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Abstract. We establish the dynamical attractor behavior in scalar-tensor
theories of dark energy, providing a powerful framework to analyze classes of
theories, predicting common evolutionary characteristics that can be compared
against cosmological constraints. In the Jordan frame the theories are viewed as
a coupling between a scalar field, Φ, and the Ricci scalar, R, F (Φ)R. The Jordan
frame evolution is described in terms of dynamical variables m ≡ d lnF/d ln Φ
and r ≡ −ΦF/f , where F (Φ) = df(Φ)/dΦ. The evolution can be alternatively
viewed in the Einstein frame as a general coupling between scalar dark energy and
matter, β. We present a complete, consistent picture of evolution in the Einstein
and Jordan frames and consider the conditions on the form of the coupling
F and β required to give the observed cold dark matter (CDM) dominated
era that transitions into a late time accelerative phase, including transitory
accelerative eras that have not previously been investigated. We find five classes
of evolutionary behavior of which four are qualitatively similar to those for f(R)
theories (which have β = 1/2). The fifth class exists only for |β| <

√
3/4, i.e. not

for f(R) theories. In models giving transitory late time acceleration, we find a
viable accelerative region of the (r,m) plane accessible to scalar-tensor theories
with any coupling, β (at least in the range |β| ≤ 1/2, which we study in detail),
and an additional region open only to theories with |β| <

√
3/4.
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1. Introduction

The current accelerated expansion of the universe has led to a variety of new theories
in cosmology under a common descriptor of dark energy. The acceleration was first
observed using data from Supernovae Ia [1, 2, 3, 4, 5] and has been confirmed by
complementary observations including WMAP data on Cosmic Microwave Background
anisotropies (CMB) [6, 7, 8, 9], data from the SDSS on Large Scale Structure formation
(LSS) [10, 11, 12], baryon acoustic oscillations [13, 14] and weak lensing [15, 16, 17].

The simplest way of introducing an acceleration into Einstein’s equations is to
add a cosmological constant so that the decelerating expansion (which we naturally
expect because of the attractive force of gravity) gets nullified and over-compensated
for. The cosmological constant though suffers from the problem of fine tuning since its
energy density is 10120 times smaller than what we might expect if it related to Planck
scale phenomena. Other models of dark energy include introducing a scalar field (such
as minimally coupled quintessence models [18, 19, 20, 21, 22], coupled quintessence
models, [23, 24, 25, 26, 27], K-essence [28, 29, 30], Chameleon fields [31, 32, 33] etc),
Phantom dark energy [34, 35, 36], Chaplygin gases [37, 38, 39, 40, 41], topological
defects [42], and many others. A recent review on dark energy can be found in Ref.
[27].

An alternate approach to explaining the observed acceleration, without recourse
to a new form of energy, is to consider large scale modifications to gravity coming from
scalar-tensor gravity [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58] or higher
order gravity theories [59, 60, 61, 62, 63, 64, 65, 66] such as modified Gauss-Bonnet
gravity. One of the earliest modifications [44] added a 1/R term to the gravitational
action. Such modifications to gravity seem to conflict with local solar system tests
of gravity, however general f(R) gravity models remain interesting because there are
ways of evading local gravity constraints [31, 32, 33, 67].

Dynamical attractors in dark energy theories provide a powerful way to analyze
classes of theories. They predict common evolutionary characteristics, with minimal
dependence on fine-tuning of initial conditions [68, 23, 24, 27], with which we can
critique theories in light of cosmological constraints on the background evolution
[53, 69] and also the growth of perturbations and implications for large scale structure
[57].

In this paper we apply dynamical attractor analysis to general scalar-tensor
theories. In the Einstein frame theories are described by a coupling between scalar
dark energy and matter, parameterized by β, and in the Jordan frame by a general
coupling between a scalar field and the Ricci scalar, F (Φ)R; β = 0 and F (Φ) ≡ 1
for General Relativity. We have structured our paper in the following way. Section 2
contains the equations for background evolution in the Einstein frame (Sec. 2.1) and
Jordan frame (Sec. 2.2) for generally coupled models. We discuss the two alternative
perspectives given by the two frames (Sec. 2.3) and the form of the Jordan frame
potential we consider (Sec. 2.4). In section 3 we set up all of the equations that we
need to study the critical points of dynamical evolution in the Jordan frame (Sec. 3.1)
and Einstein frame (Sec. 3.2), discuss the mapping of critical points from one frame
to the other (Sec. 3.3) and how stability is assessed (Sec. 3.4). In section 4 we present
the dynamical attractor solutions (Sec. 4.1) and compare our solutions with those
previously obtained in the literature for f(R) and non-minimally coupled quintessence
theories (Sec. 4.2). We perform a detailed analysis of the stability of all critical points
(Sec. 4.3) and classify scalar-tensor theories into different classes (Sec. 4.4). We then
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discuss behavior if we relax the condition of a stable accelerated universe to include
saddle critical points (Sec. 4.5). Finally we summarize and conclude in section 5.

2. Cosmic evolution

2.1. Evolution in the Einstein frame

We start with the action in the Einstein frame (EF),

S =
∫
d4x
√
−g̃
[

1
2κ2

R̃− 1
2

(∇̃φ)2 − Ṽ (φ)
]

+
∫
d4x
√
−g̃L̃m

(
e−2
√

2/3κβφg̃µν

)
(1)

where κ2 ≡ 8πG, φ is a scalar field which is non-minimally coupled to matter through
a coupling strength β. We denote all quantities in the EF with a tilde, such as the
metric, g̃µν , Ricci scalar, R̃, scalar potential, Ṽ (φ) and the matter Lagrangian, L̃m.
The action in the EF is a standard General Relativity action with a non-minimal
coupling between the scalar field and matter. For a Robertson Walker metric with
flat geometry described by a cosmic expansion factor, ã, evolving in physical time, t̃,
the Friedmann, acceleration, scalar field and matter fluid equations are respectively,

