arXiv:0708.3929v1 [math.DG] 29 Aug 2007

The solution of the Minkowski problem for open surfaces in Riemannian space.

The solution of the Minkowski problem for open surfaces in
Riemannian space.

Andrei I. Bodrenko
Abstract

Author reduces the Minkowski problem to the problem of construction the G-deformations
preserving the product of principal curvatures for every point of surface in Riemannian space. G-
deformation transfers every normal vector of surface in parallel along the path of the translation for
each point of surface. The continuous G-deformations preserving the product of principal curvatures
of surface with boundary are considered in this article. The equations of deformations which are
obtained in this paper reduce to the nonlinear boundary-value problem. The method of construction
continuous G-deformations preserving the product of principal curvatures of surface with boundary
and its qualitative analysis are presented in this article.

Introduction

The Minkowski problem (MP) is well known fundamental problem of differential geometry.
There have been published a number of articles on this subject since 1903. But all authors
have studied this problem in Euclidean or pseudo-Euclidean spaces. They were H. Minkowski,
A.V. Pogorelov, A.D. Aleksandrov, W.J. Firey and many others. We know many
generalizations of the MP in Euclidean and pseudo-Euclidean spaces.

V.T. Fomenko [21] studied the MP by the methods of deformation theory in Euclidean
space.

The MP in Riemannian space differs substantially from the MP in Euclidean space. The
MP in Riemannian space is much more complicate than the MP in Euclidean space.

Author of this article created for the first time the method of finding solutions of the MP
in Riemannian space using deformation theory.

Author have studied AG-deformations in Euclidean spaces in [1-16]. It was very hard to
obtain the equation system of AG-deformations in Riemannian space and much harder to
solve it. V.T. Fomenko in [24] studied infinitesimal ARG-deformations in Riemannian space.
The methods developed in [1-16] are very useful for finding the solution of the Minkowski
problem.
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§1. Basic definitions. Statement of the main result.

Let R® be the three-dimensional Riemannian space with metric tensor a,.g, F' be the two-
dimensional simply connected oriented surface in R? with the boundary OF.

Let F € C™", v e (0;1),m >4, OF € C™. Let F has all strictly positive principal
curvatures ki and ks. Let F be oriented so that mean curvature H is strictly positive. Denote
K= k’lk'g.

Let F be given by immersion of the domain D C E? into R® by the equation: 37 =
fo(z),z € D, f: D — R® Denote by do(z) = \/gdxz' A dz* the area element of the surface
F'. We identify the points of immersion of surface F' with the corresponding coordinate sets
in R3. Without loss of generality we assume that D is unit disk. Let x', 22 be the Cartesian
coordinates.

Symbol ; denotes covariant derivative in metric of surface F. Symbol 0; denotes partial

derivative by variable z*. We will assume f = %. We define A(f) = f(t) — f(0).

Indices denoted by Greek alphabet letters define tensor coordinates in Riemannian space
R3. We use the following rule: a formula is valid for all admissible values of indices if there
are no instructions for which values of indices it is valid. We use the Einstein rule. We assume
that integer m, satisfies the condition 0 < m; < m — 2.

We consider continuous deformation of the surface F: {F;} defined by the equations
yf:y(’—i-z"(t),z“(O) =0,t e [O;to],to > 0. (11)

Definition 1 . Deformation {F;} is called the continuous deformation preserving the product
of principal curvatures ( or M —deformation [21]) if the following condition holds: A(K) =0
and 2°(t) is continuous by t.

The deformation {F;} generates the following set of paths in R?
u® (1) = (y* + 2*°(1)), (1.2)
where 2% (0) = 0,7 € [0;],t € [0;t0],to > O.

Definition 2 . The deformation {F;} is called the G—deformation if every normal vector
of surface transfers in parallel along the path of the translation for each point of surface.

Let, along the OF, be given vector field tangent to . We denote it by the following

formula:
(7

v = liyf;‘. (1.3)
We consider the boundary-value condition:
Gapz™v” = F(s,t),s € OD. (1.4)

Let v and 7 be of class C™ 2.
We denote: .
Ao = dapyv” k= 1,2, (1.5)
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P N
(A1)? + (X2)?

A(s) = Mi(s) +ida(s), s € OD. (1.7)

Let n be the index of the given boundary-value condition
1
n = —~»Asp arg A(s). (1.8)
2

Theorem 1 . Let F € C™" v € (0;1),m > 4, F € C™Y. Let a,5 € C™, IM, =
const > 0 such that ||aasllm., < Mo, 10Gasllm., < Mo, [10%Gapllm, < Mo. Let v°,7 €
C™2v(0D), ¥ is continuously differentiable by t. Let, at the point (x%o),x%o)) of the domain
D, the following condition holds: ¥t : 2°(t) = 0.

Then the following statements hold:

1) if n > 0 then there exist to > 0 and £(ty) > 0 such that for any admissible ¥
satisfying the condition: |§|m_2, < € for all t € [0,ty) there exists (2n — 1)—parametric
MG —deformation of class C™ V(D) continuous by t.

2) if n < 0 then there exist ty > 0 and (ty) > 0 such that for any admissible ¥
satisfying the condition: |§|m_o., < e(to) for all t € [0,ty) there ewists nor more than one
MG—deformation of class C™~>"(D) continuous by t.

3) if n = 0 then there exist to > 0 and £(to) > 0 such that for any admissible ¥ satisfying
the condition: ||m_2, < € for all t € [0,ty) there exists one MG—deformation of class
C™=2(D) continuous by t.

We denote:
Gap(t) = Gap(y” + 27(1)), Gap(0) = Gag-
Ds(t) =T sy +27(t)), T(0) = Flﬁ
bij(t) = bij(y” +27(t)), bzg()E ()— (y” +27(1)), b(0) = b.
9i(t) = gi(y7 + 27(1)), 9;5(0) = gi5. 9(t) = g(y7 + 27(1)), 9(0) = ¢
d(t)=a’,c(t) =c, 2°(t) = 2°.

§2. Deduction of G—deformation formulas for surfaces in
Riemannian space.

The deformation {F};} of surface F is defined by (1.1).
We denote:

27(t) = d (t)y7,; +c(t)n?, (2.1)
where a7 (0) = 0, ¢(0) = 0. Therefore the deformation of surface F is defined by functions a’

and c.
We denote:

Viz® =25 +T17,(0)27y7,;. (2.2)
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Then we have (see [27]):

Viz® = (a'byj + ¢, )n® + (a’,; —cbjmg™ Y™ (2.3)

J

The condition of G—deformation is equivalent to the following equality:

a’aoﬁA:aO (t)nﬁ =Y (2'4)

where A;*°(t) is the result of parallel translation of tensor (y3° + 25°(¢)) from the point
(y* + 2%(t)) to the point (y*°) along the path of the translation for each point of surface
by deformation, i.e. along the following curve:

u(7) = (1 + (7)), (25)

where 220 (0) = 0,7 € [0;1].
Then parallel translation of tensor y5° + 25°(t) reduces to the following Cauchy problem:
find A$*(t, ) satisfying the equations:

dA (¢, 7)

d +Fgg(T)Zﬁ(T)AZ<t, T) = 0,0éo = 172,377' c [O’tL (26)
T

with initial boundary value conditions:

APO(t,t) = Y+ 25 (t). (2.7)
We denote: .
A (67 = [T, (70)2% (o) (2:8)
For k > 2 we denote:
t t t
A (t,7) = / / H TS (1) (1) )drodr...dry1. (2.9)
T T Tk_9 j=0
and for j > 1,k > 2 we assume

Lemma 2.1. The following inequalities hold:

1AE o (8 )l < EITIS, 2N 7 € [052]. (2.11)
1AG o (& D)l < TS, 2NG) L)E T € (051, (2.12)

The proof follows from aspects of A (¢, 7).

