
Supplementary Information for
“Rapid planetesimal formation in turbulent
circumstellar discs”

Abstract

This document contains refereed supplementary information for the paper “Rapid planetes-
imal formation in turbulent circumstellar discs”. It contains 15 sections (§1.1 – §1.15) that
address a number of subjects related to the main paper. Some of the subjects are highlighted
here in the abstract. We describe in detail the Poisson solver used to find the self-potential
of the solid particles, including a linear and a non-linear test problem (§1.3). Dissipative col-
lisions remove energy from the motion of the particles by collisional cooling (§1.4), an effect
that allows gravitational collapse to occur in somewhat less massive discs (§1.7). A resolution
study of the gravitational collapse of the boulders is presented in §1.6. We find that gravita-
tional collapse can occur in progressively less massive discs as the grid resolution is increased,
likely due to the decreased smoothing of the particle-mesh self-gravity solver with increasing
resolution. In §1.10 we show that it is in good agreement with the Goldreich & Ward (1973)
stability analysis to form several-hundred-km-sized bodies, when the analysis is applied to 5
AU and to regions of increased boulder column density. §11 is devoted to the measurement
of random speeds and collision speeds between boulders. We find good agreement between
our measurements and analytical theory for the random speeds, but the measured collision
speeds are 3 times lower than expected from analytical theory. Higher resolution studies, and
an improved analytical theory of collision speeds that takes into account epicyclic motion,
will be needed to determine whether collision speeds have converged. In §1.12 we present
models with no magnetic fields. The boulder layer still exhibits strong clumping, due to the
streaming instability, if the global solids-to-gas ratio is increased by a factor 3. Gravitational
collapse occurs as readily as in magnetised discs.
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1 Supplementary Discussion

1.1 Pencil Code

The Pencil Code31 is a finite difference code that uses symmetric derivatives of sixth order
in space and a third order Runge-Kutta time-stepping scheme. The difference equations as
implemented are formally dissipation free, having phase errors but no amplitude error. Only
a small amount of numerical dissipation is introduced from time-stepping the advection term.
Therefore, one must explicitly add dissipation to the dynamical equations to suppress nu-
merically unstable modes near the grid scale and to dissipate the turbulent energy that is
(in our case) released from the Keplerian shear by the Reynolds and Maxwell stresses. For
this purpose, we use sixth order hyperdiffusivity operators, where the usual ∇2 diffusivity
operator is replaced with a ∇6 operator32,33. Hyperdiffusivity dissipates energy at high wave
numbers – at the smallest scales in the simulation – but preserves energy at low wave numbers.
Hyperviscosity and magnetic hyperresistivity have been used extensively to study the proper-
ties of forced magnetohydrodynamic turbulence (see Brandenburg & Sarson34 and references
therein). They are designed to affect large scales as little as possible by dissipation, thus
widening the inertial range beyond what can be achieved with a regular viscosity operator
while still maintaining numerical stability. We have tested that particle overdensities occur
for both the stringent hyperviscosity scheme used by Haugen & Brandenburg32 and for the
simplified scheme described in Johansen & Klahr33.

Possible side effects of using hyperviscosity and hyperresistivity include an artificial increase
in the bottleneck effect35, a physical effect in turbulence where energy piles up around the
dissipative scale, and a higher saturation level for dynamo-generated magnetic fields in helical
flows compared to what is seen when using a regular viscosity operator34. The bottleneck
effect is unlikely to be relevant to the dynamics of boulders in turbulence, since marginally
coupled particles are mostly affected by turbulent structures at the largest scales of our
simulation where the bottleneck effect is unimportant. The saturation level of turbulence
driven by the magnetorotational instability (MRI) is indeed affected by the numerical scheme
and by the dissipation scheme, but the Pencil Code agrees well with other grid codes regarding
the statistical properties of MRI turbulence14,36.

1.2 Drag force

1.2.1 Drag force algorithm

The computation of drag forces between Lagrangian particles and an Eulerian grid requires
some care to avoid spurious accelerations and to ensure momentum conservation. Small
errors in the gas velocity can be dangerously amplified by the subtraction of highly correlated
particle velocities. Tests of our drag force algorithm are described in detail elsewhere37. It
involves three steps:

1. Interpolate gas velocities at particle positions.
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2. Calculate the drag force on the particles from the gas in nearby cells.

3. Assign the back-reaction force to the gas from particles in nearby cells.

For the first step, interpolation, we begin with gas velocities, u(j), defined on a uniform grid
where the index j labels the cells centred on positions x(j). We interpolate to the particle
positions, x(i), using a weight function, WI, as

u(x(i)) =
∑
j

WI(x(i) − x(j))u(j) . (1)

The weight function is normalised as
∑

j WI(x(i) − x(j)) = 1, for any x(i), and has non-zero
contributions only from the cells in the immediate vicinity of x(j).

The second step, calculating the drag acceleration on particle i,

f (i)
p = − 1

τf

[
v(i) − u(x(i))

]
, (2)

is trivial once the relevant quantities are defined. We assume that the drag force is propor-
tional to the velocity difference between gas and particles, i.e. that the friction time τf is
independent of the velocity difference.

Finally, we calculate the back-reaction drag force, f
(j)
g , on the gas in cell j. Assigning the

particle velocities to a grid risks violating momentum conservation. Instead we use Newton’s
third law to directly assign the force on the particles back to the gas,

f (j)
g = − mp

ρ
(j)
g Vcell

∑
i

WA(x(i) − x(j))f (i)
p , (3)

where mp is the mass of a superparticle, ρ(j)
g is the gas density in cell j, and Vcell is the

volume of a grid cell. The assignment function WA obeys the same conditions as WI, so that
only particles in a given cell or in that cell’s nearby neighbours contribute to the sum. We
opt for the second order Triangular Shaped Cloud (TSC) assignment scheme19, which uses
an identical function for assignment and for interpolation, WA = WI. The TSC spreads the
influence of particles and grid points to three grid points in each direction, for a total of 27
points in three-dimensional (3-D) simulations.

The interpolation errors associated with the TSC assignment is found by considering a periodic
function (of arbitrary phase) sampled at the grid points19,37. The result is that the assigned
amplitude of a single Fourier component at scale k relative to the actual amplitude is to
second order 1 − (∆k)2/8, where ∆ is the linear size of a grid cell. Thus already at 5 grid
cells there is significant smoothing. This smoothing is found to have an influence on the
gravitational collapse, especially at crude resolution, see §1.6.

The time-step constraint set by the drag force is δtdrag = τf/(1 + ε), where ε is the local
solids-to-gas ratio11. As the solids-to-gas ratio increases, the allowed time-step decreases. We
have made sure that the friction time-step never dominates over the Courant time-step of
the code by artificially increasing the friction time in regions of high solids-to-gas ratio (ε >
100). We have experimented with the threshold and found no improved collapse for a higher
threshold, presumably because inelastic collisions dominates the kinetic energy dissipation at
these densities anyway.
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1.2.2 Particle sizes and drag regimes

In our work, as in most theoretical work, we characterise particles in terms of their dimen-
sionless friction time ΩKτf (where ΩK is the Keplerian orbital frequency). The translation
to a particle size depends on the assumed disc model. The smallest particles are subject to
Epstein drag, valid when the particle radius is smaller than the mean free path of the gas
(see below), with

ΩKτ
(Ep)
f =

ΩKρ•a

ρgcs
=
√

2π
ρ•a

Σg
, (4)

where the second step applies in the disc midplane. Here ρ• is the material density of the
solids, a is the radius of a solid body, ρg is the gas density, cs is the sound speed, while
Σg is the column density of gas. Epstein drag depends on gas density, but in practice the
gas density fluctuations are negligible (order 1%) in our subsonic flows, so we ignore them.
Solving for particle size gives

a =
ΩKτ

(Ep)
f Σg√
2πρ•

≈ 30 cmΩKτ
(Ep)
f

(
Σg,5

150 g cm−2

)(
ρ•

2 g cm−3

)−1 ( r

5 AU

)−1.5

, (5)

where the normalisation of the gas surface density at 5 AU, Σg,5, and the power law slope
follows the minimum mass solar nebula model38. Applying a simulation with given τf values
to different disc radii changes the relevant particle sizes. Considering, as in the main text,
r = 5 AU and Σg = 300 g cm−2 yields particle sizes of a = 60, 45, 30, 15 cm, for ΩKτf =
1.0, 0.75, 0.5, 0.25, respectively. When the model is applied to the outer solar nebula at r =
40 AU instead, the corresponding particle sizes are as low as a few centimetres (per ΩKτf).

The Epstein regime of free molecular (or Knudsen) flow ceases to apply once the particle
radius exceeds (9/4 of) the gas mean free path,

λ =
µ

ρgσmol
=
√

2πµH
Σgσmol

(6)

≈ 1 m
(

Σg,5

150 g cm−3

)−1 H/r

0.04

(
r

5AU

)2.5

, (7)

where µ = 3.9×10−24 g is the mean molecular weight and σmol = 2×10−15cm2 is the molecular
cross section of molecular hydrogen39,40. The radial dependence does not include flaring of
the aspect ratio, H/r. Epstein drag applies as long as

ΩKτ
(Ep)
f <

9π
2

ρ•µH

Σ2
gσmol

≈ 7
(

ρ•
2 g cm−3

)(
Σg,5

150 g cm−2

)−2 (H/r
0.04

)(
r

5 AU

)4

. (8)

Thus Epstein drag is the relevant regime for the application of our model to 5 AU.

Extrapolation of our model to higher column densities (or regions closer to the star) requires
consideration of Stokes drag, for which

ΩKτ
(St)
f = ΩKτ

(Ep)
f

4a
9λ

=
4ρ•a2σmol

9µH
. (9)
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Since Stokes drag is also linear in the relative velocity between gas and solids, our model
applies with a different scaling of particle size,

a =

[
9ΩKτ

(St)
f µH

4ρ•σmol

]1/2

≈ 80 cm

[
ΩKτ

(St)
f

(
ρ•

2 g cm−3

)−1 (H/r
0.04

)(
r

5AU

)]1/2

. (10)

Actually since Stokes drag is independent of gas density (including fluctuations), our model
is more exact in this regime, but modelling particles in the Stokes regime would require a
different treatment of collisional cooling (see §1.4).

1.2.3 Energy dissipation by drag force

The dissipation of kinetic energy caused by drag force can be calculated as

ėkin = u ·
(
ρg
∂u

∂t

)
drag

+ w ·
(
ρp
∂w

∂t

)
drag

, (11)

where u and w are the respective gas and particle velocity fields. We refer to references41

and42 for considerations of the effect of drag force damping on the dynamics of particles.
Inserting the fluid expressions for the drag force acceleration,

∂u

∂t
= −ρp/ρg

τf
(u−w) , (12)

∂w

∂t
= − 1

τf
(w − u) , (13)

yields
ėkin = −ρp

τf
|w − u|2 . (14)

Dissipation of kinetic energy by drag forces comes automatically when applying the momentum-
conserving drag force. We usually assume that the dissipated energy can immediately radiate
away efficiently, keeping the temperature of the gas constant. We show, however, in §1.13 that
even if all the released energy remains locally as heat, the resulting temperature increase of
the gas is insignificant and has no influence on the initial stages of the gravitational collapse.

As long as there is a velocity difference between the solid particles and the surrounding gas,
then drag force cooling is efficient according to equation (14). But the relative speed of gas
and particles in drag force equilibrium decreases with increasing solids-to-gas ratio39, as the
solid particles entrain the gas. In that case inelastic collisions take over as the dominant
cooling mechanism (see §1.4).