H̃2 =
κ2

3

(
ρ̃m +

1
2

(
dφ

dt̃

)2

+ Ṽ

)
, (2)

dH̃

dt̃
= −κ

2

2

(
ρ̃m + p̃m +

(
dφ

dt̃

)2
)
, (3)

d2φ

dt̃2
+ 3H̃

dφ

dt̃
+ Ṽ,φ =

√
2
3
κβ(ρ̃m − 3p̃m), (4)

dρ̃m

dt̃
+ 3H̃(ρ̃m + p̃m) = −

√
2
3
κβ

dφ

dt̃
(ρ̃m − 3p̃m). (5)

where ρ̃m and p̃m are the EF matter density and pressure, H̃ ≡ d ln ã/dt̃ and
Ṽ ,φ≡ dṼ /dφ. In this paper we are interested in the nature of cosmic evolution
in the matter dominated and dark energy dominated eras. We therefore restrict our
attention to pressureless matter, with p̃m = 0.

Such a parameterization, using β to describe a non-minimal coupling between
matter and scalar, has been widely discussed in the literature, for example [23, 24, 25,
26, 53, 69, 27, 70, 71]. This can include low temperature neutrinos which behave as
nonrelativistic matter. The scalar coupling of the form shown in (5) can hence give
rise to mass varying neutrinos (‘MaVaN’s) [72, 73, 74, 71].

2.2. Evolution in the Jordan frame

We can re-express the action (1) in the Jordan frame (JF) as a non-minimal
coupling of the scalar to gravity and minimally coupled matter, through a conformal
transformation, redefining the metric,

gµν ≡ e−2
√

2/3κβφg̃µν . (6)

This leads to a general Brans-Dicke type action for a scalar-tensor theory with a
non-canonical kinetic term,

S =
∫
d4x
√
−g

[
1

2κ2
F (Φ)R− 3(1− 4β2)

16κ2β2

1
F (Φ)

(
dF
dΦ

)2

(∇Φ)2 − V (Φ)

]
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+
∫
d4x
√
−gLm(gµν) (7)

where we have introduced the function F (Φ) of scalar Φ, which is wholly specified by
φ and β,

F (Φ) ≡ e2
√

2/3κβφ (8)

We require F (Φ) > 0 for the conformal transformation to be well defined. Φ(φ) can
be specified by choosing an explicit form for F (Φ) and inverting (8).

Pressure, density, time, and expansion factor in the two frames are related via
F (Φ),

pm = F (Φ)2p̃m, ρm = F (Φ)2ρ̃m, dt = F (Φ)−1/2dt̃, a = F (Φ)−1/2ã, (9)

with the potential in the JF related to the EF potential by,

V (Φ) = F (Φ)2Ṽ (φ), (10)

where again, an explicit form for V (Φ) can be found given a specific choice of F (Φ)
and hence Φ(φ).

The Friedmann, acceleration, scalar field and energy conservation equations for
the action in the JF are:

H2 =
κ2

3F
(ρm + V (Φ))− HḞ

F
+

(1− 4β2)
16β2

Ḟ 2

F 2
, (11)

Ḣ = − 1
2F

κ2ρm −
1
2
F̈

F
+

1
2
HḞ

F
− 3

(1− 4β2)
16β2

Ḟ 2

F 2
, (12)

F̈ + 3HḞ =
4κ2β2

3

(
ρm + 4V (Φ)− 2F

V,Φ
F,Φ

)
, (13)

ρ̇m + 3Hρm = 0. (14)

where dots denote derivatives with respect to physical time t in the JF.

2.3. The Einstein frame vs. Jordan frame perspectives

If a theory can be expressed in a frame in which all matter components are minimally
coupled, such as in (7), then a conformal transformation to the Einstein frame will
always result in the matter-scalar coupling being the same strength, β, for all types of
matter. Some debate persists in the literature, in the case of such identical couplings,
on whether EF or JF is the ‘physical’ frame, see for example Refs. [75, 76, 77]
on this issue. We favor the perspective that neither frame is more physical than
the other, but that cosmological observations can be viewed more conveniently in
the JF since interpretation of observations that form the key evidence for dark
energy, of fluctuations in the CMB, and of redshift measurements in galaxy surveys
and supernovae, are usually made with the assumption that baryons are minimally
coupled. When considering the dynamical evolution of scalar-tensor theories therefore
we consider properties, for example the fractional matter density, equation of state
and stability of critical points (attractors/repellers), in the JF to be those that are
most appropriate to compare with observational constraints.

The Einstein frame perspective is also useful however, in that the evolution
equations and fixed point analysis are arguably easier analytically in this frame.
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The Einstein frame description can also be used to encompass theories outside of
the modified gravity realm. In these theories the scalar is minimally coupled to gravity
but the coupling strength of the scalar with cold dark matter (βc), baryons (βb) and
neutrinos (βν) could be different, for example ([24, 25, 26, 72, 78, 73, 74, 70, 71]). In
models in which CDM alone is coupled observational constraints constrain βc < 0.1
[24]. In Chameleon Cosmology models [31, 32, 33], the scalar fields acquire a mass
whose magnitude depends on the local matter density, and all βi can be spatially
varying, and of order unity.

One of the aims of this paper is to give a coherent picture of dynamical attractor
analysis in modified gravity theories in both the Einstein and Jordan frames. As will
come out naturally in our analysis, the choice of frame is really a matter of convenience
and the physical implications of the analysis, in terms of attractor critical points
and their stability arises identically out of analyses irrespective of frame choice. We,
therefore, focus our analysis on scenarios in which the coupling strength is the same
for all types of matter and in which the Jordan frame quantities are to be compared
with observational predictions. The Einstein frame analysis however can be equally
applied to theories in which CDM-scalar couplings are present, and the Einstein frame
is the physical frame.