Lemma 2.2. Let the following conditions hold:

1) metric tensor in R* satisfies the conditions: AMy = const > 0 such that ||Gag|m., <
My, |0das|lmy < Mo, [|0%0aplm. < Mo.
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2) 3ty > 0 such that c(t),cq(t),ak(t),0;a"(t) are continuous by t,Vt € [0,ty], c(0) =
0,c,(0) = 0,a"(0) = 0, 9;a"(0) = 0.

3) 3ty > 0 such that 2%(t) € C™ 7, 25(t) € C™>¥, Vt € [0,tq].

Then there exists t, > 0 such thatVt € [0,t.) exists the unique result A;*°(t) of translation
in parallel of the tensor (y5° + 25°(t)) from the point (y*° 4 2°°(t)) to the point (y*°) along
the path of the translation for each point of surface by deformation. A7*°(t) has the following
representation

A(t) = Y5 + 230 (1) Z I T ()AR,,, (£0). (2.13)

(K)vk—1
AF(t) is of class C™™3" and continuous by t.

Proof. Finding the result of translation in parallel of the tensor along the given curve
brings to the Cauchy problem of differential equation system. Using the methods represented
in [19, p. 56| we reduce the differential equation system to the integral equation system which
is resolved by the method of successive approximations.

The null approximation is:

AGS () = y5° + 250 (1) (2.14)
The p—th (p > 0) approximation of Cauchy problem is:

p

Ali(t) = y3° +25°(t) + ;(yz'f L2 () AR, (t,0). (2.15)

Taking into account that C™" is complete normed space, lemma 2.1. and using reasonings
that are similar to the ones from [19, p. 56| for solution of this Cauchy problem we get the
proof of lemma 2.2.

Lemma 2.3. Let the conditions of lemma 2.2 hold. Then there exists t, > 0 such that
Vt € [0,t,) the following holds:

Aio(t) )+ ZZ'”“ () AR, (8:0) +kz_:1(y7@-’“’1 + 2 AR, (8,0). (2.16)

A(t) is of class C™ " and continuous by t.

The proof follows from the rules of termwise differentiation of functional series, lemmas
2.1., 2.2. and the properties of space C™ 3.

Let obtain the equations of G—deformation and transform them to the appropriate for
our method form.

We denote o = 4_1. Then we have:

e}

A7) =y + 250 () + (v + 25(1) D AR, (8,0). (2.17)
k=1
We denote:
Vi (t) = 25°(t) + T30, (0)y 2™ (). (2.18)
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We can write (2.17) in the following form:
AP (t) =y + 25°(8) + D500 (0)y 72" (1) +
(Y5 + 25(0) A, (£,0) — T, (0)y527 () + (5 + 25 Z AR
Inserting (2.18) into (2.19), we get:
AO(t) = y3° + Viz®(t) + 25 (H) AR, (¢, 0)+
Y (AR, (5,0) = T30, (0)27 (1) + (y5 + 25 Z AR, (t,0).
Therefore we can write (2.20) as

A7 () = 5" + Vi (1) Z Ao (t

Y3 (AR, (£,0) = T, (0)2 (1)) + y7 Z Al (t:0)
k=2

We denote:
S (t,0) = ];1 AR, (t,0).

S (t,0) ZA ot
Using (2.22), (2.23) from (2.21), we obtaln:
A7) =y + Viz® (1) + 25(0) S5, (¢, 0)+

Yo (AR, (8, 0) = T3, (0)27 (1) + 4553, (¢, 0).
We denote:

Si(t,0) = Y7 (AR, (8, 0) = g, (0)2™(2)) + 753, (1, 0).

From (2.24) and (2.25) we get:
A7 (1) =y + Vi (1) + 25(1) S35, (1, 0) + 5355, (¢, 0).
From (2.1), we get:
275 () =ay7, +ein” + ajyf;vi + enf.
Inserting (2.27) into (2.26), we have:

A7 (t) = 3 + Vi (1) + Si,(¢,0) + (a7 y%,j +cy n?)S, (¢, 0)+
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(ajy,"jﬂ- + en%) S, (¢, 0).

We denote:
Sesi(t, 0) = Sii(t, 0) + (aly5; + en) S5, (¢, 0).
Insertion (2.29) into (2.28), we obtain:
AT (t) = Y50 + Viz®(t) + Sg8i(8,0) + (a5 y7 5 +e,in”) S, (£, 0).
Consider the following formula:
a’ ;= 0i(a’) + Fﬁ,iap.
Then, form (2.30) and (2.31), we have:
AF(t) = 50 + Vi (t) + (0i(a’ )" +c.in) S, (8 0)+
Sini(t,0) + F;iapy",j S (t,0).
We denote:
S8.(t,0) = S¢8,(t,0) + Th,a”y” 5 SE, (¢, 0).
T5°(t,0) = n? S¢S, (¢,0).
TE0(t,0) =y, S8, (£,0),5 = 1,2.

Using (2.33), (2.34) and (2.35), we can write (2.32) in the following form:

AP (1) = 50 + Vi (1) + ¢, T5(8,0) + 9i(a) T3 (1, 0) + S(3,(4, 0).

For G—deformation the following condition holds:

&aoﬁoA:ao (t)nﬁo =0.
Insertion (2.36) into (2.37), we have:
daoﬁoA:ao (t)nﬁo = albli + ¢, +Cy daoBOTOaO (t, O)nﬁO‘F
8i<aj)&a0507}q0 <t7 0)n50 + daoﬁosz)g;i(tv O)nﬁo'
We denote:
N;(t,0) = Gags, 15 (t,0)n™, j = 0,1,2,
Qi(t,0) = Gagsy S, (£, 0)n™.

Then the equations of G—deformation are:

albli + (1 + No(t, 0))0,2‘ —i—@iaij(t, 0) + Ql<t, 0) = O,Z = 1, 2.

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
(2.34)
(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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§3. The estimations of norms.

We denote:

HS(p ”m1 py = MaXyg o HSao (t 0)”m171’7p = 17 2.

