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A starting point of this research is an analogue between universal coverings of the Lorentz and de
Sitter groups, which was first established by Takahashi [1] (see also the work of Ström [2]). Namely,
the universal covering of SO0(1, 4) is Spin+(1, 4) ≃ Sp(1, 1) and the spinor group Spin+(1, 4)
is described in terms of 2 × 2 quaternionic matrices. Spherical functions on the group SO0(1, 4)
are understood as functions of representations of the class 1 realized on the homogeneous spaces of
SO0(1, 4) . A list of homogeneous spaces of SO0(1, 4) , including symmetric Riemannian and non-
Riemannian spaces, consists of the group manifold S10 of SO0(1, 4) , two-dimensional quaternion
sphere Sq2 , four-dimensional hyperboloid H4 ∼ SO0(1, 4)/SO(4) , three-dimensional real sphere
S3 ∼ SO(4)/SO(3) and a two-dimensional real sphere S2 ∼ SO(3)/SO(2) .

Using the universal covering Spin+(1, 4) ≃ Sp(1, 1) of SO0(1, 4) , we can write a first Casimir
operator F on the group manifold S10 ,
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Here, ψ , ϕ , θ , φ , ς , χ , τ , ǫ , ε , ω are Euler angles of Sp(1, 1) , θq = θ+φ−iτ , ϕq = ϕ−iǫ+jς ,
ψq = ψ− iε− iω+kχ are quaternion Euler angles. The second Casimir operator W of SO0(1, 4)
is equal to zero on the representations of the class 1.

Matrix elements tσmn(q) = Mσ
mn(ϕ

q, θq, ψq) of irreducible representations of the group SO0(1, 4)
are eigenfunctions of the operator (1):

[−F + σ(σ + 3)]Mσ
mn(q) = 0, (2)

where

Mσ
mn(q) = e−i(mϕq+n(ψq

1
−iω))Zσmn(cos θ

q), (3)

since ψq = ψq1−iω . Here, Mσ
mn(q) are general matrix elements of the representations of SO0(1, 4) ,

and Zσmn(cos θ
q) are hyperspherical functions. Substituting the functions (3) into (2) and taking

into account the operator (1), after substitution z = cos θq we arrive at the following differential
equation:

[

(1− z2)
d2

dz2
− 2z

d

dz
−
m2 + n2 − 2mnz

1− z2
+ σ(σ + 3)

]

Zσmn(z) = 0. (4)
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The latter equation has three singular points −1 , +1 , ∞ . It is a Fuchsian equation. A particular
solution of (4) can be expressed via the hypergeometric function
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An explicit form of the functions Zσmn(cos θ
q) can be derived via the multiple hypergeometric series.

Namely, using an addition theorem for generalized spherical functions [3], we obtain
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(6)

for m ≥ t, t ≥ k, k ≥ n . In addition to (6) there exist seven functions Zσmn(cos θ
q) for m ≥ t, k ≥

t, k ≥ n ; t ≥ m, k ≥ t, n ≥ k ; t ≥ m, t ≥ k, n ≥ k ; t ≥ m, k ≥ t, k ≥ n ; t ≥ m, t ≥ k, k ≥ n ;
m ≥ t, t ≥ k, n ≥ k ; m ≥ t, k ≥ t, n ≥ k .

Hyperspherical functions for other homogeneous spaces of SO0(1, 4) are particular cases of the
functions (6). For example, on the quaternion 2-sphere we have associated functions Zmσ (cos θ

q) .
Further, the function (6) is reduced to the Jacobi function Pσ

mn(cosh τ) on the hyperboloid H4 ∼
SO0(1, 4)/SO(4) and to a generalized spherical function P σmn(cos θ) on the real 3-sphere. Finally,
on the surface of the real 2-sphere S2 ∼ SO(3)/SO(2) we have from (6) the usual spherical
functions Y m

σ (cos θ) .
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