2.4. The form of the scalar potential

The action in (7) allows both a free choice of coupling to gravity F (Φ) and scalar
self interaction potential V (Φ). In order to include an important group of extended
gravity theories, ‘f(R) theories’, and ΛCDM as classes of models described by our
analysis, however, we place a restriction on the form of the JF potential.

f(R) theories, where the Lagrangian contains an arbitrary function of the scalar
curvature R, can be written as a scalar tensor theory of gravity [79, 80, 45, 81],

S =
1

2κ2

∫
d4x
√
−gf(R) + Sm (15)

=
1

2κ2

∫
d4x
√
−g[F (Φ)R− (ΦF (Φ)− f(Φ))] + Sm (16)

where,
F (Φ) ≡ df(Φ)/dΦ. (17)

This is equivalent to our general scalar-tensor action (7), with β = 1/2, i.e. a non-
dynamical scalar field, and scalar potential,

V (Φ) =
1

2κ2
[ΦF (Φ)− f(Φ)]. (18)

By considering actions with potentials of the form (18), our analysis has f(R) theories
as its limit when the field Φ is non-dynamical. Equally, with this form of the potential,
general relativity is regained for f(Φ) = Φ and β = 0.

In the dynamical analysis described in the following sections, with this restricted
potential, we find it useful to split the potential in (18) into two components,

V1(Φ) ≡ − 1
2κ2

f(Φ), V2(Φ) ≡ 1
2κ2

ΦF (Φ), (19)

and consider their relative importance in the cosmic evolution. This analysis could
be extended, therefore, to describe evolution of more general actions, without the
restriction on the potential given in (18), through writing

V (Φ) =
1

2κ2
[ΦF (Φ)− f(Φ)] + V3(Φ) (20)
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and considering the relative importance of the extra component, V3(Φ), to the
dynamical evolution. We leave such an extension to future work.

3. Dynamical critical points

3.1. Jordan frame autonomous phase plane equations

We would like to find the critical points of the dynamical background evolution. This
equates to finding asymptotic power-law solutions of the form a ∝ tp, where p is
a constant and related to the effective equation of state of the system, weff , by
p = 2/3(1 + weff ).

Writing the scalar potential as (18), and defining the dynamical variables,

x1 ≡ −
Ḟ

HF
= −d lnF

d ln a
, x2 ≡ −

f

6FH2
, x3 ≡

Φ
6H2

, (21)

the fractional matter density in the JF can be expressed in terms of these dynamical
parameters through the Friedmann equation (11), as,

Ωm ≡
κ2ρm
3FH2

= 1− x1 −Kx2
1 − x2 − x3, (22)

where K ≡ (1 − 4β2)/16β2. weff can also be expressed in terms of the dynamical
parameters,

weff = − 2
3
Ḣ

H2
− 1 (23)

=
4β2

3
+

(
1− 4β2

)
3

x1 +
(

1− 4β2

3

)
Kx2

1 −
(
1− 4β2

)
x2 −

(
1− 4β2

3

)
x3 (24)

so that critical points, where weff is constant in time, are satisfied by x′1 = x′2 = x′3 =
0, where x′ ≡ dx/d ln a = ẋ/H.

The closed set of ‘autonomous phase plane’ equations, x′1, x′2 and x′3 in terms of
x1, x2 and x3 are obtained from the JF equations (11) - (14), and constraint equation
(22),

x′1 = − x1

2
[
(3− 4β2)− (3− 4β2)x1 − (3− 4β2)Kx2

1 + (3− 12β2)x2 + (3− 4β2)x3

]
− 4β2(1− x1 −Kx2

1 + 3x2 + x3) (25)
x′2 = x2

[(
3 + 4β2

)
+
(
2− 4β2

)
x1 +

(
3− 4β2

)
Kx2

1 − 3
(
1− 4β2

)
x2 −

(
3− 4β2

)
x3

]
+
x1x3

m
(26)

x′3 = x3

[(
3 + 4β2

)
+
(
1− 4β2

)
x1 +

(
3− 4β2

)
Kx2

1 − 3
(
1− 4β2

)
x2 −

(
3− 4β2

)
x3

]
− x1x3

m
(27)

where m is defined as

m ≡ d lnF
d ln Φ

= −x1

(
d lnx3

d ln a
− 3(1 + weff )

)−1

. (28)

and its explicit evolution depends on the choice of f(Φ).
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3.2. Einstein frame autonomous phase plane equations

We can define analogous dimensionless dynamical variables, x̃, ỹ and z̃, to those
defined in Sec. 3.1, which are simply related to the fractional energy densitites of the
scalar kinetic and potential energies in the EF,

x̃ =
κ√
6H̃

dφ

dt̃
, ỹ =

κ2Ṽ1

3H̃2
, z̃ =

κ2Ṽ2

3H̃2
, (29)

where Ṽ (φ) = Ṽ1(φ) + Ṽ2(φ),

Ṽ1(φ) ≡ − f

2κ2F 2
, Ṽ2(φ) ≡ ΦF

2κ2F 2
. (30)

The specific form of the potentials Ṽ1 and Ṽ2 coming from the conformal
transformation will depend on the form of f(Φ).

We can also define an Einstein frame fractional energy density for matter, and
using (2) write it in terms of the Einstein frame dynamical variables,

Ω̃m ≡
κ2ρ̃m

3H̃2
= 1− (x̃2 + ỹ + z̃) (31)

where 0 ≤ Ω̃m ≤ 1.
On differentiating the potentials Ṽ1(φ) and Ṽ2(φ) with respect to φ and using the

scalar field redefinition equation (8) we get,

Ṽ1,φ = − 2

√
2
3
κβ

[
2Ṽ1 +

1
m
Ṽ2

]
, (32)

Ṽ2,φ = 2

√
2
3
κβṼ2

[
1
m
− 1
]
. (33)

The EF equations (2) - (5), along with the constraint equation (31) can be used
to write down the system of plane-autonomous equations,

dx̃

d ln ã
= β(1− x̃2 − ỹ − z̃) + 2β(2ỹ + z̃)− 3

2
x̃(1− x̃2 + ỹ + z̃), (34)

dỹ

d ln ã
= − 4βx̃z̃

(
1
m

)
− 8βx̃ỹ + 3ỹ(1 + x̃2 − ỹ − z̃), (35)

dz̃

d ln ã
= 4βx̃z̃

(
1
m
− 1
)

+ 3z̃(1 + x̃2 − ỹ − z̃). (36)

where all information about the scalar field redefinition φ(Φ) is encoded in the
parameter m.