HS(l ||m1 y — MaXqg 4 ||S(OZ())z(t O)Hﬂh,wl =3, 47 5.

|75, = maxag j=o.1.2 | 75 (, 0) [lmy o

INI5) . = maxj—o.1,2 [|N; (¢, 0) |y -

QIS = max; [|Qi(t, 0)l|m,v-

Lemma 3.1. The followmg estimations hold:

1) ”S(l)”mlu — Zk l(t”FH 11/” ”m1 l/) .

2) 1Sl < SR EITIS 21"

3) 1Sl < Ktll2l5) 2N + Ko SR EITIE, 215, )"

4 ISwllSh o < ISl . + Mol 215 WHS(l 155,

5) 1) 15, 0 < 1S5, + Maoll Sy IS5

6) ||T||m1 v = MHHS 1)||m1 v

7) ”N”m1 v = M14”S ”ml v

8) 1R, < Mis|ISe)llE) -

The proof of lemma follows from the forms of estimated functions and properties of norms
in the space C"",

Lemma 3.2. Let the following conditions hold:

1) metric tensor in R* satisfies the conditions: AMy = const > 0 such that ||Gag|m., <
My, |0das||lmy < Mo, [|0%0aplm. < Mo.

2) Jto > 0 such that c(t),c;(t),ak(t),0;a"(t) are continuous by t,Vt € [0,to], c(0)
0,c(0) = 0,a"(0) = 0, 9;a*(0) = 0.

) 3ty > 0 such that 2*(t) € C™ 7, 25(t) € C™>¥, Vt € [0,tq].

Then Ve > 0dtg > 0 such that

1) 15 ||m 2w S E,VELE0, 1], i =1,5.

2) HTHm 0, < E,VE € [0,1).

3) ||N||m 0, <€,V €0, 1)

DIQIY. 5, < eVt e [0,t].
The proof of lemma follows from the forms of considered functions and properties of the

space C"™" and previous lemmas.

mi,v*

§4. Transformation of the G—deformations equations.

We introduce conjugate isothermal coordinate system where b;; = V.1 = 1,2,b15 = by; = 0.
Then we have the equation system from (2.40):

e (14 Ny) + Va' + Nioad® + Q1 =0
C,9 (1 + No) + Va2 + Nkﬁgak + QQ = 0 (41)
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We differentiate the first equation by 22, the second one by z', and subtract from the
first equation the second one. Then we obtain:

Vdya' — Voya® + c10oNy — c201 Ny + 01a" 0y Ny, — Dsa* 0y N+
RVa' —Va* + 0,Q, — 0:Qy = 0. (4.2)
We denote
Uy = —(c10:No — 201Ny + 010" 0o Ny, — 050" O\ N, + 02Q1 — D1Q2)/ V. (4.3)
Then, from (4.2) and (4.3), we have the following equation:
Dya' — 01a® + pkak =V, (4.4)

where p; = Oy(In V'), p, = —0;(In V). Note that p, do not depend on ¢.
Differentiating the equation (4.4) by ¢ we obtain the following equation:

it — 010% + ppa® = Wy, (4.5)

§5. Solution of the equation system (4.1):
finding function ¢ on functions a'.

We will solve the equation system (4.1) assuming that functions a' and a? are given. Note

that Ny, Q; depend only on c, ¢, a’, @'. Function V' does not depend on ¢, a’. We will use the
following formulas.

c(zb, % 1) = / &(zt, 22, 7)dr, (c(z', 22, 0) = 0). (5.1)
(z*, 2% 1) /a ot 2% 7)dr, (a' (2!, 22, 0) = 0). (5.2)

For functions afj we will use the following formula:

t
(lfk(l‘l,{[2,t) = /dfk($‘1,$2,7')d7', (afk($17x270) = 0) (53)
0

Formulas (5.1), (5.2) and (5.3) establish the connections between functions ¢, a’ and ¢, a'.
It means that if the functions ¢, @’ are found then the functions ¢, a’ are found also.

Therefore we pass on to the new equation system (5.4) where there we will consider
functions ¢, ', ¢;,a’;. We differentiate the equation system (4.1) by ¢ and get (5.4). Note
that Ny, Q;, Ni, Qi, depend only on ¢, ¢, a’,a* and therefore depend only on ¢, ‘. We can
show this by differentiating Ny, Q); by t.
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Then we obtain equation system for ¢.

P _i Va' + Npoya* + Q,
T dt (1+ No)

. d Va2 + Nkﬁgak -+ QQ
g = —— (5.4)
dt (1+ No)
We can present equation system (5.4) as following:
C,i= —VvVa — .
(1+ No) (1+ Np)?

Then we transform (5.5) into integral equation relative to function ¢. Let [* be arbitrary
admissible curve in D starting at the point (x(,),z7,) and given by the equations z! =
x'(s),2? = 2%(s). Then we have the following equation.

é(xt, 2% t) =

(z!,2%)

/ (_ Vil No + Ny + Npdia* + Q1 No(Va' + Nydia” + Q1)>d5:1+

2 (1+ No) (1+ Ny)?
(@(0) % (0))
—V 2Ny + NpOoik + Nypdod® + Qs No(Va® 4+ Nipdod® + Q) di?t
— 7
(1+ Np) (1+ Ny)?

(@!,2%)
(—va1> di' + <—Va2> di* (5.6)

(@{0) (o))

Then the equation (5.6) along I* takes the form:

é(xt, 2% t) =

/3 _ =Va'Ny + Nidid* + Npdya* + @ . No(Va' + Npdya* + Q1) (st
) (1+ No) (1 + Np)?

—Va?Ny + Nipdodk + Npdoa + Qy — No(Va? 4+ Nidoad® + Q2)\ o
— x” (s1) |dsl+
(14 No) (1 + Np)?

S

[(-vitene o - viRe)e ey )as (57)

0

The equation (5.7) is nonlinear integral equation. We will show that (5.7) has unique
solution of class of continuous functions for any continuous functions @' and 9,a’.
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The equation (5.7) takes the form ¢ = L,(¢) + 74, where operator L, has explicit form.

S

ils) = / (—V&l(sl)xll(sl) - Vaz(sl)xz/(sl)>dsl. (5.8)

0
Therefore every pair of functions a@° € C™ %" corresponds to the unique function ¢ €
C™= 2" and therefore to the unique function ¢ € C™ 2V :
t
0
Then the equation along [* takes the form:

ittty = | (a0 s + 200 (5.9

where
Ko(s1,¢(s1)) =
_ —leNo + N;ﬁla’“ + Nkﬁla’“ + Ql i NO(Val + Nkﬁla’“ + Ql) $1/(81)+
(14 Np) (14 Np)?
. —VQ2N0 + Nkﬁgak + Nkﬁzak + QQ NQ(V(I2 + Nkﬁzak + Qg)
(1+ Np) (1+ Ny)?

>x2’(51)>. (5.10)

We denote:

S

La(é) = /(Ka(sl,é(sl))>d31. (5.11)

0

We will investigate the decidability problem of the equation in the space C™2¥(D):
¢ = La(¢) + 2. (5.12)

We will solve equation (5.12) by the method of successive approximations.