1.3 Self-gravity solver

We compute the gravitational potential Φ of the particles by determining a particle density on
the mesh and solving the Poisson equation for this assigned density field. The gravitational
acceleration is then interpolated back to the positions of the particles. The particles are
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assigned to the mesh using the TSC scheme19, spreading each particle over the 27 nearest
grid points (in 3-D), and the gravitational acceleration is added back to the particles using a
second order spline interpolation to avoid any risk of self-acceleration of the particles.

The Poisson equation,
∇2Φ = 4πGρp , (15)

where G is the gravitational constant and ρp is the assigned particle density field, is solved
using a Fourier method. The solution for a single Fourier density mode of wave number
k = (kx, ky, kz) and complex Fourier amplitude ρk is

Φk = −4πGρk

k2
(16)

for k = |k| > 0. The full potential is then Φ(x) =
∑

k Φk exp[ik · x].

The radial x-direction in the shearing sheet is not strictly periodic, but is rather shear periodic
with the connected points at the inner and outer boundary separated by the distance ∆y(t) =
mod[(3/2)ΩKLxt, Ly] in the y-direction. We follow the algorithm of Gammie20 to include
shear-periodic boundaries in the Fourier method, with the difference that we perform the
necessary interpolation in Fourier space rather than in real space, as suggested by C. McNally
at http://imp.mcmaster.ca/~colinm/ism/rotfft.html. First we apply a discrete Fast
Fourier Transform (FFT) in the periodic y-direction. We then shift the entire y-direction
by the amount δy(x) = ∆y(t)x/Lx to make the x-direction periodic, before proceeding with
discrete FFTs along x and then z. Performing the δy(x) shift in Fourier space (essentially
using a Fourier interpolation method) has the advantage over polynomial interpolation that it
is continuous and smooth in all its derivatives. After solving the Poisson equation in Fourier
space, using the algebraic solution from equation (16), we transform the potential back to
real space in the opposite order, shifting the y-direction back to the sheared frame on the
way.

The gravitational constant G in equation (15) must be defined in code units. We adopt the
unit system ΩK = cs = H = ρg,mid = 1, where the parameters are respectively the Keplerian
frequency, isothermal sound speed, pressure scale height, and midplane gas density of the
disc. The non-dimensional form of the Poisson equation is

(H∇)2Φ/c2s = G̃
ρp

ρg,mid
, (17)

where
G̃ ≡ 4πGρg,midΩ

−2
K (18)

is a self-gravity parameter which relates to the Toomre parameter43 Q of self-gravitating gas
discs as

Q ≈ 1.6G̃−1 . (19)

In case of vertical hydrostatic equilibrium the connection between the midplane density ρg,mid

and the column density Σg is ρg,mid = Σg/(
√

2πH). Introducing further the dimensionless
scale-height-to-radius parameter H/r yields the power law connection

Σg = 300 g cm−2
(
G̃

0.1

)(
H/r

0.04

)(
M?

M�

)(
r

5 AU

)−2

. (20)
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Here we have made use of the identity Ω2
K = GM?/r

3, where M? is the mass of the central
gravity source and r is the orbital radius to a considered point in the disc.

1.3.1 Testing the Poisson solver

We validate here the FFT Poisson solver for a complex test case of a self-gravitating, shearing
particle wave with gas drag. This is not a standard test problem, but we found it very useful
for validating the particle-mesh self-gravity scheme of the Pencil Code. The particle density,
velocity and self-potential are written as ρp = ρ0 + ρ′p, w = w0 + w′, Φ = Φ0 + Φ′. Here

w0 = u
(0)
y ŷ ≡ −(3/2)ΩKxŷ is the Keplerian shear flow. The linearised continuity equation,

equation of motion and Poisson equation are

∂tρ
′
p + u(0)

y ∂yρ
′
p = −ρ0(∂xw

′
x + ∂yw

′
y) , (21)

∂tw
′
x + u(0)

y ∂yw
′
x = 2ΩKw

′
y − ∂xΦ

′ − 1
τf
w′x, (22)

∂tw
′
y + u(0)

y ∂yw
′
y = −1

2
ΩKw

′
x − ∂yΦ

′ − 1
τf
w′y , (23)

∇2Φ′ = 4πGρ′p. (24)

Here we have assumed particle motion to take place in the radial-azimuthal plane and zero
gas velocity, ux = uy = 0, in the friction terms. Because of the Keplerian shear flow, the
coefficients of the linearised equations are not independent of t, and thus an eigenmode analysis
is not possible. Instead, we assume a separable solution q(t, x, y) = q̂(t) exp[i(kx(t)x + kyy)]
for each dynamical variable. The time derivative of q(t, x, y) is

q̇(t, x, y) = [∂tq̂(t) + q̂(t)ix∂tkx(t)] exp[i(kx(t)x+ kyy)] . (25)

By setting x∂tkx(t) = −u(0)
y ky, we cancel the u(0)

y ∂yq terms in equations (21)–(23), leaving a
system of equations for (ρ̂p, ŵx, ŵy),

dρ̂p

dt
= −ρ0i(kxŵx + kyŵy) , (26)

dŵx

dt
= 2ΩKŵy +

4πiGkxρ̂p

k2
x + k2

y

− 1
τf
ŵx , (27)

dŵy

dt
= −1

2
ΩKŵx +

4πiGkyρ̂p

k2
x + k2

y

− 1
τf
ŵy , (28)

together with kx(t) = kx(t0) + (3/2)ΩKtky.

We solve this system of ordinary differential equations numerically using a third order Runge-
Kutta method to follow the temporal evolution of a non-axisymmetric wave with the initial
condition kx = −1, ky = 1, ŵx = ŵy = 0, ρ̂p = 10−4, and G = ΩK = ρ0 = τf = 1. This semi-
analytic solution is then compared to the evolution obtained with the full solver of the Pencil
Code (642 grid points and 4 particles per cell). Because we use particles to represent the solids
and a grid-based FFT solver to calculate the gravitational potential, the comparison provides
an excellent of test of all physics and numerical schemes relevant to our investigation: nu-
merical particles, grid-based FFT self-gravity, shear and shear-periodic boundary conditions.
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Figure 1: The evolution of a self-gravitating shear wave of solid particles. The plot shows
a comparison between the semi-analytic solution to the linearised equation system (grey
lines) and the solution obtained with the full solver of the Pencil Code (dark dotted, dashed
and dot-dashed lines) for the amplitude of the particle density ρ̂p and of the particle velocity
components ŵx and ŵy. There is excellent agreement between the numerical and the analytical
solutions in the entire linear range. After ρ̂p ∼ 0.1 the analytical solution is no longer valid
and the two solutions diverge.

We show the evolution of the analytical solution and of the solution obtained with the Pencil
Code in Fig. 1. There is an excellent agreement between the two solutions up to around
ρ̂p = 0.1 where the problem enters the nonlinear regime and the analytical solution loses its
validity (but the Pencil Code solution does not).

Next we derive an analytical solution to a fully non-linear one-dimensional gravitational col-
lapse problem, following Spitzer44, to test the Poisson solver outside the linear regime.

Consider the equation system governing a self-gravitating gas in an infinitely extended one-
dimensional space along the z-axis:

∂uz

∂t
+ uz

∂uz

∂z
= −∂Φ

∂z
− c2s

∂ ln ρ
∂z

, (29)

∂ ln ρ
∂t

+ uz
∂ ln ρ
∂z

= −∂uz

∂z
, (30)

∂2Φ

∂z2
= 4πGρ . (31)

We search for stationary solutions with u̇z = ρ̇ = uz = 0. This yields a second order
differential equation in ρ,

c2s
∂2 ln ρ
∂z2

+ 4πGρ = 0 . (32)
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Figure 2: Comparison of numerical and analytical solution to the Spitzer44 one-dimensional,
non-linear collapse problem. The agreement is very good in high density regions, but there is
disagreement in the underdense regions because the analytical solution assumes infinite space
rather than a periodic domain.

The general solution is

ρ(z) =
C1c

2
s

8πG

[
1− tanh

(
1
2

√
C1|z − z0|

)2
]

(33)

where

C1 =
(

2πGΣg

c2s

)2

(34)

is given by the column density of the gas and z0 is an arbitrary constant. This is an exact
solution to the full non-linear equation system and thus complements the linear test problem
described in the previous section. We let the Pencil Code start with a Jeans unstable mode
of wavenumber kz = 0.5 in a periodic z-space of length Lz = 4π covered by 64 grid points (we
used shock viscosity to keep the code stable during the initial collapse). We show in Fig. 2
a comparison between the equilibrium state found by direct time integration of the equation
system by the Pencil Code and the analytical equilibrium solution. There is an excellent
agreement between the two solutions in regions of high and moderate density, whereas the
underdense regions contain too much mass in the Pencil Code solution. This is however just
an artefact of the comparison: the analytical solution works in infinitely extended space,
whereas we assumed periodic boundary conditions in the numerical solution.
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1.4 Collisional cooling

In the models that include collisional cooling we let unresolved collisions damp the velocity
dispersion of the particles within each grid cell. The friction time in the Epstein45 regime is

τf =
a•ρ•
csρg

, (35)

where we follow the nomenclature of equation (4). The collisional time-scale is assumed to
follow a simple scaling with the Epstein friction time,

ρgcsτf = ρpcpτcoll , (36)

where ρp is the bulk mass density of solids and cp is the velocity dispersion of the boulders in a
grid cell. We ignore for simplicity any proportionality factors of order unity (for the complete
analytical expression of the cooling time-scale, see Garzó & Dufty46). If particles are in the
Stokes drag regime rather than Epstein (see §1.2.2), then the collisional cooling time-scale
actually decreases relative to the friction time, but for simplicity we do not model this regime
here. Equation (36) allows us to calculate the collisional time-scale from the friction time as

τcoll =
τf

(cp/cs)(ρp/ρg)
, (37)

without any reference to the radius and solid density of the particles. We discuss below how
this expression changes when particles of several sizes collide.

Taking a velocity dispersion of cp/cs ∼ 1 × 10−2 for the random motion of particles within
a grid cell gives a threshold solids-to-gas ratio of ε ∼ 100 where collisions between boulders
becomes as important as collisions between boulders and gas molecules. The collisional cooling
is implemented as a simple term that reduces the velocity of a particle relative to the mean
velocity of the particles in a grid cell on a collisional time-scale,

∂v(i)

∂t
= −1− Cres

τcoll
(v(i) − v(k)) , (38)

where v(k) is the average particle velocity in cell k in which particle i is situated. The
coefficient of restitution Cres is a measure of the degree of energy conservation in the impacts.
We take Cres = 0.1, corresponding to a loss of 90% of the relative velocity in each collision,
a reasonable value for collisions between macroscopic solids47, giving a collisional cooling
time-scale that is approximately the same as the collisional time-scale

For collisions between particles of multiple sizes we replace equation (37) with the equation

τcoll =
τ∗f

(cp/cs)
∑

i(ρi/ρg)
, (39)

where ρi is the local bulk density of solids of species i. The size-modified friction time τ∗f is
an average of the friction times of the individual species weighted with the local bulk density
of the individual species,

τ∗f =
∑

i(ρi/ρg)∑
i(ρi/ρg)τ−1

i

. (40)
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Using τ∗f as the effective friction time, we can define a single cooling time-scale for all particle
size bins. This ensures that the parameterised collisional cooling conserves momentum. For
a single particle size the effective friction time reduces to the friction time, τ∗f = τf .

In the numerical simulations we calculate the collision speed of particles in a given grid cell i
by first calculating the mean velocity in the cell v(i). We then calculate the average particle
collision speed as

c(i)p = |v(i) − v(i)| . (41)

This value is then plugged into equation (37) to get the collisional time-scale. This approach
must be taken when using superparticles, as collisions cannot directly be followed as could,
in principle, be done for individual particles.