We can find EF evolution where there is power law expansion of the form ã ∝ t̃p̃
where p̃ is constant by solving dx̃/d ln ã = dỹ/d ln ã = dz̃/d ln ã = 0. As discussed
previously, if visible matter, and not only CDM, is non-minimally coupled in the
Einstein frame then Einstein frame is not the one in which cosmological observations
are usually expressed. However as we discuss in the following section, a mapping exists
between the autonomous phase planes in each frame that implies that solving one set
of equations translates into the solutions of the other.
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3.3. Mapping between the Einstein and Jordan frame phase planes

There is a direct mapping between the JF and EF variables,

x1 = − 4βx̃
1− 2βx̃

, x̃ =
1

2β
x1

x1 − 2
, (37)

x2 =
ỹ

(1− 2βx̃)2
, ỹ =

4x2

(x1 − 2)2
, (38)

x3 =
z̃

(1− 2βx̃)2
, z̃ =

4x3

(x1 − 2)2
, (39)

where
d ln ã
d ln a

=
1

1− 2βx̃
= −x1 − 2

2
. (40)

Writing a point in the JF as x ≡ (x1, x2, x3) and a point in the EF as
x̃ ≡ (x̃, ỹ, z̃), the transformation matrix T defined such that ∆x = T∆x̃, where
∆x ≡ (∆x1,∆x2,∆x3) and ∆x̃ ≡ (∆x̃,∆ỹ,∆z̃), is given by,

T =
1

(1− 2βx̃)2

 −4β 0 0
4βỹ

1−2βx̃ 1 0
4βz̃

1−2βx̃ 0 1

 , (41)

T −1 =
1

(x1 − 2)2

 − 1
β 0 0

− 8x2
(x1−2) 4 0
− 8x3

(x1−2) 0 4

 . (42)

The transformation from the Jordan to Einstein frame is well defined as long as
x1 6= 2. Equation (37) shows that for x1 6= 2, if follows that (1 − 2βx̃) 6= 0 and
the transformation from the Einstein to Jordan frame is non-singular. For theories
in which x1 = 2 occurs, this simply represents that the Einstein frame mapping is
ill-defined and the dynamical analysis should be undertaken in the Jordan frame.

3.4. Critical points and calculating their stability

The critical points (also called fixed points) in the Jordan and Einstein frames, xc ≡
(x1c, x2c, x3c) and x̃c ≡ (x̃c, ỹc, z̃c) respectively, are the solutions of x′1 = x′2 = x′3 = 0
and dx̃/d ln ã = dỹ/d ln ã = dz̃/d ln ã = 0. These points may be stable, saddle, or
unstable solutions. In order to study the stability of the critical points we expand
about these points, x ≡ xc + ∆x and x̃ ≡ x̃c + ∆x̃ and consider the eigenvalues of
the stability matrices M and M̃ defined by ∆x′ ≡M∆x, and d∆x̃/d ln ã ≡ M̃∆x̃.

For any point the matrices M and M̃ are related by

M =
d ln ã
d ln a

[
T M̃T −1 +

d(T )
d ln ã

T −1

]
(43)

From (40), for well-defined transformations (x1 6= 2), at the critical points
d(T )/d ln ã = 0 so that we can relate M, M̃ and T ,

M =
1

1− 2βx̃c
TcM̃T −1

c . (44)

where Tc is the transformation matrix at the critical point.
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Let the eigenvalues of M at some critical point be λ1, λ2 and λ3. Then the
general solution for the evolution of linear perturbations in the JF will be of the form,

∆x = c1e
λ1∆N + c2e

λ2∆N + c3e
λ3∆N (45)

where c1, c2, and c3 are vectors of constants, and N = ln a. We require the linear
perturbations to decay with time so that the critical point is stable. Cosmological
observations of the cosmic expansion, as measured by the CMB, supernovae and galaxy
surveys are consistent with a monotonically increasing expansion history such as in
ΛCDM [1]-[17]. We therefore consider stability criteria as the universe expands, taking
∆N positive, in which case stable fixed points are characterized by negative real parts
of eigenvalues in the Jordan frame. If the universe had been contracting instead of
expanding at any point of time, then corresponding fixed points would map to repellers
instead of attractors.

If the eigenvalues of M̃ at some critical point (x̃c, ỹc, z̃c) are λ̃1, λ̃2 and λ̃3, then
the general solution for the evolution of linear perturbations in the EF will be of the
form,

∆x̃ = c̃1e
λ̃1∆Ñ + c̃2e

λ̃2∆Ñ + c̃3e
λ̃3∆Ñ (46)

where c̃1, c̃2, and c̃3 are vectors of constants and Ñ = ln ã. We require the linear
perturbations to decay with time so that the critical point is stable. Our time
variable in the EF, Ñ , may increase or decrease with the evolution of the universe
since at a critical point, ∆N = (1 − 2βx̃c)∆Ñ and (1 − 2βx̃c) could be positive or
negative. However the eigenvalues in the two frames at a critical point are related by
λ = λ̃/(1− 2βx̃c). The product of these two together hence guarantees that stability
in one frame implies stability in the other frame irrespective of the sign of (1− 2βx̃c).
The sign of the stable eigenvalue in the Einstein frame may therefore be opposite to
that in the Jordan frame.