Lemma 5.1. Let the following conditions hold:

1) metric tensor in R* satisfies the conditions: AMy = const > 0 such that ||Gag|m., <
My, |0das||lmy < Mo, [|0%0aplm. < Mo.

2) 3to > 0 such that a®(t), 0;a*(t), a"(t), 0;a*(t) are continuous by t,Vt € [0,10], a*(0) =
0, 9;a*(0) = 0.

8) Jto > 0 such that a’(t) € C™ 2" Opa'(t) € C™ 37 Vit € [0, 1)

Then 3t, > 0 such that the equation ¢ = L,(¢) + v Yt € [0,t.]. has unique solution of
class C™=2V continuous by t.

Proof.

We construct the sequence of functions {¢}: we find function ¢ from the equation

S

(0 (g 22 ) = / <—V&1(31)x1/(51) - V&Q(sl)x2'(31)>dsl, (5.13)

11
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we find function ¢®) k> 1 from the equation
¢F) = LoD 4 o, (5.14)

The sequence of functions {¢®)} is determined uniquely and functions ¢ are of class
Cm=2(D).

We will show that the sequence of functions {¢*)} is bounded in the space C™~2¥(D).

For any & > 0 there exists ¢, > 0 such that for all ¢ € [0,¢y) the following inequality
holds: ||¢™||,,_s,, < e. This inequality is proved by the method of mathematical induction.

Therefore the sequence {¢*)} is bounded in the space C™2¥(D).

We will show that the sequence {¢)} is convergent in the space C™ 2¥(D). Consider
the equations:

¢ = Loe® 4, (5.15)

¢*FD) = LD 4y (5.16)

Subtracting from the second equation the first one we obtain the equation:

kD _ o) = I (6K L (), (5.17)

Using the explicit form of L, we have the estimate:
1D — gy, < Ka(@)[|¢®) — eV s, (5.18)

where we can choose ty such that the following condition holds K3(t) < 1 for all ¢ € [0, tp).
Then the sequence {¢®} is Cauchy sequence in the space C™ 2¥(D) and therefore is
convergent since the space C™~2¥(D) is complete.

We will show that obtained solution is continuous by ¢. We have:

¢(th) — e(ta) = La(c(tr)) — La(c(t2)) + 71 — Yio- (5.19)
Then there is the estimate:

[e(ty) — e(t2)lm—2., < 01(ty, t2) + Ga(ts, ta)[|(ts) — E(t2) lm—2., (5.20)

where function d; converges to zero if |t; — t3| converges to zero. Function d5(¢y,t2) is such
that for any N > 0 we can choose such ¢, > 0 that for any ¢; and ¢y € [0,t,) the following
inequality holds |05(¢1,t2)| < N. Therefore we obtain the continuity of solution.
We will show that the equation ¢ = L,¢ + -, has unique solution of class C™~2¥(D) for
all sufficiently small ¢ > 0. Let there exist two different solutions ¢(y), ¢2) of class C™ 2% (D).
Consider the equations:
é(l) = Laé(l) + Ve, (5.21)

é(g) = Laé(g) + Ve (5.22)

Subtracting from the second equation the first one we obtain the equation:
¢2) = ¢y = LalC2)) — La(cqy)- (5.23)

12



The solution of the Minkowski problem for open surfaces in Riemannian space.

Using the explicit form of L, we have the estimate:

I¢@) — ¢yllm-20 < K1r(t)lé@) — ¢y llm—2,0- (5.24)

We can choose t; such that the following condition holds Kj7(t) < 1 for all ¢ € [0,t).
Therefore we have contradiction. Therefore ¢(;) = ¢ for all sufficiently small ¢ > 0.
Lemma 5.1. is proved.
Since curve [* is arbitrary admissible in D therefore the equation (5.4) is solvable uniquely
for any continuous functions @' and 9,a’.
Corollary. Let the conditions of lemma 5.1. hold.
Then the function ¢ takes the form.:
(z',2?)
é(at, 2% t) = / <—va1>d:z1 + <—Vd2>d5:2 + P(a',a?), (5.25)

(@ (o) (o))
and for P the following inequality holds:
1P (agyy, atyy) = Plaggy, aia) lm—20 < Ks(t)(la(y — agyllm—2. + 16y — ay lm—2.);

where for any € > 0 there exists ty > 0 such that for all t € [0,1) the following inequality
holds: Kg(t) < e.
The proof follows from construction of function ¢.

§6. Deduction the formulas of deformations preserving the
product of principal curvatures.

§6.1. Deduction the formula of A(g).

Consider the following
Alg) =gt — 9, (6.1.1)

where ¢; is determinant of the first fundamental form matrix of hypersurface Fj.
We will calculate A(g;;). Deformation {F;} of surface F' is defined by the formula (1.1).
We will use (2.1), (2.2), (2.3), where

a’(0) = 0, ¢(0) = 0. (6.1.2)

Notice that deformation of surface F' determines by the functions ¢’ and c.

Let aqp(t) be metric tensor of Riemannian space at the point (y” + 27(t)), Gap(t) =
Aap (Y7 4+ 27(t)), Gap(0) = Gap(y?). Gap = Gap(0). The designations I'},(0) and T,y 5(0) mean
that the Christoffel symbols are calculated at the point (y7).

A(gij) = aas(t) (¥ +2%0) (Y7 +2°5) — @as(0)y*,i y7,; - (6.1.3)

13
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Then we obtain:

= 8&04 o a a ~ a
A(gij) = (aap(0) + ayoﬁ (0)27)(y%i +2 n’)(yﬁﬂ JFZBU‘) — aas(0)y >iy67j+
~ ~ 86’@5 o ot o' 8 B8
(Gas(t) — dap(0) — o (0)27) (y™i +2%0) (y%,; +27,). (6.1.4)

Therefore we have:

~ ~ « « 86’@ o, «
(a’aﬁ(t) - aaﬁ(o))<y )% +z s )(yﬁﬂ _'_Zﬂvj ) + ayf (O)Z Y i yﬁvj -
da, o o
ayf (0)27y%, ;. (6.1.5)

Hence we have:

~ «a fe 8&04 o« ~ fe
A(gz]) = aa5(0)<y s Zﬂm' +y57] z 7i> + Wf(o)z Y i yﬁu‘] —|—aa5(0)2 5 Zﬁuj +
- ~ @ a 8 B 8&045 oo B
(Gap(t) = aap(0)) (Y™ +2%: ) (Y5 +2755) — 0y (0)27y*iy",5 - (6.1.6)
Consider the formula:
Oap 0T PR s
8—y"<0) = Lag,5(0) + Lgoal(0) = aysI7,(0) + ayal73,(0). (6.1.7)
where I'45,5(0), '}, (0) are calculated at the point (y7).
Then we obtain:
a&aﬁ o« B ~ y o, B ~ Y o, B
dy° (0)2 Y iy j= avﬁrao(o)z Y il s +awf‘50(0)z Y il - (6'1'8)