1.5 Initial condition

Our simulations are initialised with a uniform density gas, ρg = 1, with isothermal sound
speed cs = 1. The superparticles are randomly distributed in space, and the mass of each
superparticle is set such that the column density of solids is Σp = 0.01

√
2πHρg,mid. Here we

have assumed that prior to the start of the simulation, sufficient sedimentation has occurred
to bring all the solids within the computational domain. The particles are given random
velocities with a Gaussian distribution of width δv = 1 × 10−3cs. The domain is cubic with
Lx = Ly = Lz = 1.32H, where H is the pressure scale height of the disc. We use periodic
boundary conditions in the azimuthal y-direction and in the vertical z-direction and shearing
periodic boundary conditions in the radial x-direction48. The Keplerian rotation frequency
at the central radius of the grid is ΩK = 1. Assuming an orbital distance of r = 5 AU, a
gas column density of Σg = 300 g cm−2 and a scale-height-to-radius ratio of H/r = 0.04 then
gives H = 3 × 1012 cm, ρg = 4 × 10−11 g cm−3 and cs = 500 m s−1 as physical properties of
the disc. The column density of solids is Σp = 3 g cm−2 for a global solids-to-gas ratio of
ε0 = 0.01.

1.5.1 Radial pressure support

The assumed radial pressure gradient, ∂ lnP/∂ ln r, causes radial drift of the boulders follow-
ing the expression39

vx =
(∂ lnP/∂ ln r)(H/r)
ΩKτf + (ΩKτf)−1

cs =
2∆v

ΩKτf + (ΩKτf)−1
(42)

in the absence of collective drag force effects on the gas (i.e. vanishing solids-to-gas ratio).
With (∂ lnP/∂ ln r)(H/r) = −0.04 this gives vx = ∆v = −0.02cs for marginally coupled
boulders with ΩKτf = 1. We show in §1.14 the effect of less and more radial pressure support.

1.5.2 Magnetic fields

The Pencil Code solves the induction equation for the magnetic vector potential A, keeping
the magnetic field B = ∇ × A solenoidal (i.e. ∇ · B = 0) per construction. We initialise
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magnetic fields by setting the initial vector potential

A = A0 cos
(

2π
Lx
x

)
cos

(
2π
Ly
y

)
cos

(
2π
Lz
z

)
ŷ, (43)

with A0 = 0.04, which leads to an initial zero-net flux field with a maximum thermal to
magnetic pressure ratio β ' 55. For the 2563 run we add a very weak external vertical
magnetic field of constant βext = 2 × 105. We found this latter field to be necessary to
maintain a constant turbulent viscosity of α = 10−3 throughout the simulation.

1.5.3 Disc mass

We set for the 2563 self-gravity simulation presented in the main text a value of G̃ = 0.1,
corresponding to a disc with Toomre43 parameter Q ≈ 16, an order of magnitude below
the limit for global gravitational instability of the gas at G̃ = 1 (at very large scales in an
infinitely extended disc). For this reason we do not let the gas feel self-gravity, nor do we
let the gas contribute to the gravitational potential in which the particles move. We have
performed simulations that included the self-gravity of the gas, but found no significant gas
overdensity in the gravitationally contracting particle clusters, due to the strong pressure
support of the gas. Our choice of G̃ gives a gas surface density of Σg = 300 g cm−2 at
r = 5 AU (see eq. 20), approximately two times the minimum mass solar nebula (MMSN38).
With moderate radial pressure support ∆v = −0.05cs the column density limit is twice as
high as for ∆v = −0.02cs, see §1.14. These are not unrealistic values for the actual column
density of gas in the solar nebula, since the MMSN is a very conservative estimate of the
column density that is calculated by adding up the heavy elements in the present Solar
System and then dividing by the assumed interstellar solids-to-gas ratio. Any loss of material
that occurred due to radial drift will then lead to an underestimate of the actual column
density. Radial drift can also enhance the solids-to-gas ratio in the inner 10 AU by as much
as an order of magnitude49,6,50.

1.5.4 Particle sizes

We assume in all the models described here a global solids-to-gas ratio of ε0 = 0.01. There
may be twice as much solid material present due to the condensation of volatiles into ice
beyond the snow line at a few AU from the protostar. Coagulation models generally yield
a particle mass distribution that spans two orders of magnitude in radius28,27. Our particle
size distribution has size bin boundaries spanning an order of magnitude from ΩKτf = 0.125
to ΩKτf = 1.125. The assumption is then that the simulated boulders represent the upper
half of the actual size range and that the lower half is present in smaller particles that are
not effectively concentrated by transient high pressures and streaming instability and also are
unable to participate in the collapse due to their strong coupling to the gas.
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Figure 3: 1-D spectra of the gas velocity components with three different resolutions along
the rows, the three different velocity components along the columns, and spectra taken in
three different directions shown in each panel, in simulations with no particles. The different
colours show power along the three coordinate directions, while the dotted line indicates a
k−1/3 Kolmogorov law.

1.6 Resolution study

1.6.1 Power spectra

Magnetorotational turbulence is known to produce a Kolmogorov-like power spectrum48 with
velocity amplitude on scale k going as uk ∝ k−1/3 in the inertial range where numerical
viscosity is insignificant. Increasing resolution leads to an increase in the inertial range.
We show in Fig. 3 the modulus of the velocity amplitude as a function of wavenumber k
normalised with the wavenumber of the largest scale of the box. A Kolmogorov k−1/3 power
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Resolution Npar/106 ∆tgrav α
(1) (2) (3) (4)
643 0.125 10.0 0.002

1283 1.0 7.0 0.001

Resolution G̃ Q Nclusters Ṁcluster Ṁcluster/G̃0.1 M4

(5) (6) (7) (8) (9) (10) (11)
643 0.4 4.0 2 7.5 1.9 42

1283 0.4 4.0 4 2.9 0.7 65

Table 1: Resolution study for fixed G̃. Col. (1): Mesh resolution. Col. (2): Number of
superparticles in millions. Col. (3): Number of orbits with self-gravity. Col. (4): Measured
turbulent viscosity. Col. (6): Self-gravity parameter. Col. (7): Corresponding Toomre Q ≈
1.6G̃−1. Col. (8): Number of clusters at the end of the simulation. Col. (9): Accretion rate
of the most massive cluster in Ceres masses per orbit. Col. (10): Accretion rate normalised
with G̃0.1 ≡ G̃/0.1. Col. (11): Total mass in the four most massive gravitationally bound
clusters at 7 orbits after self-gravity is turned on.

law is indicated with a dotted line for reference. The turbulence is notably weaker in the
z-direction than in the x- and y-directions. It also clear from Fig. 3 that the inertial range
expands as expected with increasing resolution. Resolving the turbulent scales is important
for resolving the local velocity dispersion (“temperature”) of the particles and thus for the
gravitational collapse (see §1.11).

1.6.2 Accretion

We check the convergence of the accreted mass using runs described in Table 1. We compare
runs at 643 and 1283 zone resolution, using a column density (parameterised by the self-
gravity parameter G̃) that allows the 643 simulation to undergo gravitational collapse into
discrete clusters. We find that the 1283 run forms four clusters while the 643 run only forms
two. However, the most massive cluster accretes faster in the low resolution case, because
it does not have to compete for particles with other clusters. In Fig. 4 we plot the mass in
the four most massive clusters as a function of time. The clusters in the 1283 run accrete
at approximately 50% higher rate than in the 643 run, because there are more clusters upon
which particles can accrete. This is also evident from the last column of Table 1 where we
write the total mass of the four most massive, bound clusters at a time of 7 orbits after self-
gravity is turned on. In Fig. 5 we plot the maximum bulk density of particles and the mass
of the most massive bound cluster as a function of time (similar to Fig. 3 of the main text).
It is clear that the most massive cluster contains more mass and accretes faster in the 643

simulation. At the same time the maximum density is higher in the 1283 simulation, because
the increased resolution leads to less smoothing in the particle-mesh scheme (see §1.2).

We emphasise that the gravitational collapse of overdense seeds in turbulence is inherently a
stochastic process, because of the temporal variability of the overdensities, so that convergence
is not expected in the strict meaning of the term. Only convergence to mean values can be
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Figure 4: Total mass in the four most massive gravitationally bound clusters, in units of
Ceres masses, plotted versus time since self-gravity was turned on, for two resolutions but
a fixed self-gravity parameter G̃ that allows gravitational collapse at both 643 and at 1283.
The higher resolution run accretes at a 50% higher rate onto four clusters condensed out of
the midplane layer, while only two clusters formed in the 643 run.

expected over a large ensemble of simulations. The limited number of tests that we have
been able to perform within available computational resources should therefore be taken as
qualitatively suggestive rather than conclusive.

1.6.3 Gravitational collapse

We have also done a resolution study of the column density required for gravitational col-
lapse of the particle layer to occur, with results given in Table 2. The midplane layer in all
runs presented here is resolved with an initial average of around four particles per grid cell,
enough for the TSC scheme to define meaningful particle densities for the self-gravity solver.
Collapsing regions have many more particles in each cell, of course. The column density limit
for forming gravitationally bound clusters (see column 6 of Table 2) decreases with increasing
grid resolution at all resolutions we have been able to study to date, as determined by varying
the column density in increments of ∆Σg = 300 g cm−3, equivalent to ∆G̃ = 0.1.

The observed decrease in limiting column density appears to be partly because of a decrease in
the strength of the magnetorotational turbulence with increasing resolution, at least at lower
resolution. The strength of the turbulence can be parameterised by the effective turbulent
viscosity, which drops from α = 0.002 at 643 to α = 0.001 at 1283 and 2563, allowing a slightly
denser midplane layer to form.

A more important factor, though, is that the particle density field becomes better resolved on
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Figure 5: The maximum bulk solid density and the mass of the most massive bound cluster
as a function of time for a fixed value G̃ = 0.4 at 643 (left, 1.25× 105 particles) and at 1283

(right, 1 × 106 particles). The 643 run produces only 2 clusters (see Table 1), but the most
massive one accretes lots of solid material (7.5 MCeres per orbit), whereas at the increased
resolution of 1283 four clusters form and they must compete for particles to accrete, thus the
accretion rate of the most massive cluster decreases. The maximum bulk density of particles
increases for higher resolution because the particle density field is better resolved by the TSC
assignment scheme (see §1.2). Fig. 4 shows that the total mass accretion onto bound clusters
in the 1283 simulation is actually twice as high as in the 643 simulation.

the grid at higher resolution. The TSC assignment scheme underestimates the amplitude of
density modes with wavelength near the grid size19, so the self-gravity solver underestimates
the gravitational acceleration caused by structures at those small scales. This can be seen in
Fig. 6, where we show the maximum particle density produced by streaming instability and
concentration in transient high pressures in models with neither self-gravity nor collisional
cooling. Increasing linear resolution by a factor of two increases maximum density by around
a factor four. Thus only higher resolution models reach the Toomre criterion for collapse at
low column densities.

We write in columns 12 and 13 of Table 2 the mass in the four most massive, bound clusters
and the same parameter divided by G̃0.1 ≡ G̃/0.1. There is less (normalised) mass accretion
at 2563 than at lower resolutions. This is readily explained because collapse can take place
in smaller regions when the resolution is increased. The clusters thus contain less mass and
accrete slower, at least to begin with, although the 2563 has not run long enough to reveal
the behaviour over longer times.