The stability matrix in the Jordan frame, M, is given by:

M11 = 2β2(3− 2x1c + 4Kx1c − 3Kx2
1c + 3x2c + x3c)

− 3
2

(1− 2x1c − 3Kx2
1c + x2c + x3c), (47)

M12 = − 12β2 − 3
2
x1c + 6β2x1c, (48)

M13 = − 4β2 − 3
2
x1c + 2β2x1c, (49)

M21 =
x3c

m
+ (2− 4β2)x2c + 2K(3− 4β2)x1cx2c, (50)

M22 = 3 + 4β2 + (2− 4β2)x1c +
mrr

2x1c

m2
+ (3− 4β2)Kx2

1c

− 6(1− 4β2)x2c − (3− 4β2)x3c, (51)

M23 =
x1c

m
− mrrx1c

m2
− (3− 4β2)x2c, (52)

M31 =
−x3c

m
+ (1− 4β2)x3c + 2K(3− 4β2)x1cx3c, (53)

M32 =
−mrr

2x1c

m2
− 3(1− 4β2)x3c, (54)

M33 = 3 + 4β2 + (1− 4β2)x1c −
x1c

m
+
mrrx1c

m2
+ (3− 4β2)Kx2

1c

− 3(1− 4β2)x2c − 2(3− 4β2)x3c. (55)



The dynamical viability of scalar-tensor gravity theories 10

where mr ≡ dm/dr, and,

r ≡ − ΦF
f

= − d ln f
d ln Φ

=
x3

x2
=

z̃

ỹ
. (56)

The stability matrix in the Einstein frame, M̃, is given by:

M̃11 = − 2βx̃c + 3x̃2
c −

3
2

(1− x̃2
c + ỹc + z̃c), (57)

M̃12 = 3β − 3
2
x̃c, (58)

M̃13 = β − 3
2
x̃c, (59)

M̃21 =
−4βz̃c
m

− 8βỹc + 6x̃cỹc, (60)

M̃22 = − 8βx̃c −
4βmrr

2x̃c
m2

+ 3(1 + x̃2
c − ỹc − z̃c)− 3ỹc, (61)

M̃23 =
−4βx̃c
m

+
4βmrrx̃c
m2

− 3ỹc, (62)

M̃31 = 6x̃cz̃c + 4βz̃c

(
−1 +

1
m

)
, (63)

M̃32 =
4βmrr

2x̃c
m2

− 3z̃c, (64)

M̃33 = 4βx̃c

(
−1 +

1
m

)
− 4βmrrx̃c

m2
− 3z̃c + 3(1 + x̃2

c − ỹc − z̃c)(65)

4. Solving the autonomous phase plane equations

4.1. The critical points

The seven critical points, P1−P7, are given in Table 1 and Table 2 in the Einstein and
Jordan frames respectively. Table 3 gives the Jordan frame fractional matter density
Ωm and effective equation of state parameter weff for each of the points, which can
be compared to observational constraints.

We will find that r and m, which we can treat as dynamical variables determined
by the specific theory (the specific form of f(Φ)), are useful parameters to characterize
the properties and stability of the critical points.

Note that at the critical points, given that x′1 = x′2 = x′3 = 0 and (56),

r′ = −rx1

(
r + 1
m

+ 1
)

= 0. (66)

i.e. r is constant at the fixed points.
At the points P5 and P6 when x1c 6= 0 and r 6= 0, m and r are related by

m = −(r + 1). (67)

From (28) the value of m at these critical points is related to the equation of state by

m =
x1c

3(1 + weff )
. (68)

At P1, r = −2 irrespective of the value of β or the form of f(Φ), however since
weff = −1, from (28), the coordinates are independent of the value of m. Similarly
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Table 1. Critical points (P1 − P7) of the dynamical attractors for a universal,
general scalar coupling, β in the Einstein frame in terms of dynamical variables
(x̃, ỹ, z̃)

Point x̃ ỹ z̃

P1 0 -1 2

P2 2β
3

0 0

P3 -1 0 0

P4 4β
3

9−16β2

9
0

P5 3m
−4β+2βm

−8β2+m(−9+4β2)

4β2(−2+m)2
−(1+m)[−8β2+m(−9+4β2)]

4β2(−2+m)2

P6 2β(−1+m)
3m

4β2−8β2m+m2(−9+4β2)

9m3
−(1+m)[4β2−8β2m+m2(−9+4β2)]

9m3

P7 1 0 0

Table 2. Critical points (P1 − P7) of the dynamical attractors for a universal,
general scalar coupling, β in the Jordan frame in terms of dynamical variables
(x1, x2, x3)

Point x1 x2 x3

P1 0 -1 2

P2 8β2

4β2−3
0 0

P3 4β
2β+1

0 0

P4 16β2

8β2−3
9−16β2

(3−8β2)2
0

P5 3m
1+m

−9m+4β2(−2+m)

16β2(1+m)2
9m−4β2(−2+m)

16β2(1+m)

P6 8β2(1−m)

3m+4β2(1−m)

−9m2+4β2(−1+m)2

m[3m−4β2(−1+m)]2
(1+m)[9m2−4β2(−1+m)2]

m[3m−4β2(−1+m)]2

P7 4β
2β−1

0 0
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Table 3. The fractional matter density Ωm and effective equation of state weff
in the Jordan frame (JF). For modified gravity theories, observational constraints
derived from redshift measurements are more directly applicable in the Jordan
rather than Einstein frame, as discussed in section 2.3.

Point Ωm(JF ) weff (JF )

P1 0 -1

P2 9−4β2

(3−4β2)2
8β2

9−12β2

P3 0 3−2β
3+6β

P4 0 9−40β2

−9+24β2

P5 −9m2+4β2(2−3m+m2)

8β2(1+m)2
−m
1+m

P6 0 −8β2+20β2m+m2(9−12β2)

3m[−4β2+m(−3+4β2)]

P7 0 3+2β
3−6β

at P4, r = 0 and since x3c = 0, from (28), again the coordinates are independent of
the value of m.