We change the positions of indices o and 7 in the first term in the right part of the
equation (6.1.8) and we also change the positions of indices 5 and 7 in the second term.
Therefore we have:

ad@éﬁ o, ~ « o ~ o,
8—3/”(0)2 Y iy’ = aapl'5,(0)27y7,; e +aa5F,€o(0)z Yy iy (6.1.9)

Considering the following formula (2.2) we have:

~ «@ * ~ * _Q ~ ~ 86’@ o\,
A(gij) = ap(0)y*, V2" + aap(0)y”; Viz® + (Gap(t) — Gas(0) — ayf (0)27)y*,v7; +
(Gap(t) — Gas(0)) (Y% 275 +y75 2%0) + Gap(t) 2%, 275 . (6.1.10)

14
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Then we obtain:

i ij~ a * ~ ~ 86’@ o\ 7,0
97 A(gi5) = 297 aap(0)y® s V32" + (Gas(t) — Gap(0) — 6yf (0)27)g"y*iy" 5 +
2(a0p(t) — Aap(0))g7y" i 2% 5 +aap(t)g” 2%, 275 . (6.1.11)
Denote:
~ ~ 86’@5 o\ ij, B
Wi = (Gas(t) = ap(0) — oy (0)27)g"y"iy",; +
2(a0p(t) — ap(0))g7y" i 2% 5 +aap(t)g” 2%, 275 . (6.1.12)
Using the properties of determinant we have:
Ag) = 99" Algyj) + Wo. (6.1.13)
where
W2 = A(gll)A(g22) — (A(glg))Q (6114)
Then the equation (6.1.2) takes the form:
Alg) = 2997 aapy” i V2" + gWh + Wa. (6.1.15)
Using the equation (6.1.3) we write the equation (6.1.15) as:
A(g) Wy W,
— = bim —+ — 1.1
2g a,lclg +2+2g (6.1.16)

Using the formula 0;(In \/g) = I'};, where Fk are the Christoffel symbols for hypersurface F
in the metric g;; and formula of mean curvature 2H = ¢g'"™b,,, we write the equation (6.1.16)
as

Ag) VIWVi - Ws
2H . 6.1.17
S = V) = 2Heyg + X+ (6.1.17)
The equation (6.1.17) is required equation for functions a’ and ¢, determining continuous
A—deformation of hypersurface F'.
Equation (6.1.17) takes the form:

A
% = 01a' + 0ha® + a' 01 (In \/g) + a*Da(In \/g) — Wy, (6.1.18)
where - -
U, = 2Hce — — — —2, 1.1
c= 2% (6.1.19)
Then we obtain:
A(g) = 2g(d1a’ + 0ha® + qra® — 0,), (6.1.20)
where
¢ = 01(In\/9), g2 = 02(In /7). (6.1.21)

Note that ¢, do not depend on t.
Equation (6.1.20) determines A(g) for deformations of surface F in R3.

15
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§6.2. Deduction the formulas of deformations preserving
the product of principal curvatures.

Deformation {F;} of surface F' is determined by (2.1). We will deduct the formulas of
changing of the second fundamental form determinant.

The condition of preservation the product of principal curvatures takes the following
form:

Alg) = %A(b). (6.2.1)
A(D) = bb7 A(by;) + W, (6.2.2)
We have the formula:
1
A(K) = @(A(g) - %A(b)), b(t) = b+ A(b). (6.2.3)
We introduce conjugate isothermal coordinate system where
o1
bis =V,i=1,2,b12 = by = 0,0" = V,Z' =1,2,0" =™ = 0. (6.2.4)
Then we have:
A(b) = V(A(bi) + A(bas)) + W3, (6.2.5)
where
W3 = Alb)A(bas) = (A(br)). (6.2.6)

Therefore the condition of preservation the product of principal curvatures takes the
following form:

Alg) = T(Abn) + Alb) + 5 W3 (6.2.7)
We have the following formula:
bij(0) = —das(0)yVin’(0). (6.2.8)
bij(t) = —aas(t)(ys + 25) V0’ (1), (6.2.9)
where 77(t) is unit normal vector at the point (y® + z%).
Then we obtain:
biy (t) = =g () (Y5 + 25) (A5(8) + Do (D (45 + 25)7°(1)). (6.2.10)

Let n?(t) be result of parallel transfer of unite normal vector n°(0) to the point (y®+ 2%)
along the path of translation by deformation. Therefore we have the following formula for
all sufficiently small %:

n®(t) = n“(0) + n(0) i A, (0,1). (6.2.11)
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Use the following formula:

At
() p— ®) (6.2.12)
Vaaos, (D) (D (1)
Denote:
()] = /Gags (Ene0 (o (2). (6.2.13)
Then we have:
bij(t) = —Gas ()25 VIRS (1) — Gas(t)y Vinl (1) (6.2.14)
Using the formulas (2.27) and (2.31) we obtain:
—Gap(t) 25 V57 () = —aap(t)0;(a" )y ViR (t) + M}, (6.2.15)
where
M}] = —Qap (t)(F’;iapya,k +c,;n® + akyii + cnf})V;ﬁﬁ(t). (6.2.16)
Then we have:
—Gap(t) 2 V3P (1) = —aap(0)0;(a”)y® i Vin’(0)—
Gas(t)0i(a")y™ 1 ViRP () + Gap(0)0;(a")y* x Vin(0) + M}, (6.2.17)
Define:
M = —Gag(t)0;(a®)y® ke VIR () + Gas(0)0;(a®)y® x Vin®(0) + M. (6.2.18)
Consequently we get:
—ap(t) 25 V5P () = —aap(0)0;(a”)y® ik Vin’(0) + M. (6.2.19)
We use the following equation:
Vin®(0) = —big™yl. (6.2.20)
Then we obtain:
—Gag(t)23 VAP (t) = 0;(a")bj + M. (6.2.21)
Using the fact b3 = 0 we have:
—ap(t)23 Vi (t) = VO (a') + M7, (6.2.22)
—Gas(t) 25 V3R (t) = VOy(a®) + M3, (6.2.23)
We have the expression:
- N o n’(t) n?(t)
anﬁ(t) = né(t) +1"ﬁa(t)(y,‘; + 257 (t) = <||n(t)||> }+1"ﬁa(t)(yf;» +Z!§)<||n(t)|| ) (6.2.24)
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Then we obtain:

N Vinh(t) 1
A1) = -2 nP .
Vit ) = el " @@mw)j

Consider the equation:

ol ol

O 5(0) = 500 ) stz 0) o L.

Consider the formula:

VinP (1) = nf(8) + Thp (D5 + 25)n° ().

Then we have:

Vin?(t) = 0l (t) + T8, (t)y'in” (t) + T4, (£)2n" (t) =
=ny(t) + T, (0)yn” (t) + (D, () — T%,(0))y"im” (t)+
0 (0)25n7 (t) + (D5, (t) — T4, (0))2/n? (t).

We will use the following formula:

nﬁ (t) = TL Z A k)a
Denote:
AB Z A k)a
AS(t) Z A,

We use the equation:

n?(t) = n?(0) + n?(0) A, (0,8) + AS(t).
We have:

n(t) = n5(0) + n%(0) Al (0,8) +n? (0) Ay, (0, 8) + A5 ().

