6 Lε, we see that under the condition (3)
the bound

d > CL(1−2ε)/̺−ε
> CL1/(4̺) (7)

holds, where C = c1/̺ and L is sufficiently large.
Inserting (7) into (6) and using (3) again, we conclude that

∣

∣

∣

∣

γk

q
−
b

d

∣

∣

∣

∣

6
1

CL1+1/(4̺)−ε
6

1

L

if L is sufficiently large. We are therefore in a position to apply Lemma 3.3;
taking into account (3), (7), and the fact that d 6 L1−ε, it follows that the
bound

∑

n6L
n≡a (mod q)

Λ(n) e(ϑn) ≪
(

L1−1/(8̺) + L1−ε/2
)

(logL)3 6 L1−ε/3

holds for all sufficiently large L. Since L ≪ qM 6 M1+ε/4, the result now
follows from simple calculations after inserting this estimate into (5).
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Using similar arguments, we have:

Theorem 4.2. Let γ be a fixed irrational number of finite type τ <∞. Then,
for every real number 0 < ε < 1/(8τ), there is a number η > 0 such that the
bound

∣

∣

∣

∣

∣

∣

∣

∣

∑

m6M
m≡a (mod q)

Λ(m) e(γkm)

∣

∣

∣

∣

∣

∣

∣

∣

6 M1−η

holds for all integers 1 6 k 6 Mε and 0 6 a < q 6 Mε/4 with gcd(a, q) = 1
provided that M is sufficiently large.

5 Main Results

Theorem 5.1. Let α and β be a fixed real numbers with α positive, irrational,
and of finite type. Then there is a positive constant κ > 0 such that for all
integers 0 6 a < q 6 Nκ with gcd(a, q) = 1, we have

∑

n6N

Λ(q ⌊αn+ β⌋+ a) = α−1
∑

m6⌊αN+β⌋

Λ(qm+ a) +O
(

N1−κ
)

where the implied constant depends only on α and β.

Proof. Suppose first that α > 1. It is obvious that if α is of finite type, then
so is α−1. We choose

0 < ε <
1

16τ
,

where 1 6 τ <∞ is the type of α−1.
First, let us suppose that α > 1. Put γ = α−1, δ = α−1(1 − β), and

M = ⌊αN + β⌋. By Lemma 3.2, it follows that

Sα,β;q,a(N) =
∑

n6N

Λ(q ⌊αn+ β⌋+ a)

=
∑

m6M
0<{γm+δ}6γ

Λ(qm+ a) +O(1)

=
∑

m6M

Λ(qm+ a)ψ(γm+ δ) +O(1),

(8)
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where ψ(x) is the periodic function with period one for which

ψ(x) =

{

1 if 0 < x 6 γ;
0 if γ < x 6 1.

By a classical result of Vinogradov (see [26, Chapter I, Lemma 12]) it is
known that for any ∆ such that

0 < ∆ <
1

8
and ∆ 6

1

2
min{γ, 1− γ},

there is a real-valued function ψ∆(x) with the following properties:

(i) ψ∆(x) is periodic with period one;

(ii) 0 6 ψ∆(x) 6 1 for all x ∈ R;

(iii) ψ∆(x) = ψ(x) if ∆ 6 x 6 γ −∆ or if γ +∆ 6 x 6 1−∆;

(iv) ψ∆(x) can be represented as a Fourier series

ψ∆(x) = γ +
∞
∑

k=1

(

gk e(kx) + hk e(−kx)
)

,

where the coefficients satisfy the uniform bound

max
{

|gk|, |hk|
}

≪ min
{

k−1, k−2∆−1
}

(k > 1). (9)

Therefore, from (8) we deduce that

Sα,β;q,a(N) =
∑

m6M

Λ(qm+ a)ψ∆(γm+ δ) +O
(

1 + V (I,M) logN
)

, (10)

where V (I,M) denotes the number of positive integers m 6 M such that

{γm+ δ} ∈ I = [0,∆) ∪ (γ −∆, γ +∆) ∪ (1−∆, 1).

Since |I| ≪ ∆, it follows from the definition (1) and Lemma 3.1, that

V (I,M) ≪ ∆N +N1−ε, (11)

where the implied constant depends only on α.
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To estimate the sum in (10), we use the Fourier expansion for ψ∆(γm+δ)
and change the order of summation, obtaining

∑

m6M

Λ(qm+ a)ψ∆(γm+ δ)

= γ
∑

m6M

Λ(qm+ a) +
∞
∑

k=1

gk e(δk)
∑

m6M

Λ(qm+ a) e(γkm)

+
∞
∑

k=1

hk e(−δk)
∑

m6M

Λ(qm+ a) e(−γkm).