Finally, at points P2, P3 and P7, where x2c = x3c = 0, the coordinates
{x1, x2, x3} are not explicitly dependent on the specific values of r, m. However, as
discussed in Sec. 4.3 the stability criteria / eigenvalues at these points are. Note that
r remains well-defined as given in (56) despite x3 and x2, or z̃ and ỹ, asympotically
tending to zero at a fixed point.

It should be noted that a specific choice of f(Φ) may only be able to reach a
subset of fixed points given in this general analysis. For example, consider a scenario
in which f(Φ) ∝ Φn (n 6= 0), where n is constant, then r = −n at all times, even as
Φ→ 0 as at P2, P3 and P7. This theory could reach P1 only if n = −2, and P4 only
if n = 0 (for which F (Φ) = 0 and would not give a well defined action). Moreover,
the consistency relation for P5 and P6 in (67) is always satisfied since m = n− 1 for
this particular choice of f(Φ).

We briefly summarize the properties of each fixed point below. In each case Ωm
and weff are the Jordan frame quantities most easily compared with cosmological
observations, as discussed in section 2.3.

Point P1: Since Ωm = 0, and weff = −1 the point P1 can only represent a de-Sitter
accelerated universe.

Point P2: P2 is a generalization of the “φ matter-dominated era” (φMDE) attractor
in f(R) theories in which the scale factor in the JF has wrong time evolution, a ∝ t1/2
[53]. However for general values of β, weff can be arbitrarily close to zero and a good



The dynamical viability of scalar-tensor gravity theories 13

Figure 1. The effective equation of state weff as a function of β for the point
P4.

approximation to the standard MDE in which a ∝ t2/3. P2 could therefore act as
an approximate CDM era which, for small β, could be consistent with cosmological
observations. For |β| >

√
3/2, P2 gives accelerated expansion..

Point P3: Since Ωm = 0 at P3, it cannot represent a matter-dominated era (MDE).
P3 describes an accelerated universe for β < −1/2.

Point P4: For P4 we again have Ωm = 0, so it cannot represent a valid MDE. In Figure
1 we show the variation of weff with β for this point. P4 gives rise to acceleration for
β in the range β < −

√
3/8, β >

√
3/8, or |β| <

√
3/4. Acceleration has weff < −1

for β ≤ −3/4 and β ≥ 3/4, and weff > −1 for |β| <
√

3/4. For β = 1/2, weff = 1/3,
therefore P4 is not accelerated in f(R) theories and general values of β thus open up
avenues for new accelerated critical points.

Point P5: As m(P5) → 0, Ωm → 1 and weff → 0 for all values of β. Thus
m(r = −1) = 0 represents a standard MDE. In order for P5 to represent accelerated
expansion, m(P5) < −1 or m(P5) > 1/2.

Point P6: Since Ωm = 0 for P6, it can not be used to represent a MDE. P6 gives
accelerated expansion for a wide range of {m,β}. In the limit m(P6)→ ±∞ the point
P6 tends to a de-Sitter point with weff → −1. It is also de-Sitter for m(P6) = 1,
which is the same as the point P1. As m→ 1/(1− 3/4β2) or m→ 0−, one would get
acceleration with weff → −∞.

Point P7: Since Ωm = 0, P7 cannot represent a MDE. For it to represent an
accelerated universe one requires β > 1/2.

4.2. Comparison with other dynamical analysis of f(R) and coupled CDM theories

Before discussing the nature of the critical points in detail (which we do in the next
section) it is useful to make a connection between the solutions that we have found
and those that have been obtained in the literature, since our general analysis maps
to specific models that have been considered previously.
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Table 4. Table showing how theories with purely CDM couplings in which the
analysis is wholly in the Einstein frame, and f(R) theories with β = 1/2, can be
mapped to subsets of the attractor behavior with a general coupling, β.

Point CDM coupling, βb = 0, βc = β, [24] f(R) theories, β = 1/2, [69]

P1 - Point P1

P2 Point cM Point P2

P3 Point d Point P3

P4 - Point P4

P5 Point bM (for constant r and m) Point P5

P6 Point a (for constant r and m) Point P6

P7 Point e -

Solutions for f(R) models with β = 1/2 have been obtained in [69] in the JF.
We can map solutions obtained in [69] to subsets of solutions found in this paper. A
summary of the relationship between solutions found here and those in non-minimally
coupled dark matter and f(R) models is given in Table 4.

Our Einstein frame analysis can be applied to CDM coupled dark energy models,
with βb = 0, βCDM 6= 0, e.g. [68, 24, 25, 26]. Attractors in these theories have been
considered with an exponential potential in the EF, Ṽ (φ) = Ae

√
2/3κµφ [68, 24].

Only two critical points, which represent a subset of solutions of P5 and P6 with
Ṽ1 ∝ Ṽ2, depend on µ. For these points

m = −(1 + r) =
2β

µ+ 2β
. (69)

We consider in this work a purely scalar-tensor theory of gravity, with no
higher order metric derivatives, such as the Ricci tensor, Rµν or Riemann tensor,
Rαβµν . Modified gravity theories including such terms have been shown to be
able to generate cosmic acceleration, for example Gauss-Bonnet gravity f(G) where
G ≡ R2−4RµνRµν +RαβµνRαβµν (which is motivated by effective low-energy actions
in string theory) [59, 82, 62, 60, 83, 61, 84, 63, 64, 65, 66]. Our analysis is not applicable
to higher derivative gravity theories. Dynamical analyses [62, 66] have been used to
show, however, that f(G) models are highly constrained by cosmological data.