Another important effect is the resolution of the initial gravitational contraction. Fig. 2 in
the main text shows that self-gravity results first in a radial contraction of the overdense seed
bands. This contraction continues until the bands reach the Hill density where self-gravity
dominates over tidal force, allowing a full non-axisymmetric collapse into bound clusters oc-
curs. However, the self-gravity solver cannot follow collapse below a few grid cells, setting a
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Resolution Npar/106 ∆tgrav α
(1) (2) (3) (4)
643 0.125 10.0 0.002

1283 1.0 10.0 0.001
2563 8.0 7.0 0.001

Resolution G̃ Q G̃(no coll) Nclusters Ṁcluster Ṁcluster/G̃0.1 M4 M4/G̃0.1

(5) (6) (7) (8) (9) (10) (11) (12) (13)
643 0.4 4.0 0.4 2 7.5 1.9 42 10.5

1283 0.2 8.0 0.3 2 1.8 0.9 19 9.5
2563 0.1 16.0 – 4 0.5 0.5 6 6

Table 2: Resolution study for gravitational collapse. Col. (1): Mesh resolution. Col. (2):
Number of superparticles in millions. Col. (3): Number of orbits with self-gravity. Col. (4):
Measured turbulent viscosity. Col. (6): Minimum self-gravity parameter where gravitationally
bound clusters form (MMSN has G̃ ≈ 0.05 at r = 5 AU). Col. (7): Corresponding Toomre
Q ≈ 1.6G̃−1. Col. (8): Minimum self-gravity parameter where gravitationally bound clusters
form without collisional cooling. Col. (9): Number of clusters at the end of the simulation.
Col. (10): Accretion rate of the most massive cluster in Ceres masses per orbit. Col. (11):
Accretion rate normalised with G̃0.1 ≡ G̃/0.1. Col. (12): Total mass in the four most massive
gravitationally bound clusters at 7 orbits after self-gravity is turned on. Col. (13): Total
cluster mass normalised with G̃0.1 ≡ G̃/0.1.

resolution-dependent minimum width on the radial bands. Increasing the resolution decreases
the final width of the bands, increasing their density, and thus allowing full collapse to occur
in models with lower initial column densities. After collapse sets in, higher resolution al-
lows collapse to higher densities, again resulting in higher peak densities in higher resolution
models.

Poisson noise due to the discrete nature of the superparticles on the other hand, appears to
be quite insignificant for gravitational collapse. We have done tests with particle numbers as
high as thirty particles per cell (in the mid-plane layer) in the 643 runs (106 particles) and
eight particles per cell in the 1283 runs (2× 106 particles) and found the column density for
collapse to be unchanged from runs with the same grid resolution and only four particles per
cell. The overdense seeds of the gravitational instability are under all circumstances resolved
with several hundreds or thousands of particles, explaining this result.

Although we have clearly not yet obtained convergence in the gravitational collapse of the
particles, the consistent trend towards higher peak densities and gravitational instability at
lower average column density with increasing resolution lends strong support to our hypothesis
that this mechanism can drive planetesimal formation at gas column densities characteristic
of the minimum mass solar nebula.

To compensate for underresolving the peak densities, one could manually sharpen the un-
derestimated density modes19, but we prefer not to solve for the gravitational acceleration
better than the pressure term, to avoid any risk of artificial fragmentation51. On the other
hand, studies that use the adaptive mesh refinement method52 in combination with a kinetic
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Figure 6: Maximum particle density on the grid, assigned from particle positions with the
TSC scheme19,37, versus time for runs with no self-gravity and no collisional cooling. The
maximum density goes up by a factor of 3-4 for the 1283 simulation, in part because the density
field assigned with the TSC scheme on the grid has less smoothing at higher resolution.

particle code with collision detections53 could be adapted to fully resolve the gas concentra-
tion of particles, and then follow the collapse and gravitational fragmentation of the boulder
layer all the way up to solid density, allowing determination of the minimum column density
for planetesimal formation and the final multiplicity of the self-gravitating boulder clusters
that we model.

1.7 Collisional cooling

In the runs presented in the main text, we include the effect of collisional cooling on the
collapse of the mid-plane layer into gravitationally bound clusters. However, the collisional
cooling only marginally changes the column density at which collapse initially occurs. To
demonstrate this, we have run simulations without collisional cooling to quantify its impor-
tance for gravitational collapse (see column 8 of Table 2). We show in Fig. 7 the maximum
bulk density of solids in simulations with and without collisional cooling, for 643 (left plot)
and 1283 (right plot) grid simulations. At 643 resolution collapse occurs at G̃ = 0.4 both
with and without collisional cooling, although its inclusion seems to cause collapse to hap-
pen somewhat more quickly after self-gravity is turned on at t = 0. At a resolution of 1283

zones, collapse occurs in the presence of collisional cooling at G̃ = 0.2, whereas the column
density limit without collisional cooling is roughly 50% higher. Collisional cooling is thus not
a prerequisite of the collapse, but rather allows collapse to occur in somewhat lighter discs.
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Figure 7: Comparison of runs with (bright/yellow) and without (dark/blue) collisional cooling
(self-gravity and collisional cooling are turned on at t = 0). At 643 resolution, we find that
collapse occurs at the same gas column density, independent of collisional cooling, although
collisional cooling lets the collapse happen faster. At 1283 collapse with collisional cooling
occurs at G̃ = 0.2, while G̃ = 0.3 is needed when collisional cooling is not applied.

1.8 Jeans and Toomre criterion

The Jeans criterion51,54 states that the local Jeans length for gravitational collapse of gas must
be resolved by at least a few grid points, as otherwise artificial fragmentation may occur in
marginally stable structures because of numerical discretisation errors. This is particularly a
problem in the presence of rotation54,55. A corresponding Toomre43 criterion56 is appropriate
for accretion discs. We show in §1.10 that the initial radial collapse phase is resolved by
around 20 grid points, but gravitationally bound clusters eventually reach the size of a few
grid cells, for which the unstable wavelengths that would lead to further fragmentation are
not resolved. It is not snown whether artificial fragmentation is an issue for solid particles
moving on a fixed mesh. The TSC scheme inherently smooths out small scale power in
the assigned particle density19,37 (see also §1.2), so the contribution of the small scales to
the gravitational potential is underestimated, whereas the particle velocity dispersion that
counteracts contraction is resolved equally well at all scales. It is thus more likely that our
numerical scheme suppresses fragmentation at the small scales and at crude resolutions; this
is also supported by the resolution tests where gravitational collapse occurs at lower column
density in higher resolution models. We have no reason to believe that the collapse of the
particle layer should stop anywhere near the grid scale: the velocity dispersion in the overdense
clusters is around 1% of the sound speed, so the pressure support is negligible9, and drag force
and inelastic collisions are highly efficient at dissipating kinetic energy. Instead we consider
the condensed particle clusters to be equivalent to (numerically expensive) sink particles, a
good approximation as long as there is no feedback from the unresolved scales back to the
large scales57.
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1.9 Gammie cut-off

Gammie20 argues that one must exclude wave numbers above a limit from the solution to
the Poisson equation in the shearing box in order to keep the gravitational acceleration ap-
proximately isotropic at small scales in the presence of shear. The cut-off is at kmax =

√
2kNy

where kNy is the Nyquist wavenumber. This cut-off has been applied in all our simulations.
We have run test simulations without the cut-off and found no significant differences in the
resulting gravitational fragmentation, probably because the TSC assignment scheme itself
underestimates the potential at these small scales.

1.10 Size of the forming bodies

The linear stability analysis of Goldreich & Ward5 gives the largest wavelength unstable to
radial self-gravity as

λGW =
4π2GΣp

Ω2
K

, (44)

where G is the gravity constant, Σp is the column density of solids and ΩK is the Keplerian
orbital frequency. This expression is formally valid in the limit of vanishing particle velocity
dispersion and ignores the potentially important effect of drag forces on the collapse42,58.
Inserting nominal values at r = 5 AU in the protosolar nebula gives

λGW ≈ 1.4× 1010 cm
(
M?

M�

)−1 ( Σp

1.5 g cm−2

)(
r

5 AU

)3

. (45)

Using a scale height of H = 3× 1012 cm (see §1.5) and Σp = 15 g cm−2 in the radial overden-
sities of our simulations yields λGW/H ≈ 0.1, which is initially well-resolved (the grid size is
δx = δy = δz = 0.005H in the 2563 simulation). Assuming that all the solid mass within a
single unstable wavelength collapses to a gravitationally bound solid object, the radius of the
object is

R ≈
(
Σpξ

2λ2
GW

ρ•

)1/3

≈ 50 km ξ2/3
(
M?

M�

)−2/3 ( Σp

1.5 g cm−2

)(
r

5 AU

)2 ( ρ•
2 g cm−3

)−1/3

,

(46)
where ξ < 1 is a parametrisation of the most unstable wavelength relative to the largest
unstable wavelength. A reasonable value is ξ = 1/2.

At r = 1 AU with Σp = 15 g cm−2 one recovers the 10 km planetesimals found by Goldre-
ich & Ward5. The size of planetesimals falls to less than 1 km if the velocity dispersion
of the particles is included, but the derivation ignores the effect of drag forces on energy
dissipation59,60,42,58. Considering, on the other hand, an orbital radius r = 5 AU, with
Σp = 30 g cm−2 in the radial overdensities found in the current work, the planetesimals reach
radii of around 600 km, because the unstable wavelengths contain far more mass. These sizes
agree roughly with the results of our numerical models.
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1.11 Collision speeds

We show in Fig. 8 the collision speeds between bodies of different sizes in a 1283 simulation
without self-gravity or collisional cooling (from a snapshot taken at t = 20Torb). We consider
a million particles of four different particle sizes at the same time, ΩKτf = 0.25, 0.50, 0.75, 1.00
and two values of the radial pressure support, ∆v = −0.05cs and ∆v = −0.02cs.

We have considered collisions between all particles within the same grid cell by measuring the
relative speed of every single pair of particles, giving (1/2)N(N−1) unique collisions in a grid
cell with N particles. We note that this may underestimate the actual rate of fast collisions
since in reality high speed collisions would happen more frequently. We also note that grid
points with many particles get a high weight in the overall picture, and if these very dense
grid points have a lower collision speed due to feedback shielding from the gas (see Figs. 13
and 14), this will also lead to a generally lower collision speed. All collisions were considered
for simplicity to be head on. The more realistic case of random impact parameters would lead
to a reduction of the measured collision speeds by more than 50%. We show for comparison
the collision speeds measured at t = 20Torb for 643 and 2563 simulations in Figs. 9–10. For
the 643 the Mach number of the gas is overall larger, Ma ≈ 0.07 compared to Ma ≈ 0.05 at
1283, and collision speeds are also larger than in Fig. 8. There is very little difference between
the 1283 and the 2563 collision speeds, but the data is based on only one snapshot. More
statistically significant convergence tests, given in §1.11.1, show a slight increase in collision
speeds (relative to large scale rms speeds) with increasing resolution.

Equal-sized bodies have no differential drift, so turbulent motions dominate the distribution
of collision speeds, while differential drift (dotted lines in Fig. 8) dominates the distribution
of collisions between bodies of different sizes.