Hence:

Vin®(t) = n(0) + n(0) AL}, (0,) + n7(0) Ay, (0, £) + A ;(t)+
- (0)y5n7(0) + T (0)y5n7 (0) ATy, (0, 1) + T (0)y; A3 (£)+

(Tﬁf(t) = T (0)y5n7(0) + (T (1) — T (0))y/5 AT () +

18
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T0(0)24n7(0) + T (0)25 AT () + (I (¢) — T5_(0)) 25 (). (6.2.34)
Denote:
T/ = nZ(O)AfUU(O,t) + A5 (1) + T8 (0)yn” (0) A7 o (0,1) +T5(0)y; A7 (t)+
(P57 () = T (0)y5n™(0) + (D(t) — T4 (0))y5 AT (t)+
0 (0)25AT(t) + (T4(t) — T (0)) 25n7 (). (6.2.35)

Then we get:

Vinf(t) = n(0) + T (0)y5n7(0) + 1% (0) Ay, (0, 8) + T (0) 207 (0) + T} =

Vin?(0) +n7(0) AL}, (0,1) + T (0)24n7(0) + T . (6.2.36)
Consider the expression:
—las(t)y;Vin (t) = —ap(0)y5V;n° (1) — (Gas(t) — Gap(0)y§Vn’ (1) =
s (0)y3bixg™ Y] — Gas(0)y3 (7 (0) AL, ;(0,1) + T (0)25n7(0))—
o (OVSTY — (s (t) — s (0))yS V5’ (1) (6.2.37)

Then we obtain:

—aas(t)ysVn’ (8) = bji — Gas(0)y5 (n7(0)AQy, ;(0.8) + T (0)25n7(0))

aus OSTY — (daplt) — ap(0)SV505 (1), (6239)
Therefore:
a0 ) -
! g oo (VAP B (0) 2 nT L \_
(H <>||> w5 (O (VA% (0,7) + TZ. (0) <o>>(||n(t)||)
s (0)y2T7 (Hng )H) — (up(t) aa5<o>>yﬁ;v;nﬁ(t)(Hngt)H ) (6.2.39)

We change the form of last expression:

_daﬁ(t)yfﬁvjnﬁ(t)<||n(1t)||> -

R O] —— oL )
b OO0 00 00, 0,00+ 05700 -0
a o7 (L) (st — a avin® !
o O (g ) = (@an(® = sV 0 i ) (6:2.40)
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Define:

Mf; _ b_](l - ”n<t>H> N daﬁ(o)yq(no(O)A(Bl)mj(o’t) + FgT(O)ZZTLT(O))< 1 >_

In(t)]l ! (8]l
1 1
a0 O} i) = Gonl®) = a0V 0) i ) (62.41)
AN TIO]] ’ PR In(@)]
Then we have:
- R 1
—Qap (t)y,z anﬁ (t) < ”n(t) H ) = bij + MZB; (6242)
Consequently:
bij(t) = —ap(t)2S Vi () — Gas(t)ysVin’ (t) =
- o 1
@(ak)bjk + MZZJ + bij + Mz?; - aag(t)y7in6(t) < ||n(t) ||> '. (6243)
J
Denote:
1
MY =M% + M3 — aos(t)yn”(t . 2.44
1] 1] + 1] aaﬁ( )y,zn ( )<||n(t)||> ; (6 )
Hence:
Therefore:
A(bi;) = 0;(a")bjy, + M;;. (6.2.46)
Then we have:
A(byy) = Voy(a') + M}, (6.2.47)
A(bQQ) = V82<CL2) + M§2 (6248)

Hence the condition of preservation the product of principal curvatures takes the following

form:

Alg) = g(u(a') + Do(a?)) + %(M{‘1 ML)+ %ng). (6.2.49)

Using the formula (6.1.20) we obtain the equation of preservation the product of principal
curvatures:

1
—w. (6.2.50)

1
da' + da® + 2qpa* — 2V, = — (M} + Ma,) + vz

V
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Then we have:

dha' + 0ya® + 2qpa* = 20, + %(Mfl + ML) + %ng). (6.2.51)
We differentiate the equation (6.2.51) by ¢. Then we have:
B4l i N L R R Qs
W4 + Oaa” + 2qa" = 2Ws + V(M” + Ms,) + 72 Wy (6.2.52)
The equation takes the following form:
Ot + 0ya® + ¢V = b, (6.2.53)

where ¥ = ¢{"¢ — Py(a',a?,0;07). Py has explicit form. Notice that q,(gb) e cm=3v o ¢
C™=3" and do not depend on ¢.

Lemma 6.2.1. Let the following conditions hold:

1) metric tensor in R® satisfies the conditions: My = const > 0 such that ||Gag|m., <
Mo, 10l < Mo, [Pins s < Mo

2) 3to > 0 such that a®(t), 0;a*(t), a"(t), 0;a*(t) are continuous by t,Vt € [0,1y], a*(0) =
0, 9;a*(0) = 0.

8) Jto > 0 such that a’(t) € C™ 2" Opa'(t) € C™ 37 Vit € [0, 1)

Then 3t, > 0 such that for all t € [0,t,) Py € C™ 3 and the following inequality holds:

1 Po(ayy, ady) — Polagay, o) llm—20 < Ko(t)(lagyy — afgyllm—1, + layy — afyllm-1.),

where for any e > 0 there exists ty > 0 such that for all t € [0,1y) the following inequality
holds: Ko(t) < e.

The proof follows from construction of function Fy and lemmas of §7 and §8.

The equation (6.2.53) determines deformations of surface F' preserving the product of
principal curvatures with condition of G—deformation.

6.2.1. The formulas of A(K) and A(K).

Consider the following formula:

A(E) = 57(Al0) = 2A0) =
%(&al + 0ya® + 2qpa® — (205 + %(Mﬁ + My,) + %Wéb)))a (6.2.54)
b(t) = b+ A(b). (6.2.55)
We have:
K(t) = K + A(K). (6.2.56)
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Therefore: ‘ ' ‘ ‘
b(t) = A(b), K(t) = A(K). (6.2.57)
Then we obtain:
; Ab(t 1 1
A(K) = 5 01’ + 0y + 250 = (20 + (O + M) + W)+
. . . . 1 .. . 1 .
We finally obtain the following formula:
A gAb t 1
A == (b(t>()2) (Dra’ + Opa” + 2gpa” — (205 + 77 (M) + Myy) + VQW“)))
(a4 000" + gk — 1Y), (6.2.59)

b(t)

§7. Auxiliary estimations of norms.

Denote:
102]]§2), ,, = maxa,i [[23115), ) = maxa ; maxreqo |25 (7) | -
Lemma 7.1. it The following estimations hold:
D) 2l < Ms(llallf) + llell) ),
2) llallfy)., < Ms

120150

3) el < M7||Z||m1 2
4) 102018, < Mslzll 41,0

where constants My, Mg, M, My are determined by surface F' and do not depend on t.