4.3. Stability criteria for the dynamical attractors

We present here the criteria for stability in each of the critical points discussed in
Sec. 4.1 and shown in Tables 1 and 2. A viable cosmology requires an extended
matter-dominated era (MDE) followed by late time acceleration in the Jordan frame.
Therfore the MDE needs to be a saddle point and the acceleration can be stable or
saddle. The stability criteria presented here is for an expanding universe. In the case
of contraction, stable attractors map to unstable repellers and vice versa.

In Sec. 4.1 we discussed the dependency of the observables Ωm and weff on m and
β. At certain critical points, P1, P4−P6, r is a constant or equal to −(m+ 1), while
for the points, P2, P3 and P7, r is unconstrained. Here we find that the conditions
for saddle matter domination and stable acceleration can be expressed in terms of
conditions on m, r and the coupling, β for all points P1−P7.
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m and r are considered variables determined by the specific theory, in terms of
which the stability of the critical points is described. We denote the value of m at the
critical point Pi by mi ≡ m(Pi) and the derivative of mi with respect to r at that
point by mir ≡ dm/dr(Pi). In this section we consider conditions to give saddle MDE
and stable acceleration in the Jordan frame. We then give conditions on the specific
evolutionary paths for m and r that yield viable cosmologies in Sec. 4.4, and discuss
conditions for saddle acceleration in Sec. 4.5.

Point P1:
The eigenvalues for P1 are,

−3, −3
2
± 1

2

√
9 + 64β2

(
1− 1

m1

)
where m1 = m(r = −2). For the point to be stable we need the real parts of all 3
eigenvalues to be negative (or zero). This amounts to 0 < m(r = −2) ≤ 1 irrespective
of the value of β. P1 is a saddle point otherwise.

Point P2:
The eigenvalues for P2 are,

− 1
2
− 3

3− 4β2
,

1
m2

2(3− 4β2)

[
9m2

2 − 4β2 {m2(−1 + 2m2) +m2rr(1 + r)}

±4β2
√
m4

2 + 2m3
2 +m2

2 {1 + 2m2rr(−1 + r)} − 2m2m2rr(1 + r) +m2
2rr

2(1 + r)2

]
.

As an illustrative example, if m2 is constant so that m2r = 0, the eigenvalues reduce
to,

−1
2
− 3

3− 4β2
, 3,

9m2 + 4β2(2−m2)
m2(3− 4β2)

Since at least one eigenvalue is positive, P2 can either be a saddle point or unstable
and does not represent a stable acceleration point even though weff < −1/3 for
|β| >

√
3/2.

Point P3:
The eigenvalues for P3 are,

3 + 2β
1 + 2β

,
2

m2
3(1 + 2β)

[
− βm3 + βm3rr(1 + r) + 3m2

3(1 + β)

±β
√
m4

3 + 2m3
3 +m2

3 {1 + 2m3rr(−1 + r)} − 2m3m3rr(1 + r) +m2
3rr

2(1 + r)2

]
.

For example, if m3 is constant so that m3r = 0, the eigenvalues reduce to,
3 + 2β
1 + 2β

,
6 + 8β
1 + 2β

,
6m3 + 4β(−1 +m3)

m3(1 + 2β)
.

In the range −3/4 < β < −1/2 the first and second eigenvalues are negative, in this
constant m3 case. To get stable acceleration, one must find corresponding values of
m3 so as to get the third eigenvalue negative or zero as well.

Point P4:
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The eigenvalues for P4 are,

− 3, −2− 3
3− 8β2

,
16β2(1 +m4)
m4(3− 8β2)

, (70)

where m4 = m(r = 0). Accelerative expansion occurs for β < −
√

3/8, β >
√

3/8, or
|β| <

√
3/4. The first eigenvalue is negative, and the second one is negative or equal

to zero for β ≤ −3/4, β ≥ 3/4, or |β| <
√

3/8. In the overlapping regions, i.e. when
β ≤ −3/4, β ≥ 3/4, |β| <

√
3/4 we have almost all conditions for stable acceleration

satisfied. We can then find corresponding values of m4 so that the third eigenvalue
also becomes negative or zero. For |β| <

√
3/4 and −1 ≤ m(r = 0) < 0, P4 always

represents a stable accelerated era with weff > −1, with no condition on m4r. The
point P4 is therefore of interest and we discuss it further in sections 4.4 and 4.5.

Point P5:
The general expression for the eigenvalues of P5 is non-trivial. The eigenvalues of P5
in the limit of a matter dominated era (with |m5| << 1) are approximately,

3(1 +m5r), −
3
4
±

√
−4β2

m5
.

Models with m5 < 0 are not acceptable since the eigenvalues diverge as m5 → 0−,
so the system would not remain at P5 for sufficient time to give rise to a viable CDM
dominated era [69]. In order to get a valid saddle MDE as m5 → 0+ we need,

m(r ≤ −1) > 0, mr(r ≤ −1) > −1, m(r = −1) = 0.

We find that P5 is never stable in either of the two regions that give accelerated
expansion (m5 < −1 and m5 > 1/2), for values of β approximately in the range
|β| ≤ 0.86. For β outside of this range P5 can give rise to accelerated expansion,
however these values of β are generally disfavored by observations [24]. Hence P5
best describes a MDE.

Point P6:
The eigenvalues for P6 are,

−4β2 + 8β2m6 +m2
6(9− 4β2)

m6[−4β2 +m6(−3 + 4β2)]
,
−8β2 + 12β2m6 +m2

6(9− 4β2)
m6[−4β2 +m6(−3 + 4β2)]

,

8β2(−1 +m2
6)(1 +m6r)

m6[−4β2 +m6(−3 + 4β2)]
. (71)

We note that there is a symmetry with respect to positive and negative values of β
since weff and the eigenvalues are all functions of β2.