Following Benz3 we calculate the threshold for destructive collisions. We use the specific
incoming kinetic energy

K = (1/2)mv2/M , (47)

where v is the collision speed and m and M are the impactor and target mass, respectively,
with M > m. Collisional fragmentation occurs at a limit K? ≈ 3×106 erg g−1 for metre-sized
solid bodies and K? ≈ 6×105 erg g−1 for metre-sized rubble piles3. This allows us to calculate
the destructive collision threshold from equation (47) for any pair of bodies (see Fig. 8). We
have ignored any shape effects that could lead to differential drift of equal mass bodies3.
More collisions exceed the destruction threshold for equal-sized bodies than other cases, but
destructive collisions still only form a minority of the total, although the fraction of destructive
collisions depends on poorly known material properties of the boulders. Note that our bodies
are in fact smaller than the 1 m considered by Benz, so the destruction threshold speeds
may in reality be higher since smaller bodies are expected to be able to withstand higher
collision speeds. Higher radial pressure support does not produce markedly more collisional
fragmentation, as can be seen by comparing the grey and dark lines in Fig. 8. The collisions
for which the relative speed increases with the drift speed are between different-sized bodies,
and those collisions can withstand much higher relative speeds, whereas higher radial pressure
support does not give equal-sized bodies a higher collision speed. A third possibility for the
internal makeup of the bodies is that they are icy, porous structures. It is shown by Ryan et
al.61 that such objects are generally as strong as the silicates considered by Benz3. We ignore
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Figure 8: Distribution of collision speeds between boulders of different sizes for a radial
pressure support of ∆v = −0.05cs (grey line) and ∆v = −0.02cs (dark line), both for 1283 grid
points and 1,000,000 particles without either collisional cooling or self-gravity. The laminar
solution for the relative speed due to differential drift (in radial and azimuthal velocity) is
shown with a dotted line (with an assumed solids-to-gas ratio of ε = 0.5). This is the major
contribution for different-sized bodies, whereas equal-sized bodies only obtain collision speed
due to turbulent motions in the gas. The threshold for destruction is shown for solid bodies
(dot-dot-dot-dashed line) and for rubble piles (dot-dashed line) following Benz3. Equal-sized
bodies have the lowest destruction threshold, but that is still in the far wing of the collision
distribution. Small bodies and large bodies can survive collisions at much higher speeds,
sometimes even beyond the range shown along the δv axis (i.e. > 0.1cs, where cs=500 m/s).
The collision speed between equal-sized bodies is relatively unchanged when increasing the
pressure support to ∆v = −0.05cs. The increased differential drift, however, manifests itself
in higher collision speeds between different-sized bodies.
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Figure 9: Same as Fig. 8, but for 643 grid points with 125,000 particles. The overall Mach
number of the turbulent flow is 30-40% higher than in the higher resolution runs, hence
collision speeds are somewhat higher.
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Figure 10: Same as Fig. 8, but for 2563 grid points with 8,000,000 particles. Here we consid-
ered for simplicity only 1/8 of the immense amount of possible collisions. The collision speeds
agree well with those of Fig. 8.
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Figure 11: The distribution of particle collision speeds (volume average, left plot) in units of
sound speed, also shown weighted with number of particles in the grid cell (particle average,
right plot), for ∆v = −0.02cs and four different particle sizes ΩK = 0.25, 0.50, 0.75, 1.00. The
distribution function f is normalised such that

∫∞
0 f(t, δv)d(δv/cs) = 1 for all t. Collisional

cooling and self-gravity are turned on at t = 0, halfway through these runs, with little effect
on average collision speeds until late times. Collisional cooling is only efficient in the few
regions where the solids-to-gas ratio is very high, so the average collision speeds are not much
affected. Accretion onto the condensed out clusters is visible in the right panel at late times.

in the present analysis other effects of collisions, such as erosion that may deplete boulders
of mass even if the collision speed is below the threshold for destruction.

A quite serious issue related to collisional fragmentation is that it could reduce the number
of particles large enough to take part in gravitational collapse prior to the collapse to as little
as 20% of the total mass of the solids28,27. This is particularly relevant in the inner solar
nebula where the sound speed is high. In that case we speculate that an augmentation of
the solids-to-gas ratio by up to a factor 5 would be needed for gravitational collapse to occur
in the midplane layer. Note that we already assume that half of the solid mass is present in
small grains too well-coupled to the gas to take place in the collapse (assuming that the total
abundance of solids and ices is 0.017 times that of the gas38). A more detailed modelling of
collisional fragmentation is needed to quantify its actual effect on the gravitational collapse.

We show in Fig. 11 the time evolution of the average collision speed of the particles for a
radial pressure support of ∆v = −0.02cs. The volume average collision speed distribution
has one speed associated with each grid cell whereas the particle average collision speed
distribution has the local collision speed weighted by the number of particles in the grid
cell. Collisional cooling, turned on together with self-gravity at t = 0 in Fig. 11, does not
reduce collision speeds broadly, since only regions with very high solids-to-gas ratios have
sufficiently high collision rates for cooling to be effective. Accretion with high relative speeds
onto condensed clusters is visible at late times in the particle average distribution. Some of
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the high-speed collisions that occur during the accretion phase, especially among boulders
that have already been deformed in earlier collision events, may in reality lead to erosion or
destruction of the colliding bodies3. However, the fragments remain within the Hill sphere of
the gravitationally bound cluster, so their dynamics is dominated by the gravity of the nearby
cluster rather than by the tidal force of the protostar. Furthermore, the mean free path of
the fragments, `/H ≈ ΩKτf/(ρp/ρg) ∼ 10−3, is shorter than the size of the bound clusters, so
they will undergo collisions with the remaining boulders, leading only to the further growth
of the remaining boulders as they sweep up the fragments. All in all collisional destruction of
boulders (or, rather, the lack of widespread collisional destruction) is important for obtaining
an initial condition with a sufficient amount of the solid material bound in boulders, whereas
collisional destruction during the gravitational collapse phase is probably only of secondary
importance.

1.11.1 Comparison of rms and collision speeds with analytic values

We now aim to explain why the relative (i.e. collisional) speeds are only δv ≈ 0.01cs for
marginally coupled particles despite turbulent motions of Mach number M = ut/cs = 0.05.
We summarise the four main effects: (1) due to finite friction times particles are not fully
accelerated by the turbulence, so rms particle speeds are reduced below that of the gas; (2)
particle drag on gas tends to reduce both random and relative speeds; (3) particles are well
enough coupled to eddies that collision speeds are slower than rms speeds due to entrainment
by the same extended eddies; and (4) even though we have a fairly long inertial range in the
2563 simulations, particles gain relative speed from scales near the onset of the dissipative
subrange, so it is not certain that all the relevant scales are resolved. We present extensive
documentation of effects (1) and (2) in this section, while point (4) is given some support by
a 10-20% increase of collision speeds relative to rms speeds when going from 643 to 1283 grid
points (see Figure 16).

We emphasise that there is no complete theory describing all these effects, so the current
numerical study deepens our understanding of these issues. Notably an analytical theory for
collision speeds that includes orbital dynamics is, to our knowledge, missing (even without
drag of particles on gas), so verification of point (3) above is difficult and the point is left as
speculation in this work. We also emphasise that our results show that the collision speed
increases slightly with increasing resolution and that higher resolution studies will be needed
to see if the collision speeds have converged. The important issue of collision speeds of
marginally coupled solids will need more consideration in the future.

First a word on nomenclature and on calculation procedure:

• With rms speeds we refer to the overall root-mean-square speed of either gas or particles.
This value is directly obtained from calculating the root-mean-square of all values of a
chosen component of gas or particle velocity.

• Collision speed refers to the local velocity differences of particles within a single grid cell
(similar to the sound speed or mean thermal speed of the gas). We calculate the mean
collision speed of particles by following 1000 particles from the greater ensemble and
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Without feedback (1283):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z σ

(g)
x σ

(g)
y σ

(g)
z σ

(p)
x /σ

(g)
x σ

(p)
y /σ

(g)
y σ

(p)
z /σ

(g)
z

0.20 0.0307 0.0230 0.0205 0.0317 0.0294 0.0240 0.9686 0.7844 0.8515
0.50 0.0313 0.0191 0.0172 0.0321 0.0300 0.0244 0.9762 0.6367 0.7049
1.00 0.0305 0.0149 0.0138 0.0326 0.0300 0.0246 0.9353 0.4967 0.5599
2.00 0.0271 0.0120 0.0113 0.0331 0.0312 0.0251 0.8192 0.3834 0.4510
5.00 0.0186 0.0082 0.0074 0.0329 0.0311 0.0249 0.5644 0.2648 0.2961

Without feedback (643):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z σ

(g)
x σ

(g)
y σ

(g)
z σ

(p)
x /σ

(g)
x σ

(p)
y /σ

(g)
y σ

(p)
z /σ

(g)
z

0.20 0.0428 0.0322 0.0289 0.0448 0.0422 0.0344 0.9554 0.7628 0.8394
0.50 0.0429 0.0263 0.0248 0.0448 0.0422 0.0344 0.9573 0.6234 0.7201
1.00 0.0404 0.0207 0.0198 0.0448 0.0422 0.0344 0.9019 0.4909 0.5764
2.00 0.0340 0.0161 0.0152 0.0448 0.0422 0.0344 0.7590 0.3815 0.4408
5.00 0.0237 0.0115 0.0104 0.0448 0.0422 0.0344 0.5283 0.2731 0.3025

With feedback (1283):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z σ

(g)
x σ

(g)
y σ

(g)
z σ

(p)
x /σ

(g)
x σ

(p)
y /σ

(g)
y σ

(p)
z /σ

(g)
z

0.20 0.0276 0.0194 0.0172 0.0318 0.0307 0.0244 0.8655 0.6315 0.7046
0.50 0.0279 0.0166 0.0150 0.0341 0.0341 0.0263 0.8199 0.4858 0.5698
1.00 0.0220 0.0111 0.0106 0.0337 0.0331 0.0257 0.6520 0.3350 0.4105

With feedback (643):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z σ

(g)
x σ

(g)
y σ

(g)
z σ

(p)
x /σ

(g)
x σ

(p)
y /σ

(g)
y σ

(p)
z /σ

(g)
z

0.20 0.0423 0.0291 0.0265 0.0462 0.0434 0.0355 0.9147 0.6719 0.7450
0.50 0.0372 0.0224 0.0217 0.0479 0.0459 0.0363 0.7769 0.4881 0.5991
1.00 0.0388 0.0182 0.0184 0.0465 0.0432 0.0358 0.8335 0.4218 0.5134

Table 3: Particle and gas rms speeds and their ratios, for different values of the friction time.
The top part of the table shows results for passive particles (i.e. with no friction force on
the gas), whereas the bottom part shows the result when gas is allowed to feel friction. The
gas Mach number is around Ma ≈ 0.05 for 1283 grid points, while Ma ≈ 0.07 for 643 grid
points. Small particles show the expected trend towards equal particle and gas rms speeds
(the ratios are shown in the last three columns). The azimuthal particle rms speed falls
quickly with increasing friction time as the loosely coupled particles go on elliptic orbits, and
the ratio between radial and azimuthal particle rms speed approaches the expected value of
0.5. Particle rms speeds fall by a significant factor when gas is allowed to feel the friction
from the particles – for ΩKτf = 1.0 the reduction is around 25% when adding the components
quadratically.
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Figure 12: Comparison of simulated particle rms speeds and scale-heights to a simple ana-
lytic model of turbulent forcing that includes orbital dynamics, but no feedback62. Symbols
are the measured rms particle speeds from single particle size simulations τs = ΩKτf =
0.2, 0.5, 1.0, 2.0, 5.0 (1283 grid points and 1,000,000 particles) either without (black symbols)
or with (grey symbols) particle feedback. Left plot: Particle scale-height (crosses) and vertical
rms speeds (asterisks) compared to analytical curves which use the measured vertical rms
gas speed, uz = 0.024cs and an eddy time, teddy = 1.0Ω−1

K as input. Right plot: Measured
radial (crosses) and azimuthal (squares) particle rms speeds compared to analytic curves us-
ing the measured gas velocities (radial, ux = 0.032cs; azimuthal uy = 0.030cs; and correlated
〈uxuy〉1/2 = 0.016cs) and teddy = 1.0Ω−1

K as input. See text for further discussion.

measuring the velocity components of each particle relative to a random other particle
in its grid cell, calculating in the end the rms of each velocity component from the
distribution of relative velocities. We make sure that the particle has a neighbour by
excluding grid points with only 1 particle. We also exclude a neighbour particle if it is
one of the 1000 chosen particles. This method is computationally much cheaper than
the full tabulation of all collisions used in Fig. 8.

