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1. Introduction and motivation

Recently Bousso has conjectured that in a spacetime satisfying Einstein’s equation

with the dominant energy condition holding for matter, the entropy flux S through

any null hypersurface generated by geodesics with non-positive expansion emanating

orthogonally from some two-dimensional spacelike surface of area A must satisfy[1, 2,

3, 4]

S ≤ A

4
. (1.1)

Not only does this conjecture improve an earlier suggestion of Fischler and Susskind

on cosmic holography[5], but also reduces to the spacelike entropy bound whenever

the latter is expected to hold. Furthermore, this conjecture can be interpreted as a

statement of the so called holographic principle, which is believed to be manifest in an

underlying quantum theory of gravity[6, 7].

Later a generalized covariant entropy bound was suggested by Flanagan, Marolf,

and Wald[8]. Namely, if one allows the geodesics generating the null hypersurface to

terminate at another two-dimensional spacelike surface of area A′ before coming to a

caustic, boundary or singularity of spacetime, one can replace the above conjecture

Eq.(1.1) by

S ≤ A− A′

4
. (1.2)
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Obviously, this more general bound implies both the original Bousso entropy bound

and generalized second law of thermodynamics for any process of black hole formation.

It is noteworthy that in highly dynamical spacetimes, since the dynamical horizon,

foliated by the apparent horizons, generally divides the normal region from the trapped

or antitrapped one, it plays a subtle role in constructing the null hypersurface men-

tioned above in such spacetimes as growing black holes and expanding universes[4]. In

addition, as shown by Ashtekar and Krishnan, there are series of intriguing properties

related to the dynamical horizon itself, such as the area balance law[9, 10, 11]. All

of these motivate us to propose a covariant entropy bound conjecture related to the

dynamical horizon in a direct way. In particular, as a first step, we here shall suggest

such a entropy bound on the dynamical horizon in the cosmological context, which

will be formulated in the next section. In Section 3, its validity is demonstrated in

adiabatically expanding universes. Conclusions and discussions are presented in the

end.

2. Covariant entropy conjecture related to cosmological dynam-

ical horizon

Start from the FRW metric

ds2 = −dt2 + a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)], (2.1)

which describes homogeneous and isotropic universes, including, to a good degree of

approximation, the portion we have seen of our own universe. In terms of the conformal

time η and the comoving coordinate, i.e.,

dη =
dt

a(t)
, dχ =

dr√
1− kr2

, (2.2)

the FRW metric takes the form

ds2 = a2(η)[−dη2 + dχ2 + f 2(χ)(dθ2 + sin2 θdφ2)]. (2.3)

Here k = −1, 0, 1 and f(χ) = sinhχ, χ, sinχ correspond to open, flat, and closed

universes, respectively.

Next, to identify cosmological dynamical horizon, let us firstly compute the initial

expansion of the future directed null congruences orthogonal to an arbitrary sphere

characterized by some value of (η, χ). Accordingly one finds[4]

θ± =
ȧ

a
± f ′

f
, (2.4)
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where the dot(prime) denotes differentiation with respect to η(χ), and the sign +(−)

represents the null congruence is directed at larger(smaller) values of χ. Note that

the first term in Eq.(2.4) is positive when the universe expands and negative if it

contracts. In addition, the second term is given by cothχ, 1
χ
, cotχ for open, flat, and

closed universes, respectively. Especially, this term diverges when χ → 0, and it also

diverges when χ → π for a closed universe.

Now cosmological dynamical horizon is defined geometrically as a three-dimensional

hypersurface foliated by those spheres at which at least there exists one orthogonal null

congruence with vanishing expansion. Thus cosmological dynamical horizon χ(η) can

be identified by solving the equation

ȧ

a
= ±f ′

f
. (2.5)

There is one solution for open and flat universes while for a closed universe, there

are generally two solutions, which are symmetrically related to each other by χ2(η) =

π−χ1(η). Then a cosmological version of our conjecture can be proposed as follows: Let

A(η) be the area of cosmological dynamical horizon at the conformal time η, then the

entropy flux S through cosmological dynamical horizon between the conformal times η

and η′ must satisfy S ≤ |A(η)−A(η′)|
4

if the dominant energy condition holds for matter.

Note that the description of our above conjecture is well defined and obviously

covariant. In the subsequent section, we shall test its validity in adiabatically expanding

universes.

3. Covariant entropy conjecture tested by adiabatically expand-

ing universes

The matter content of FRW universes is most generally described by a perfect fluid,

with the energy momentum tensor

Tab = a2(η){ρ(η)(dη)a(dη)b + p(η)[(dχ)ad(χ)b + f 2(χ)((dθ)a(dθ)b + sin2 θ(dφ)a(dφ)b)]}.
(3.1)

Later, we shall assume that the pressure p and energy density ρ is related by a fixed

equation of state

p = wp, (3.2)

where the constant w is controlled within the range−1 ≤ w ≤ 1 by the dominant energy

condition. Furthermore, we shall restrict ourselves in the case that FRW universes are

in the expanding phase. Thus, Einstein equation can be solved. As a result, the
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cosmological scale factor is given by

a = f q(
η

q
), (3.3)

where

q =
2

1 + 3w
(3.4)

is confined within the range q ≥ 1
2
or q ≤ −1 due to the dominant energy condition

requirement. The corresponding cosmological dynamical horizon is located at

χ =
η

q
(3.5)

in all cases. An additional mirror horizon lies at χ = π − η

q
in the closed case1. Note

that η is positive for q ≥ 1
2
and negative in the case of q ≤ −1. Moreover, η

q
< π

2
is

required in the closed case.