Proof of lemma follows from properties of norm in the space C"*".

Lemma 7.2. The following estimations hold:

éj ||W1||m1 v S MQ((HZHml l/) + || || mi V||8Z||m1 v (HaZHml V) )
1A < Ma(lll15, + 102015 + (125,07 + 1215 102115 + (102]15) ,)%)-

9) [Wallt),, < My(max,, | Algiy)19,,)2

where constants My, M3z, My are determined by surface F' and do not depend on t.

Proof of lemma follows from properties of norms in the space C™",

Lemma 7.3. Let the following conditions hold:

1) metric tensor of R* satisfies the conditions: AMy = const > 0, such that ||aag|lm. <
My, HadaﬁHm,u < My, "82&05”%1/ < M.

2) Jty > 0, such that c(t),c,(t),a"(t),0;a"(t) are continuous by t,Vt € [0,ty], c(0)
0,c,(0) = 0,a"(0) = 0,9;a*(0) = 0.

3) 3ty > 0, such that z*(t) € C™>¥,25(t) € C™ >, Vt € [0, to).

Then Ve > 0dtg > 0 such that

1) ||W1||m 3,v < €7Vt € [OatO]'
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2) ||W2||m 3,v < €7Vt € [OatO]

3) ||\IIQ||m 3,v < €7Vt € [O,to]
Proof of lemma follows from the form of functions Wy, Ws, Uy, properties of space C""
and previous lemmas.

§8. Properties of functions W, Ws, Us.

§8.1. Formula of function .

We have: B
8% 8

W1 = (aag(t) — a—ya(o)zo)gljya,z Yo+

205(t) g7y i 275 +2(Gas(t) — Gap(0))g7y" i 27, +aas(t)g7 2% 27 5 +

Gap(t)g92% i 27 5 +aas(t) g2, 255 . (8.1)
Consider the formula: Dist )
. Qop
Gop(t) = —2B2) 8.2
olt) = =5 (32)

Using (8.2) we obtain:

 Dans(t) ., Odap, o i o
Wl :( 8,55 )Z B ayo.ﬁ(O)Z )gjy 71y67j+

i, ~ ~ ) Oaap(t
2 85( )Zogwy 72Z J +2<aaﬁ(t) _aaﬁ(o))gwy 72’2 7]_'_ ay( )zang ’ zﬁﬂ—i_

Gap(t)g92% i 20 Aaaps(t) g7 2%, 225 . (8.3)

§8.2. Formula of function W.

Wa = A(g11)A(g22) + Ag11) Ag22) — 2A(g12) A(g1a). (8.4)

8% 8
oy’

A(gij) = aas(0)y*i V327 + Gas(0)y” 5 Vi2* + (aap(t) - (0)27)y"iy”5 +

aap () (Y™ 2% 4075 2%0) + (@as(t) = @ap(0)) (¥ 275 +y7,5 2% )+
&aﬁ(t) )% Z 3] +aaﬁ( ) 51 Z '] +a'ozﬁ( ) )% Zﬁaj . (85)

Then we have:

Algij) = ap(0)y* Vi 2P 4 ap(0)y7 5 Vi 4+ (
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Jias(t) o) o o i i o .
T;az (y ” ZB’J +y6’3 Z i ) + (a’aﬁ(t) - (Iaﬁ(O))(y 7 ZBU +y6aj AN )+
0, ‘
85"( )Z 2% 2 Flag(t)2i 27 +aap(t) 2" 275 (8.6)

§8.3. The inequalities for norms of functions Wy, W, Us.

Denote:
HV*ZHml v = MaXy ; MaXreos] HV;ZQ(T)HMLV-
IV*2||$) = maxa, [ Vi[5, = maxe; maxreqo [[Vi2(7) [lmy o
Lemma 8.3.1. The following estimations hold:
1WA, < Mao(IZ19 219, + 1219102019, + 1219, 0211, +
215 (1021152 )2 + 0215 L1915 )
2) IV*2||), < Moy (11025, + 112115, ,)-
3) V28, < Moo (|05, + 1) ,,)-

= max,; ||Viz | ®)

mi,v

4 1Agi) 50, < Mas (19219, + 21D 208, + 1218, N0 L+ 11205, L0211, +

12015 (02115 )2 + 1102115, L0152, L)-
5) W), < Maa(maxi; || A(gis) IS5, ) (maxi; [ A(gi) 15, ,)-

Proof of lemma follows from the forms of functions Wy, Wa, Wy, W, properties of space

C™¥ and previous lemmas.

Lemma 8.3.2. Let the conditions of lemma 7.3. hold:

1) metric tensor of R* satisfies the conditions: AMy = const > 0, such that ||Gas||m.
My, HadaﬁHm,u < My, "82&05”%1/ < M.

2) Tty > 0, such that c(t),c,(t),a"(t),0;a"(t) are continuous by t,Vt € [0,t], c(0)
0,c,(0) = 0,a"(0) = 0, 9;a*(0) = 0.

3) 3ty > 0, such that 2*(t) € C™>¥, 25(t) € C™ ", Vt € [0, ).

Then Ve > 0dty > 0, such that

1) ”Wle 3,v <eVte [07t0]'

2) ||[W, Hm 3., <&Vt € [0,

3) || W, < e, Vt € 0,1

Hm 3,v

<

Proof of lemma follows from the form of functions Wy, Wa, Wi, Wa, properties of space

C™" and previous lemmas.

§9. Decidability of boundary-value problem A.
We have the following equation system of elliptic type:

agdl — 81(12 +pkak = 11}1,

Oha' + 0oa® + ¢k = o, (9.
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where we use (6.2.53). 8 = ¢{’¢ — P,. Note that q,(cb) do not depend on .
Without loss of generality we denote z' as 2% and 22 as .
We write (9.1) as:
ot — pa® + pra® = Uy,

' + 01a® + qiib)dk = oy,

Define: w = a' + ia%, z = o' + ia?.

Therefore we have boundary-value problem for generalized analytic functions.

D51 + A + Bw = U, Re{\i} =¢ on 0D,
where

A . 1 . .
@w=?w+mwA=jm+£umﬁ—w%

1 . . . 1. . i
b= Z(Pl — ¢ +iq” +ipy), Wy = 5(‘1’1 i),

9.2)

(9.3)

(9.4)

We change the form of obtained boundary-value problem (9.4). Consider the following:

W = g Py =

(z!,2%)

qéb)< / —va1>df1+ (‘Véf)df) +qy" P(a',d?) — Ry
T(0)% (o))

Denote:

We define: ¥ = %(\Ill +iWs).
By (9.5), (9.6), the boundary-value problem (9.4) takes the form:

(b) (xt,22) ‘
01 + Aw + Bu + z’qOT / (V(fﬁ)djl + (Va2> di? =,

(o) (o))

Re{\i} = ¢ on dD.
Therefore we have:
Oz + Aw + Bu+
(z'.a?)