For all measurements presented in Tables 3 and 4 we have averaged over snapshots taken
equidistantly 10 orbits apart, starting at t = 20Torb where the sedimentary mid-plane layer
has already had 10 orbits to form in balance with the turbulent diffusion.

We show in Table 3 the rms speeds of gas σ(g) and particles σ(p) for different values of the
friction time (from 1283 simulations with single-sized particles). The top part shows the
results of simulations where drag force from particles on gas was not applied, whereas this
back-reaction drag force is included in the bottom part of Table 3. The turbulent rms speed
of the gas has in all cases a Mach number of around Ma = ut/cs = 0.05 for 1283 grid points
(seen by adding up the three components quadratically), while Ma = 0.07 for 643 grid points.
The smallest particles (ΩKτf = 0.2) have comparable rms speeds, but the rms speeds fall with
stopping time as expected (see Fig. 12 and explanation below).
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Figure 13: Gas rms speed as a function of height over the mid-plane in simulations with 1283

grid points and 1,000,000 particles. At each z-value we have calculated the dispersion of the
three velocity components. There is a clear dip in the gas velocity dispersion around the
mid-plane where the solids-to-gas ratio is high. This dip is not present in the run with no
back-reaction friction force (lower right panel).

To understand the simulated rms speeds of particles in MRI turbulence, we compare to Youdin
& Lithwick (hereafter YL)62. YL consider the rms response of particles to stochastic turbulent
forcing (with a temporal Kolmogorov spectrum) with orbital dynamics – in particular epicyclic
motions – included, which previous works have ignored . The inputs for the simple analytic
theory include the measured rms speeds of the turbulence (radial, azimuthal, vertical and
the radial-azimuthal correlations), the friction time of the particles, and the eddy time, i.e.
the correlation time of turbulent velocity fluctuations. Since the eddy time is a measured
quantity, we treat it as a free parameter and find the reasonable value teddy ≈ Ω−1

K .

The left panel of Fig. 12 shows that vertical speeds and scale heights of particles agree very
well with the analytic theory of YL. Since vertical particle motions are decoupled from in-
plane motions, the analytic description is fairly simple. When feedback is included (grey
symbols) the random particle velocities drop, by around 25% for τs = 1.0 particles. This is
not due to a decrease in the total turbulent Mach number (which actually goes up slightly),
but likely comes from the increased particle inertia in dense clumps.
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Figure 14: Normalised Fourier amplitude of the gas velocity as a function of wavenumber k
(in units if the largest scale in the box k0) and height over the mid-plane z. Shown here is
a simulation with single-sized ΩKτf = 1 particles (no self-gravity or collisional cooling). We
have done 1-D Fourier transforms along the x-direction and averaged this over all values of
azimuthal coordinate y and time t for each given height z. The power spectrum has been
normalised with the average value at each wavenumber k. The colours represent values of
±20%. Feedback drag force from particles on the gas reduces the velocity amplitude in the
mid-plane by around 20%, explaining a similar reduction in rms speeds visible in Table 3.

The right panel of Fig. 12 shows in-plane particle velocities compared to the YL model. The
agreement is good, if not as perfect as the vertical case, due to more complex dynamics.
Notably, the prediction that azimuthal velocities fall before radial speeds (as τs increases)
due to epicyclic motion is confirmed. Drag feedback (grey symbols) again produces a decrease
in rms speeds, by about 30% in the radial speeds for τs = 1.0.

It may be surprising that the eddy time-scale is so short, teddy ≈ 1Ω−1
K (a similar result for

the eddy time was found recently by Johansen, Klahr, & Mee63 by considering the relation
between turbulent diffusion and gas rms speeds). Simple mixing length estimates based on
Fig. 3 yield an eddy time at least an order of magnitude higher than our best fit value,
i.e. tk = 1/(kuk) ∼ 100Ω−1

K on the largest scales. But the large scales of the flow are
dominated by Coriolis force and centrifugal terms rather than non-linear advection, and thus
the correlation time of these important structures is forced to be similar to the Keplerian
frequency64,18. Mixing length theory gives a good estimate of the life times of large scale
structures, but their correlation time, which is the important quantity for mixing purposes,
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Figure 15: The root-mean-square of the particle z-coordinate as a function of time, with and
without feedback, for a 1283 simulation with single-sized ΩKτf = 1 particles. The scale height
of the particles falls by around 20% when feedback is applied, in accordance with Fig. 14
that shows that feedback damps MRI turbulence by around 20% in the sedimented mid-plane
layer (the reduction in scale height is also seen in the left panel of Fig. 12).

is never longer than a Keplerian shear time Ω−1
K .

The net effect of decoupling and feedback gives a total (radial, azimuthal and vertical) rms
speed of 0.027cs for τs = 1.0, nearly half the gas rms speed of vt = 0.05cs. Regions of high
particle density damp out the gas velocity on the time-scale τg = τf/(1 + ε) where τf is the
friction time of the particles and ε is the solids-to-gas ratio. It was shown by Dobrovolskis
et al.41 that this damping can lead to a minor reduction of turbulence around the mid-plane
layer. We show in Fig. 13 the gas velocity dispersion as a function of height over the mid-plane.
There is a clear, though rather modest, dip around the mid-plane where the solids-to-gas ratio
is also high. The dip is only visible in simulations that include the back-reaction friction force.
In Fig. 14 we show the magnitude of the different Fourier components of the gas velocity as a
function of height over the mid-plane. Here we have Fourier-transformed along the x-direction
and averaged over every single y coordinate at each height z. The spectrum has afterwards
been normalised with the average spectrum so that differences appear more clearly. There
is again a clear dip, of around 20%, in the strength of the velocity fluctuations around the
mid-plane. The dip occurs at all scales, although the small scales of uy are less affected than
the large scales. In Fig. 15 we show the particle rms z-coordinate as a function of time. With
particle feedback on the gas there is a drop by around 20% in the scale height of the particles,
in agreement with what is expected for a 1− 0.22 = 36% drop in the diffusion coefficient65.
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Without feedback (1283):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z δvx δvy δvz δvx/σ

(p)
x δvy/σ

(p)
y δvz/σ

(p)
z

0.20 0.0307 0.0230 0.0205 0.0077 0.0078 0.0050 0.2503 0.3363 0.2432
0.50 0.0313 0.0191 0.0172 0.0126 0.0076 0.0065 0.4020 0.3942 0.3767
1.00 0.0305 0.0149 0.0138 0.0154 0.0068 0.0076 0.5018 0.4557 0.5491
2.00 0.0271 0.0120 0.0113 0.0170 0.0073 0.0092 0.6225 0.6101 0.8098
5.00 0.0186 0.0082 0.0074 0.0143 0.0062 0.0073 0.7634 0.7549 0.9836

Without feedback (643):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z δvx δvy δvz δvx/σ

(p)
x δvy/σ

(p)
y δvz/σ

(p)
z

0.20 0.0428 0.0322 0.0289 0.0105 0.0093 0.0074 0.2461 0.2907 0.2588
0.50 0.0429 0.0263 0.0248 0.0147 0.0079 0.0085 0.3432 0.3013 0.3462
1.00 0.0404 0.0207 0.0198 0.0183 0.0078 0.0096 0.4533 0.3814 0.4879
2.00 0.0340 0.0161 0.0152 0.0191 0.0082 0.0109 0.5572 0.5099 0.7199
5.00 0.0237 0.0115 0.0104 0.0170 0.0078 0.0094 0.7163 0.6847 0.9072

With feedback (1283):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z δvx δvy δvz δvx/σ

(p)
x δvy/σ

(p)
y δvz/σ

(p)
z

0.20 0.0276 0.0194 0.0172 0.0068 0.0065 0.0044 0.2463 0.3376 0.2555
0.50 0.0279 0.0166 0.0150 0.0108 0.0065 0.0054 0.3845 0.3855 0.3569
1.00 0.0220 0.0111 0.0106 0.0109 0.0049 0.0055 0.4982 0.4501 0.5224

With feedback (643):

ΩKτf σ
(p)
x σ

(p)
y σ

(p)
z δvx δvy δvz δvx/σ

(p)
x δvy/σ

(p)
y δvz/σ

(p)
z

0.20 0.0423 0.0291 0.0265 0.0108 0.0094 0.0072 0.2579 0.3224 0.2715
0.50 0.0372 0.0224 0.0217 0.0144 0.0082 0.0073 0.3892 0.3622 0.3364
1.00 0.0388 0.0182 0.0184 0.0187 0.0082 0.0088 0.4855 0.4361 0.4798

Table 4: Particle rms speeds (σ(p)
x|y|z), collision speeds (δvx|y|z) and their ratios. The top part of

the table shows results without drag force on the gas, the bottom part includes drag force on
the gas. The collision speeds are very low for small particles, but the ratio between collision
speed and rms speed increases with increasing friction time as the equal-sized marginally
coupled particles are big enough to have significantly different histories when they meet.
Back-reaction friction force on the gas has very little influence on the ratio of collision speeds
to rms speeds. There is a 10-20% increase in the ratio of collision to rms speed when going
from 643 to 1283 grid points, possibly due an expansion of the inertial range of the turbulence.
Higher resolution studies will be needed to determine whether this trend continues of whether
the collision speeds have already converged.
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Figure 16: The ratio of particle collision speed δvp to large scale particle rms speed σp, both
calculated as quadratic sums of the directional components given in Table 4 and shown for
two resolutions and with and without particle feedback on the gas. The collision speeds
increase as expected with increasing friction time as particles decouple from fast large scale
eddies. Collision speeds increase by 10-20% when increasing resolution from 643 to 1283,
likely because the inertial range of the gas turbulence expands to smaller scales. Feedback
has only little influence on the ratio of collision speed to rms speed, but the overall rms speed
of particles is reduced by feedback (see Fig. 12). Higher resolution studies will be needed to
determine whether ΩKτf = 1 particles will eventually obtain the fully mixed δvp/σp =

√
2.

1.11.2 Why are collision speeds so low?

Table 4 shows the collision speed δv of the particles for comparison with the particle rms
speeds. Here we have chosen a thousand particles throughout the simulation and calculated
their relative speed with a random different particle in the same grid cell. The collision speed
of marginally coupled particles (with ΩKτf = 1) is around 50% of the overall rms speed. This
factor 2 decrease in the relative speeds on small scales compared to rms speeds remains to be
explained. An exact analytic prediction of this effect is difficult, and has not to our knowledge
been done with either orbital dynamics or feedback, let alone both effects. Higher resolution
simulations will be needed to determine if small scale eddies can change this result. Fig. 3
indicates that over an order of magnitude in the inertial range is resolved, but scales around
the onset of the dissipative subrange may be important for collision speeds.