To proceed, we further assume that the evolution of matter in FRW universes is

adiabatical. Therefore the entropy current of matter can be written as

sa =
s

a3
(
∂

∂t
)a, (3.6)

which implies the conservation of the entropy current, i.e., ∇as
a=0. Note that s is

actually the ordinary comoving entropy density, constant in space and time.

We shall now check whether our conjecture is satisfied. However, as shown in

Figure 1, there is an obvious difference between q ≥ 1
2
and q ≤ −1. Thus let η′ ≥ η,

then by the conservation of the entropy and Gauss theorem, our conjecture can be

reformulated as
A(η′)

4
− S(η′) ≥ A(η)

4
− S(η) (3.7)

for q ≥ 1
2
, and

A(η′)

4
+ S(η′) ≥ A(η)

4
+ S(η) (3.8)

for q ≤ −12. Here we have invoked the fact that the area

A(η) = 4πf 2(q+1)(
η

q
) (3.9)

1Due to this space mirror symmetry, for a closed universe, we only need to focus on cosmological

dynamical horizon near the north pole χ = 0 in the following discussions.
2If we endow cosmological dynamical horizon with a geometrical entropy of A

4
and take into account

the direction of the entropy current illustrated in Figure 1, it seems reasonable to assume that the

total entropy of universe is the geometrical entropy of cosmological dynamical horizon plus that of

matter in the antitrapped region for q ≥ 1

2
while for q ≤ −1 the total entropy is assumed to be a

sum of the geometrical entropy and that for matter in the normal region. Then it is obvious that our

conjecture can be regarded as the generalized second law of thermodynamics for expanding universes.
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Figure 1: (a)For q ≥ 1
2 , the entropy current flows across cosmological dynamical horizon

from the normal region to the antitrapped one. (b) For q ≤ −1, the entropy current flows

across cosmological dynamical horizon from the antitrapped region to the normal one.

is always an increasing function of η. In addition, S(η) denotes the entropy flux through

the normal region at the conformal time η, given by

S(η) = 4πs

∫ η

q

0

dχf 2(χ). (3.10)

Furthermore one finds our conjecture is equivalent to require that

H(η) ≡ 1

4
A(η)− S(η) (3.11)

be an increasing function of η for q ≥ 1
2
. Substituting Eq.(3.9) and (3.10) into Eq.(3.11),

It follows

(q + 1)f 2q−1(
η

q
)− 2s ≥ 0. (3.12)

It is obvious that the LHS of inequality is an increasing function of η in all cases con-

sidered here. Whence we know that once the inequality holds at some initial moment,
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it will continue to be valid for all later moments. Note that at Planck epoch, η

q
is of

order one in all the cases. So the first term in the LHS of the inequality is of the same

order as q+1 which is larger than 3
2
. On the other hand, since the scale factor is of the

Planck size as well, the comoving entropy density s becomes the entropy per Planck

volume which can not exceed one quarter, as generally believed to be a generic feature

for any underlying theory of quantum gravity. Therefore in case of q ≥ 1
2
our conjecture

holds for open, flat and closed expanding universes at Planck epoch and remains to be

valid henceforth.

Now let us turn to the case of q ≤ −1, where our conjecture means that the function

Z(η) ≡ 1

4
A(η) + S(η) (3.13)

is required as an increasing function of η, which follows

(q + 1)f 2q−1(
η

q
) + 2s ≤ 0. (3.14)

Similar to the case of q ≥ 1
2
, the inequality will hold for all the rest of the expansion

epoch of the universe once it is valid at an early time, say, Planck time.

At such an early time, the conformal time has decreased to η

q
∼ O(1), thus the

inequality holds if s is bounded by −( q+1
2
) which is non-negative. In particular, if

q = −1, which describes a de-Sitter universe, the inequality holds trivially due to s = 0

for a cosmological constant.

Generally the bound for s is q-dependent if we expect that our conjecture holds at

Planck time3. If s turns out to be too large for our conjecture to hold at Planck time,

the validity of our conjecture will not be ruined, since it will be valid at some later

time and continue to hold henceforth. The only difference is that the initial moment

our conjecture becomes valid is postponed due to a larger s. In other words, any

reasonable value of s will yield a reasonable starting time for our conjecture to hold,

which is expected to be not too much later than Planck time.

In all, our conjecture holds universally for open, flat and closed universes which are

adiabatically expanding with q ≥ 1
2
and q ≤ −1, back to a very early time near Planck

epoch(the exact moment depends on q.). That is to say, once it is valid at some early

time, it continues to be.

3Actually this is also the case for q ≥ 1

2
, although there is a reasonable universal bound 3

4
for s

there. It should be borne in mind that the q-dependent bound for s does not surprise us because q is a

parameter associated with the matter and it is definitely related to the entropy density of matter. In

fact, in [4] the discussion is simplified by ignoring factors containing q, and a more careful consideration

will also lead to a q-dependent bound for s in test of Bousso entropy bound.
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4. Conclusions and discussions

We have proposed a covariant entropy conjecture on cosmological dynamical horizon.

Its validity has also been demonstrated in the case of adiabatically expanding universes.

In other words, if our conjecture holds at some time in early universes, where classical

general relativity may be replaced by a quantum theory of gravity, then it will hold for

all the later times. The validity for our conjecture at a time as early as near Planck

time is also verified under the assumption that s is reasonably bounded. On the other

hand, although we restrict our discussion in expanding universes, it is obvious that our

conjecture also applies to collapsing universes due to the time reversal symmetry.

All of these further encourage us to extend our conjecture to more general contexts,

especially to black hole dynamical horizons, whose test is more difficult and challenging

than that in cosmological contexts, which will be reported elsewhere[12]. In addition,

it is highly desirable to provide some reasonable local conditions sufficient for proof of

our proposal and this work is also on progress[13].
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