(12)

By Theorem 4.1 and the bound (9), we see that for 0 6 a < q 6 Mε/4,
we have

∑

k6Mε

gk e(δk)
∑

m6M

Λ(qm+ a) e(γkm) ≪M1−η
∑

k6Mε

k−1 ≪M1−η/2, (13)

for some η > 0 that depends only on α. Similarly,
∑

k6Mε

hk e(−δk)
∑

m6M

Λ(qm+ a) e(−γkm) ≪M1−η/2. (14)

On the other hand, using the trivial bound
∣

∣

∣

∣

∣

∑

m6M

Λ(qm+ a) e(γkm)

∣

∣

∣

∣

∣

6
∑

n6N

Λ(n) ≪ N,

we have
∑

k>Mε

gk e(δk)
∑

m6M

Λ(qm+ a) e(γkm) ≪ N
∑

k>Mε

k−2∆−1 ≪ N1−ε∆−1, (15)

and
∑

k>Mε

hk e(−δk)
∑

m6M

Λ(qm+ a) e(−γkm) ≪ N1−ε∆−1. (16)

Inserting the bounds, (13), (14), (15) and (16) into (12), we obtain
∑

m6M

Λ(qm+ a)ψ∆(γm+ δ)

=γ
∑

m6M

Λ(qm+ a) +O(M1−η/2 +N1−ε∆−1),
(17)
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where the constant implied by O(·) depends only on α and β.
Substituting (11) and (17) in (10) and choosing ∆ = N−ε/4, it follows

that
Sα,β;q,a(N) = γ

∑

m6M

Λ(qm+ a) +O
(

N1−κ
)

, (18)

for some κ which depends only on α. This concludes the proof in the case
that α > 1.

If α < 1, we put t = ⌈α−1⌉ and write

∑

n6N

Λ(q ⌊αn+ β⌋+ a) =
t−1
∑

j=0

∑

n6(N−j)/t

Λ(q ⌊αtn + αj + β⌋+ a).

Applying the preceding argument with the irrational number αt > 1, we
conclude the proof.

In particular, using the Siegel–Walfisz theorem (2) to estimate the sum
in (18) for “small” a and q, we obtain:

Corollary 5.2. Under the conditions of Theorem 5.1, for any constant B > 0
and uniformly for all integers N > 3 and 0 6 a < q 6 (logN)B with
gcd(a, q) = 1, we have

∑

n6N

Λ(q ⌊αn + β⌋+ a) =
q

ϕ(q)
N +O

(

N exp
(

−C
√

logN
))

for some constant C > 0 that depends only on α, β and B.

In the special case that (a, q) = (0, 1) or (1, 2) (the latter case corre-
sponding to primes in the Long conjecture), we can use a well known bound
on the error term in the Prime Number Theorem (proved independently by
Korobov [13] and Vinogradov [25]) to achieve the following sharper result:

Corollary 5.3. Suppose that (a, q) = (0, 1) or (a, q) = (1, 2). Then, under
the conditions of Theorem 5.1, for any constant B > 0 and uniformly for all
integers N > 3, we have

∑

n6N

Λ(q ⌊αn+ β⌋+ a) = q N +O
(

N exp
(

−c(logN)3/5(log logN)−1/5
))

for some absolute constant c > 0.
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Finally, using Lemma 4.2 in place of Lemma 4.1, we obtain the following
analogues of Theorem 5.1 and its two corollaries:

Theorem 5.4. Let α and β be a fixed real numbers with α positive, irrational,
and of finite type. Then there is a positive constant κ > 0 such that for all
integers 0 6 a < q 6 Nκ with gcd(a, q) = 1, we have

∑

n6N
⌊αn+β⌋≡a (mod q)

Λ(⌊αn+ β⌋) = α−1
∑

m6⌊αN+β⌋
m≡a (mod q)

Λ(m) +O
(

N1−κ
)

where the implied constant depends only on α and β.

Corollary 5.5. Under the conditions of Theorem 5.4, for any constant B > 0
and uniformly for all integers N > 3 and 0 6 a < q 6 (logN)B with
gcd(a, q) = 1, we have

∑

n6N
⌊αn+β⌋≡a (mod q)

Λ(⌊αn+ β⌋) =
N

ϕ(q)
+O

(

N exp
(

−C
√

logN
))

for some constant C > 0 that depends only on α, β and B.

Corollary 5.6. Suppose that (a, q) = (0, 1) or (a, q) = (1, 2). Then, under
the conditions of Theorem 5.4, for any constant B > 0 and uniformly for all
integers N > 3, we have

∑

n6N
⌊αn+β⌋≡a (mod q)

Λ(⌊αn+ β⌋) = N+O
(

N exp
(

−c(logN)3/5(log logN)−1/5
))

for some absolute constant c > 0.
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[18] G. S. Lü and W. G. Zhai, ‘The divisor problem for the Beatty sequences’,
Acta Math. Sinica 47 (2004), 1213–1216 (in Chinese).

[19] K. O’Bryant, ‘A generating function technique for Beatty sequences and
other step sequences’, J. Number Theory 94 (2002), 299–319.

[20] P. Ribenboim, The new book of prime number records. Springer-Verlag,
New York, 1996.

[21] K. F. Roth, ‘Rational approximations to algebraic numbers’, Mathe-
matika 2 (1955), 1–20.

[22] K. F. Roth, ‘Corrigendum to “Rational approximations to algebraic
numbers”’, Mathematika 2 (1955), 168.

[23] W. M. Schmidt, Diophantine approximation. Springer-Verlag, Berlin,
1980.

[24] R. Tijdeman, ‘Exact covers of balanced sequences and Fraenkel’s conjec-
ture’, Algebraic number theory and Diophantine analysis (Graz, 1998),
467–483, de Gruyter, Berlin, 2000.

[25] I. M. Vinogradov, ‘A new estimate for ζ(1 + it)’ (Russian), Izv. Akad.
Nauk SSSR Ser. Mat. 22 (1958), 161–164.

[26] I. M. Vinogradov, The method of trigonometrical sums in the theory of
numbers. Dover Publications, New York, 2004.

13


	Introduction
	Notation
	Preliminaries
	Bounds on exponential sums
	Main Results