We can think of two possible reasons for the low collision speeds. The first is insufficient
numerical resolution. The numerical dissipation of the code results in an underestimate of
the amplitude of turbulent velocities at scales smaller than around 6 grid points. At the same
scales, the particle-mesh drag force (§1.2) begins to be underestimated37. Taking the stopping
length of the boulders to be `stop = τfvrms, where vrms potentially depends on τf , this yields for
marginally coupled particles a stopping length of `stop = 0.025H, when reduction of the rms
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Figure 17: Particles in the densest grid cell at t = 20Torb for the 2563 simulation presented in
the main paper (this is before collisional cooling and self-gravity are turned on). The panels
show a gradual zoom out on the surrounding grid cells (still in the same z-plane). No spurious
structure is evident either at the subgrid scale or at the interfaces between grid cells, since the
high order particle-mesh drag force scheme samples 27 nearby grid points when evaluating
the gas velocity at the position of a particle. The particles are shown in velocity space in the
left panel of Fig. 19.

speed due to marginal coupling and feedback is taken into account. The resolution is either
δx = 0.01, for 1283 grid cells, or δx = 0.005 for 2563 grid cells. If we assume that relative
collision speed between particles of stopping length `stop is typically given by turbulent eddies
of wavelength 2`stop, then these eddies are of size 5-10 grid cells, depending on resolution.
Thus there is potentially a damping of the collision speeds, as some of the scales that are
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Figure 18: The mean particle density in the mid-plane (left panel) for a simulation with
single-sized ΩKτf = 1 particles and feedback on the gas. The right panel shows the radial
velocity wx of the particles in the mid-plane. Isolated particles would have wx = −0.02cs, but
the increased inertia in the mid-plane has decreased the radial drift by a factor two there. The
dashed line shows the expected radial velocity calculated from the mid-plane density shown in
the left plot. There is relatively good agreement, an indication that drag forces are calculated
correctly in the code (we note that a thorough test of the particle-mesh drag force scheme was
performed by Youdin & Johansen37). Radial drift is a bit lower than expected, but that may
be explained by large scale gas density fluctuations that modify the radial pressure gradient
enough to slow the radial drift of marginally coupled particles9.

important for relative motion are just at the onset of the dissipative subrange. Table 4 and
Fig. 16 show that the ratio of collision speeds to rms speeds does increase by 10-20% when
going from 643 to 1283 grid points, although the increase is much more modest when feedback
is included. An increase in grid resolution, implying both an increased inertial range and a
sharpening of the particle-mesh scheme at small scales, will be needed to determine whether
the collision speeds will continue to go up with increasing resolution.

A second possible explanation is missing orbital dynamics in analytical estimates. The colli-
sion speeds predicted by Voelk et al.66 rely on a Kolmogorov spectrum with eddy turn over
times from mixing length theory. This approach does not take into account epicyclic motion,
nor the upper limit to structure correlation times given by the Coriolis force. YL already
showed that orbital dynamics are important for particle rms speeds, but there is no similar
theory for collision speeds that takes into account orbital dynamics. Such analytical work
should be a high priority for future research because of its importance to the dynamics and
growth of boulders across the m-sized barrier.

We note that the particle-mesh drag force scheme of the Pencil Code has been extensively
tested in the recent paper by Youdin & Johansen37. The same TSC assignment/interpolation
scheme is also used for self-gravity, for which we present a test problem in §1.3.1.
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Figure 19: Particles shown in velocity space (vx, vy). The left panel shows the particles from
Fig. 17 – the colours refer to the 16 individual grid points in the lower right panel of Fig.
17. The right panel shows a 1283 simulation with single-sized ΩKτf = 1 particles. Notice
the higher axis range. Here we have chosen 20 random grid points containing between 500
and 1000 particles. The overall spread of particle velocities is large, comparable to 0.02cs in
each direction, whereas the spread within individual grid cells is much smaller. The positive
correlation between the two velocity components arises from the positive Reynolds stress of
the MRI turbulence.

We proceed with a few reality checks of particle positions in physical space and in velocity
space. While we do not claim that any of these tests are exhaustive, they are meant to serve
the purpose to exclude that spurious particle structure at the grid scale is the source of the
low collision speeds. We show in Fig. 17 particle positions around the densest grid point at
t = 20Torb for the 2563 simulation presented in the main paper, before collisional cooling
and self-gravity are turned on. No spurious structure is evident at subgrid scales or at the
interfaces between the grid cells. In Fig. 18 we show the mean particle density in the mid-
plane as a function of time (left panel), for a simulation with single-sized ΩKτf = 1 particles.
The right panel of Fig. 18 shows the mean radial drift velocity in the mid-plane. Particles
drift slower than the expected −0.02cs due to increased particle inertia in the mid-plane39.
The dashed line indicates the expected drift velocity given the mid-plane density shown in
the left panel. It is in relatively good agreement with the measured drift, another indication
that the code applies drag forces correctly. A slight decrease in the drift speed may be due
to large scale pressure gradients in the gas slowing down the radial drift9.

Finally we show in Fig. 19 particle positions in velocity space (vx, vy). While the overall spread
in velocities is large, the individual grid cells (shown with individual colours) show a much
more coherent velocity structure. We hope to explain this difference in future publications,
both with increased numerical resolution and with improved analytical models that include
orbital dynamics on the calculation of the collision speeds.
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1.12 Low ionisation discs

A high enough ionisation fraction is needed for the magnetorotational instability to oper-
ate67. This threshold may be reached in hot parts of the disc and in parts where the column
density is low enough that cosmic rays penetrate68,69,70. Typically a penetration depth of
Σg ≈ 100 g cm−2 is found. Other sources of ionisation are decay of radioactive elements and
chemical reactions. Small dust grains, on the other hand, soak up electrons and reduce the
conductivity71. This has lead to the concept of a dead zone in the midplane of the disc where
ionisation is insufficient for MRI21. Several mechanisms have been proposed for reviving the
dead zone: growth of the peak dust grain size by an order of magnitude71, using the turbulent
kinetic energy to ionise molecules, thus maintaining any turbulence that is already present72,
and X-ray flares from the central star that would ionise the disc periodically73.

We investigate the limit in which the MRI completely fails to influence the midplane by
modelling the same problem as in the main text, but absent magnetic fields. A more advanced
model would still have magnetically active surface layers that could influence the “dead zone”
dynamically74,75,76. We do not, in general, expect density fluctuations in the gas similar to
what happens in the MRI. This is because the Mach number of Kelvin-Helmholtz turbulence
and streaming turbulence is generally smaller than for the MRI11,12. This situation may
change in a more advanced model with active surface layers that can influence the magnetically
dead mid-plane, as the surface layers send density waves through the dead zone74,76.

1.12.1 Low radial pressure support

We show in Fig. 20 the evolution of the sedimented mid-plane layer for the usual range
of particle sizes and a radial pressure support of ∆v = −0.02cs. The box size was set to
Lx = Ly = Lz = 0.1H, 1.32 times smaller than in the magnetic runs, in order to resolve
the thin mid-plane layer that forms in the absence of global MRI turbulence. A turbulent
state develops anyway since vertical shear in the radial and azimuthal gas flow is unstable
to the Kelvin-Helmholtz instability5,77,7,13,78,11. The streaming instability is also a source of
non-linear dynamics and turbulence10,37,12.

It is evident from Fig. 20 that the particles quickly gather at a single radial location and drift
radially together for the full duration of the simulation (50 orbits, the Courant time-step in
these small boxes limits the possible simulation times compared to the magnetic runs). This
can be understood as an effect of the streaming instability. Any isolated particle drifts quickly
into the overdense band where the dynamics is so dominated by particles that the radial drift
is significantly reduced. Very high particle densities are reached within the band, with peaks
at more than three orders of magnitude times the gas density.

The high particle densities are very susceptible to gravitational collapse. We show in Table 5
that gravitational collapse is possible in discs with as low mass as one half of the MMSN.
The accretion rate of the most massive bound cluster is generally 3 orders of magnitude lower
than in the magnetic runs, which follows the expected trend of equation (46) that the mass
of the bound object scales with the cube of the column density. The solid size of the most
massive bound cluster in the 1283 run of Table 5 is 150 km, smaller than in the runs with
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Figure 20: Particle column density for 643 and 1283 simulation with no magnetic fields and
the usual range of boulder sizes. Particles quickly end up in a single azimuthally extended
roll and slowly drift in together for at least 50 orbits. The maximum bulk density of particles
reaches 1000 times the ambient gas density.

magnetorotational turbulence presented in the main text, but still larger than the classical
view of planetesimals.

1.12.2 Moderate radial pressure support

We show in Fig. 21 a comparison between two 3-D simulations: one with magnetic fields
and one without. Both have a resolution of 1283 grid points, marginally coupled particles
with ΩKτf = 1 and a moderate radial pressure support of ∆v = −0.05cs. The box size is
Lx = Ly = Lz = 1.32H for the MRI run and Lx = Ly = Lz = 0.2H for the run with no
magnetic fields. After an initial period where strong density enhancements form, the solids-
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Resolution Npar/106 ∆tgrav G̃ Q Nclusters Ṁcluster

(1) (2) (3) (4) (5) (6) (7)
643 0.125 5.0 0.1 16.0 1 0.0050

1283 1.0 5.0 0.025 64.0 2 0.0007

Table 5: Resolution study for runs with no magnetic fields and ∆v = −0.02cs. Col. (1): Mesh
resolution. Col. (2): Number of superparticles in millions. Col. (3): Number of orbits with
self-gravity. Col. (4): Minimum self-gravity parameter where gravitationally bound clusters
form (MMSN has G̃ ≈ 0.05 at r = 5 AU). Col. (5): Corresponding Toomre Q ≈ 1.6G̃−1. Col.
(6): Number of clusters at the end of the simulation. Col. (7): Accretion rate of the most
massive cluster in Ceres masses per orbit.
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Figure 21: Comparison of azimuthally averaged boulder column density for models with
magnetic fields (left plot) and without magnetic fields (middle plot) for 1283 grid points and
marginally coupled particles with ΩKτf = 1. The model with no magnetic fields initially
shows some clumping and overdensities, but these die out after 20 orbits after which the
maximum solids-to-gas ratio stays below 10 for the duration of the simulation with no signs
of the high density events that are obvious in the MRI run.

to-gas ratio never rises above 10 in the simulation without magnetic fields. In Fig. 22 we show
the time evolution of particle density averaged over the azimuthal direction for the moderate
pressure support non-magnetic run presented in the middle panel of Fig. 21. The particle
density reaches a configuration where a single standing wave dominates the box, with no
significant overdensities. This state may come about because of the streaming instability.
It was observed by Johansen & Youdin12 that marginal coupling produces a very strongly
turbulent state (with vertical diffusion coefficients similar to those of the MRI). This state
was nevertheless very clumpy in the simulations of Johansen & Youdin12, but the inclusion of
vertical gravity in the current work may mean that the correlation times are so short (due to
vertical oscillations) that clumping is suppressed. The simulations by Johansen & Youdin12

also showed that a higher background solids-to-gas ratio leads to a dramatic increase in growth
rate of the streaming instability, and a decrease in the unstable wavelengths. We show in the
next section (§1.12.3) that a slight increase in the global solids-to-gas ratio indeed leads to
significant particle clumping.
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Resolution Npar/106 ∆tgrav G̃ Q Nclusters Ṁcluster

(1) (2) (3) (4) (5) (6) (7)
643 0.125 5.0 0.05 32.0 1 0.092

1283 1.0 5.0 0.025 64.0 3 0.004

Table 6: Resolution study for runs with no magnetic fields, ∆v = −0.05cs and ε0 = 0.03.
Col. (1): Mesh resolution. Col. (2): Number of superparticles in millions. Col. (3): Number
of orbits with self-gravity. Col. (4): Minimum self-gravity parameter where gravitationally
bound clusters form (MMSN has G̃ ≈ 0.05 at r = 5 AU). Col. (5): Corresponding Toomre
Q ≈ 1.6G̃−1. Col. (6): Number of clusters at the end of the simulation. Col. (7): Accretion
rate of the most massive cluster in Ceres masses per orbit.

We have tested the effect of self-gravity in the 3-D non-magnetic models with moderate radial
pressure support as well, with the four different particle sizes we used in the models described
in the main letter. We have not been able to form accreting self-gravitating clusters, like
those we observe in discs with MRI turbulence, for any reasonable column density G̃ < 1 at
either 643 or 1283 resolution. Global magnetorotational turbulence thus appears to overall
promote rather than impede gravitational collapse of marginally coupled boulders.