®),.1 .2 ®).1 .2 )
/ (Z.QO (37271’ )V(jl,ch)d1>d:i1+ (Z-QO (37271’ )V(jlij)(f)de —

Re{\i} = ¢ on dD.
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Using the formulas: (bc;z = w4+ w), a* = i(w —w),
(J:l,x2

and denoting: Fy = i? V(z',7%) we obtain the following form of desired boundary-

value problem:
(z'.a?)
Ey -1, (£ 9
Oz + A + B + / (w+w) dz” + ) — (0 —w) |d7* =0, (9.9)
(@(0)*(0))
Re{\i} = ¢ on dD.
We denote:
(z'.2?)
E - 1B
E(w) = / (70(10 +u'))>dx + ( 20(w w))da??. (9.10)

(@(0)*(0))
Then we finally have the form of desired boundary-value problem:
Oz 4+ A + B+ E(w) =¥,  Re{f i} =¢ on 0D. (9.11)

Let, along the OF, be given vector field tangent to F. We denote it by the following

formula:
(07

v = 1"y, (9.12)

N2

We consider the boundary-value condition:
Gapz™v” = F(s,t),s € OD. (9.13)

Define: 5\k = AapY% kv k=1,2.
Then boundary condition takes the form: Re{(a1 +ia2)(A —iXy)} = 4 on OF.
Denote: )\k MTI{?—12Q0_W

Then boundary-value condition takes the form: Re{\i} = ¢ on OF, where |\| = 1.
We analyze the decidability of the following boundary-value problem (A):

Oz + A + B+ E(w) =W,  Re{di}=¢ on 0D, (9.14)

)
A=A +idg, A =1, N ¢ € Cm’“( D).

We use the fact that W = W(w, 2, t), E(w) = E(w, z,t), i = w(t),
©=¢(s,t),s € 0D, A = X(s),s € OD.

Let n be index of obtained boundary-value problem

1
n= %A@D arg \(s). (9.15)

Theorem 9.1. Let ¢ be fized.
Let A(z), B(2), ¥ (2) € C™*¥(D), A(s), € C">¥(8D), |(s)| =
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Let W(0,z) = 0, [[¥(wr, 2) = W(ws, 2)|lm—20 < p(p) [ — wollm-1,0,
for [inllm—2. < p, [[102llm-2. < p, lim, o pu(p) = 0.

Then, assuming that t is fized, the following holds:

1) if n > 0 then there exist p and &(p) > 0 such that for ||¢|lm—2, < € the boundary-value
problem has (2n + 1)—parametric solution of class C™ %" (D) for any admissible .

2) if n < 0 then there exist p > 0 and £(p) > 0 such that for ||Qllm—2., < €(p) the
boundary-value problem has nor more than one solution of class C™ 2" (D) for any admissible
. For ¢ =0 boundary-value problem with condition: ||w||m—2., < p has only zero solution.

Proof. Consider the following boundary-value problem (Ay):

Ds+ A+ Bw =V,  Re{di}=¢ on 0D, (9.16)
A =1, 9 € C"2¥(9D), ¥ € C™3*(D).

Consider the operator:

10,5 =— | / O+ (e OO)dedn. ¢ = +in, (917)

where €y, 2, are principal kernels of the equation 0w + A(2)w + B(2)w = 0.
It is well known [17,18] that operator I(W, z) takes the form:

1(¥, 2) - / / (Ki(2. QW (Q) + (2, Q)T (Q))dedn, ¢ = € +in, (9.18)

__%//gggwm (9.19)

where operator T'(¥) is completely continuous [17,18].
Consider the operator:

AW, 2) = I(, 2) + / Re{A(s)1(W, )} My(z, s)ds, (9.20)

where Mj(z, s) is kernel of boundary-value problem (do not depend on ¢)
Oz + A(2)w + B(2)w = 0, Re{\(s)w(s)} = ¢, s € OD. (9.21)
Consider the operator
Ay(w) = Aj(w) = A(Y(w, 2)). (9.22)

According to the results from [20], theorem 9.1. is valid for problem (Aj). For the case
n > 0 problem (Ap) is solved as:

2n+1

w = Ay(w) + / Q(s)Mo(z,8)ds + Y cuiy. (9.23)

=1
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Therefore for the case n > 0 problem (A) is solved as:

2n+1
w = Ag(w +/ $)Mo(z, s)ds + > ca; + As(E(w)). (9.24)
=1
Then for this equation we use theory of Fredholm operator of index zero and theory of
Volterra operator equation. Therefore we can solve (9.24) by the method of successive
approximations.
For the case n < 0 we solve the problem (Ag) as equation system consisting of —2n
equations:

w = Ag(w +/ s)Mo(z, s) (9.25)

[ (@(5) + RefAE) (W, )}y (5)A(s)ds =0, =T, =2a—1,

oD

where 1} are complete system of solutions of the following problem:

!

O’ — A(z)u')' — B(Z)E =0, Re{)\(z) dZ(S) iy

B w'(z)} =0 on 0D

Then for the case n < 0 we solve the problem (A) as equation system consisting of —2n
equations:

b= Ay(ib) + / o(5) Mo (z, 8)ds + Ax(E(1)), (9.26)

/(@(8) + Re{A(s) (¥, ) j(s)A(s)ds =0, j=T,=2n—1,

where 0 are complete system of solutions of the following problem:

0uif — A(2)i' — B(2)d' =0, Re{\(2) d’jlf)wxz)} =0 on 8D
Then for this equation system we use theory of Fredholm operator of index zero and theory
of Volterra operator equation.

By modifying standard method from [20], using the method of successive approximations
and principle of contractive mapping, we obtain the proof theorem 9.1. for boundary-value
problem (A).

Theorem 9.2. Let F € C™" v € (0;1),m > 4, OF € ™1V,

Then the following holds:

1) if n > 0 then there exists to > 0 and exists £(to) > 0 such that for ||@|m—2, < €
boundary-value problem (A) for all t € [0,ty) has (2n + 1)—parametric solution of class
C™=2¥(D) continuous by t € [0,1) for any admissible .

2) if n < 0 then ezists to > 0 and ezists £(tg) > 0 such that for ||¢|m—2. < e(to)
boundary-value problem (A) for allt € [0,to) has nor more than one solution of class C™" (D)
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continuous by t € [0,ty) for any admissible . For ¢ = 0 the boundary-value problem has
only zero solution.

Proof follows from theorem 9.1., form of function ¥ and the fact that for all sufficiently
small ¢ the conditions of theorem 9.1 hold.

§10. Proof of theorem 1.

Proof of theorem 1 follows from theorem 9.2., formulas of M G—deformation and formulas of
finding function ¢ on functions &’. Using the condition of theorem 1: at the point (2, 27y
of the domain D, the following condition holds: V¢ : a’(t) = 0,c(t) = 0. Therefore in case
1) n > 0 boundary-value problem (A) has (2n — 1)—parametric solution. Using similar
reasonings we prove theorem 1 for the cases 2) and 3).

The theorem 1 is proved.
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