1.12.3 Higher solids-to-gas ratio

We performed simulations with increasingly higher solids-to-gas ratio with the expectancy
that the turbulent state would get weaker and overdensities larger. This behaviour was
indeed confirmed. In Fig. 23 we show the evolution of the mid-plane layer for moderate radial
pressure support and a background solids-to-gas ratio of 0.03. Extremely high overdensities,
up to three orders of magnitude higher than the gas, now occur. We show in Table 6 the
gravitational collapse for the moderate pressure support case. The accretion rate is around
six times higher than in the case of low radial pressure support (see Table 5), but that is
probably due to the increased global solids-to-gas ratio in the moderate pressure support
case.

One possible way to enhance the global solids-to-gas ratio is by radial drift augmenta-
tion49,6,50. This would be especially likely in the case of a magnetically active and warm
outer disc with a strong radial drift. Drifting into the dead inner regions of the disc the
boulder velocity field would converge at the rim of the dead zone, leading to particle pileups
there. Another effect, which to our knowledge has not yet been explored, is that the accret-
ing surface layers must lose all their solids to the dead zone. Considering an active layer
with a width of one gas scale height H and an orbital distance r, the probability for a small
dust grains to accrete all the way to the star without diffusing into the dead zone is only
(H/r)2 � 1. Once a grain is lost into the dead zone it is very unlikely that it will diffuse back
into the active layers because the turbulent diffusion in the dead zone is assumed to be very
low. A third possibility for augmenting the solids-to-gas ratio is by photoevaporation of the
gaseous part of the disc29
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Figure 22: Time evolution of the boulder density averaged over the azimuthal y-direction in
a 3-D simulation with 1283 grid points and 106 marginally coupled particles with ΩKτf = 1.
A Kelvin-Helmholtz instability develops from the initial sedimentation, driven by the shear
in the radial drift velocity of the gas39. The whole particle layer eventually participates in a
single standing wave where particles drift and oscillate around the midplane (see main text
for details).

1.13 Heating and cooling

Drag and collisions dissipate the kinetic energy of the solids. In the extreme case, all this
heat is released locally in the gas. We consider here the case of ineffective radiative cooling

41



ΩKτf=0.25,0.50,0.75,1.00 (643)

−0.10 −0.05 0.00 0.05 0.10
x/H

0

10

20

30

40

50

t/T
or

b

0.0 5.0

Σp(x,t)/<Σp>

ΩKτf=0.25,0.50,0.75,1.00 (1283)

−0.10 −0.05 0.00 0.05 0.10
x/H

0

10

20

30

40

50

t/T
or

b

0 10 20 30 40 50
t/torb

100

101

102

103

104

m
ax

(ρ
p)

/ρ
g

1283
643

0 10 20 30 40 50
t/torb

0.000

0.005

0.010

0.015

0.020

H
p/

H

Figure 23: Particle column density for a global solids-to-gas ration of 0.03. The particle
density peaks at more than three orders of magnitude higher than the gas density.

and an ideal gas equation of state, rather than the isothermal equation of state assumed in
the rest of the paper. The only means to transport energy in this model is by turbulent heat
conduction. In reality collisional cooling may transfer most of the energy into deformation of
the colliding bodies, but we consider here the effect of the most extreme case of local heating
on gravitational collapse.

We have ignored viscous heating under the assumption that the gas background has found an
equilibrium between radiative loses and viscous heating. The extra gas shear and compression
in the collapsing particle clusters is negligible due to the pressure support of the gas, so any
extra viscous heating in regions of collapse is not important. We have found no traces of
the gravitationally contracting clusters in the gas density or in the gas velocity field (gas is
allowed to exert and feel self-gravity in the simulations that include heating).

We show in Fig. 24 the gas temperature as a function of time for a run with 643 grid points
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Figure 24: The maximum and mean temperature of the gas as a function of time in our
adiabatic model, for models with 643 zones and G̃ = 0.5 (left), and 1283 zones and G̃ = 0.2.
Self-gravity is turned on at t = 0; the first collapse, seen in the fall in the mean potential of
the particles, begins after approximately 10 orbits for the 643 run. Peaks in the maximum
temperature coincide well with times where gravitational energy is released (the peak at
t = −20 is due to compression in the initial random velocity field). The energy is transferred
to the gas by drag and inelastic collisions. The mean temperature rises negligibly because
gravitational collapse occurs in only a small fraction of the total gas volume.

and G̃ = 0.5 (a 25% higher column density was needed for collapse in this case, which we
attribute simply to the stochastic nature of the collapse) and for a run with 1283 and the
usual G̃ = 0.2. Self-gravity is turned on at a time t = 0. We let gas exert and feel self-gravity
in the simulations with heating, although this causes no real difference in the behaviour. This
effect is otherwise not included in the simulations (see §1.5.3). The maximum temperature
rises to no more than 30% over the initial value at times of gravitational collapse (seen in the
mean gravitational potential energy of the particles). Peaks in the maximum temperature
coincide well with gravitational energy release events. The peak at t = −20 happens due to
compression in the initially random velocity field.

We show in Fig. 25 the dissipation rate of drag and collisions. Drag dominates the volume-
averaged energy budget, with a heating rate at least six orders of magnitude higher, because
collisions are only important in the few grid points where the solids-to-gas ratio greatly exceeds
unity. Assuming a temperature of around 80 K in the non-heated state, the temperature
reaches a maximum of approximately 104 K in the 643 simulation, still too low to even melt
the icy component of the boulders.

1.14 Varying radial pressure support

Cuzzi et al.13 gives a detailed review of the values expected for the radial pressure sup-
port parameter. We have assumed throughout this work a radial pressure support of either
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Figure 25: Volume-averaged heating rate by drag (dark/blue) and by inelastic collisions
(bright/khaki) in the same runs shown in Fig. 24. Drag force dissipates six orders of magnitude
more kinetic energy than collisions do, although collisional dissipation dominates in regions
where the bulk density of solids is at least two orders of magnitude higher than the gas (see
§1.4).

Resolution Npar/106 ∆tgrav α G̃ Q Nclusters Ṁcluster

(1) (2) (3) (4) (5) (6) (7) (8)
643 0.125 10.0 0.002 0.7 2.3 1 2.7

1283 1.0 7.0 0.001 0.4 4.0 4 2.6

Table 7: Resolution study for ∆v = −0.05cs. Col. (1): Mesh resolution. Col. (2): Number of
superparticles in millions. Col. (3): Number of orbits with self-gravity. Col. (4): Measured
turbulent viscosity. Col. (5): Minimum self-gravity parameter where gravitationally bound
clusters form (MMSN has G̃ ≈ 0.05 at r = 5 AU). Col. (6): Corresponding Toomre Q ≈
1.6G̃−1. Col. (7): Number of clusters at the end of the simulation. Col. (8): Accretion rate
of the most massive cluster in Ceres masses per orbit.

(∂ lnP/∂ ln r)(H/r) = −0.04 or (∂ lnP/∂ ln r)(H/r) = −0.1 (see §1.5.1). The value of H/r
directly yields the local temperature when folded with the mass of the central object and
the orbital radius in the disc. We have run test simulations of colder discs as well, with
H/r = 0.02, corresponding to a four times lower temperature at a given location than models
with H/r = 0.04. In Fig. 26 we compare the evolution of the maximum particle density
between the standard run with H/r = 0.04 and the cold run with H/r = 0.02. The two
curves are statistically indistinguishable. Lowering the disc aspect ratio reduces radial drift
and decreases the unstable wavelengths of the streaming instability, but this apparently does
not change the evolution of the solids, at least for moderate changes in temperature.
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Figure 26: Maximum particle density versus time for standard run with H/r = 0.04 (blue)
and a colder disc with H/r = 0.02 (yellow). The curves appear statistically indistinguishable.
A lower disc aspect ratio decreases the radial drift of the solids, while making the unstable
wave lengths of the streaming instability smaller, but apparently neither of these effects
significantly changes the particle overdensities in the considered cases.
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Figure 27: Comparison of the topography of the particle layer for the standard run with
∆v = −0.02cs (left) with a run with 2.5 times stronger radial pressure support ∆v = −0.05cs
(middle), both at 643 grid points and 125,000 particles. The increased radial drift is clear
in the tilted bands, but the streaming instability still produces strong overdensities in the
particle layer. The right plot shows the maximum particle density as a function of time – the
peaks in the particle density are reduced by around 30% in the case of the stronger radial
pressure support.

A higher radial pressure support can occur for a given value of H/r if the radial pressure
support |∂ lnP/∂ ln r| exceeds unity. We next examine the consequences of a higher radial
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State 〈ρp〉/〈ρg〉 τfrag/Torb τcoag/Torb

Average midplane 0.5 30 90
Peak midplane 100.0 0.15 0.45
Contracting cluster 1000.0 0.015 0.045

Table 8: Estimated time-scales, in units of orbits, for collisional fragmentation and for coag-
ulation in three different states of the mid-plane layer.

pressure support on the maximum density of solids. We show in Fig. 27 the topography of
the sedimented particle layer and the maximum particle density of two 643 simulations: the
standard run with (∂ lnP/∂ ln r)H/r = −0.04 and a run with higher radial pressure support
and (∂ lnP/∂ ln r)H/r = −0.1. The same comparison at 1283 is shown in the main text.
The increased radial pressure support, ∆v = −0.05cs, is very clear in the latter case from the
tilted particle bands, but the streaming instability still produces radial overdensities. We have
checked the column density required for gravitational collapse in models with ∆v = −0.05cs
and found that approximately a factor two higher value of the column density of gas is needed
for the collapse (see Table 7) compared to the standard model with ∆v = −0.02cs.

1.15 Other processes

In order to isolate the effect of self-gravity on the dynamics of the solids we have ignored two
potentially important collisional effects: coagulation and collisional fragmentation. In this
section we estimate time-scales and effects of these physical phenomena.

The time-scale of collisions is
τcoll =

τf
(cp/cs)(ρp/ρg)

, (48)

where cp is the collision speed of the boulders and τf is the friction time. Assuming spherical
boulders gives the relation

a•
ȧ•

= 3
m•
ṁ•

(49)

between the time-scale for radius doubling and the time-scale for mass doubling, which in turn
is just the collisional time-scale. We consider regions with solid-to-gas ratios characteristic
of the average midplane in a turbulent disc, the peak density in the turbulent midplane, and
an intermediate density in a gravitationally contracting cluster, as described in Table 8. The
same table gives the time-scales for collisional fragmentation and for coagulation for these
different regions.

The average state has a coagulation time of close to 100 orbits, comparable to the time-scale
for radial drift in. To cross the drift barrier effectively a few coagulation times are needed, so
the growing solids are lost into the inner disc before they can decouple from the gas. A more
advanced model would take into account the sweep up of small grains as the boulders drift,
but essentially the same result is reached79.

The size of the boulders could increase on the time-scale of only one orbit in the overdense
particle clusters that occur in transient high pressure regions and due to the streaming insta-
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bility. Coagulation could go even faster in the gravitationally contracting regions. This may
be how planetesimals eventually form: by coagulation in an overdense environment set by the
self-gravity of the solids. The strength of the scenario presented in the main text, though, is
that it does not rely on coagulation being efficient in same way as pure coagulation models
do28,27. Coagulation is needed to build up marginally coupled solids—metre-sized boulders at
5 AU or centimetre-sized pebbles at 40 AU—but does not directly drive gravitational collapse.

Collisional fragmentation may also be prevalent in gravitationally contracting clusters. In
that case one can speculate that the mode of radius growth is by sweeping up of collisional
fragments by the few lucky boulders that avoid catastrophic collisions with equal-sized bodies.
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