In order to characterize and study the properties of P6 in more detail, we limit
our analysis to β in the range |β| ≤ 1/2, in which we find that it is accelerated
and stable in five distinct ranges. This choice of β is well-motivated, the value of
β is constrained by CMB observations with |β| ≤ 0.1 in [24] and encompasses f(R)
theories with β = 1/2. Hence |β| ≤ 1/2 represents a broad and interesting range for
viable scalar-tensor theories.

There are five regions of stable acceleration in P6, labelled (A)-(E), which depend
on the magnitude of m at the fixed point, m6, and the sign of the derivative dm/dr
at the fixed point, written m6r.

[I] m6r > −1
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(A) m6 ≤ min [−1, 2|β|/(2|β| −
√

3)]: weff > −1,
(B) 4β2/(4β2 − 3) < m6 < 0: weff � −1,
(C) m6 ≥ 1: weff . −1,

[II] m6r < −1

(D) 2|β|/(2|β|+
√

3) < m6 ≤ 1: weff > −1
(E) −1 ≤ m6 < 2|β|/(2|β| −

√
3): This point exists only for β in the range

|β| <
√

3/4 for which weff > −1.

Region (E) does not exist for f(R) theories, so as with P4, general values of β
therefore open up avenues for new accelerative critical points. We discuss this region
further in sections 4.4 and 4.5.

Point P7:
The eigenvalues for P7 are,

3− 2β
1− 2β

,
2

m2
7(1− 2β)

[
βm7 − βm7rr(1 + r)− 3m2

7(−1 + β)

±β
√
m4

7 + 2m3
7 +m2

7 {1 + 2m7rr(−1 + r)} − 2m7m7rr(1 + r) +m2
7rr

2(1 + r)2

]
.

For example, if m7 is constant so that m7r = 0, the eigenvalues reduce to,

3− 2β
1− 2β

,
6− 8β
1− 2β

,
6m7 + 4β(1−m7)

m7(1− 2β)

Stable acceleration is able to occur for the range 1/2 < β < 3/4, where the first and
second eigenvalues are negative (in the constant m7 case), and a suitable value of m7

can make the third eigenvalue to also be negative or zero.

4.4. Classification of F (Φ)R scalar-tensor theories

We classify general F (Φ)R scalar-tensor theories, with values of β in the range
|β| ≤ 1/2, on the basis of trajectories of the m(r) line on the (r,m) plane since such a
trajectory completely specifies a theory’s dynamical evolution as the universe expands.
These trajectories depend on the functional form of F (Φ), or from an alternative
perspective on the value of β. We therefore consider conditions on viable cosmologies
as conditions on these trajectories.

• We assume that the function f is a C∞ function (i.e. it is differentiable
for all degrees of differentiation). Also f and all of its derivatives are non-
singular and single valued. For the conformal transformation and scalar field
redefinition to be valid we require that F (Φ) > 0. This implies that f(Φ) is
monotonically increasing and single valued for all Φ. As such r(Φ) and m(Φ)
are also single valued. Therefore m(r) is single valued and we can consider
evolutionary trajectories in terms of the function m(r).

• As mentioned earlier, a viable cosmology requires an extended matter dominated
era followed by late time acceleration. The matter dominated era therefore needs
to be a saddle point. From our detailed analysis in Sec. 4.3 we find that only
the point P5 with m5(r = −1) → 0+ can be used as a standard saddle matter
dominated point with Ωm = 1, weff = 0 and a ∝ t2/3. This point is denoted as
P5(0) .
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• The accelerated expansion needs to be a stable or saddle point. Valid acceleration
points (for |β| ≤ 1/2) are P1, P4, and P6. Transitions from P5(0) to P1 and
regions (A)-(D) of P6 are qualitatively similar to those in f(R) theories [69].
The point P4 and the region (E) of point P6, however, are not present in f(R)
models, we therefore discuss their properties in detail below. Interestingly, both
of these exist as stable accelerated epochs only for |β| <

√
3/4 and have very

similar properties.
• The points P5 and P6 lie on the critical line, m = −r−1. Valid m(r) trajectories

should not enter a critical point from a forbidden direction. For the point P5(0)

to exist we require m5r > −1. We can therefore mark forbidden direction regions
on the critical line around the point P5(0). Forbidden direction regions also exist
around P6, with transitions to the regions (A), (B) and (C) of point P6 requiring
that m6r > −1, and m6r < −1 for transitions to regions (D) and (E). The point
P4, by contrast, has no such forbidden direction regions around it.

The characteristics of the 5 general classes of scalar-tensor theory trajectories that
give stable acceleration are summarized below.

I: The m(r) curve does not connect the standard matter dominated point to the
accelerated attractor solutions. Models of this class either bypass the matter era
and directly fall onto an accelerated attractor or go through a φMDE. For general
values of β, however, weff for the point P2 can be arbitrarily close to zero and
give a standard MDE instead of a φMDE.

II: The m(r) curve connects the standard matter era P5(0) to P1 or asymptotically
(r → ±∞) to P6, giving a stable accelerated de-Sitter expansion.

III: The m(r) curve intersects the critical line in the region (B) of point P6. These
models have very short matter dominated phases which would not allow sufficient
time for structure formation. The resulting acceleration after matter domination
has weff � −1.

IV: The m(r) curve connects the standard matter era P5(0) to the region (D) of P6
which has acceleration with weff > −1.

V: Models of this class connect the standard MDE P5(0) to the point P4 in
−1 ≤ m(r = 0) < 0, or to region (E) of P6. These models exist only for
|β| <

√
3/4, hence P4 and region (E) of P6 are not accelerated for f(R) theories.

The final acceleration has weff > −1.

Classes I-IV are qualitatively similar to those in f(R) theories. Class V is not
open to f(R) theories and we discuss this class here in more detail.

Class V covers the transition between points P5(0) and P4 or region (E) of P6.
As shown in Sec. 4.3 the point P4 and region (E) of P6 represent accelerated epochs
with weff > −1 for |β| <

√
3/4. P4 is stable for −1 ≤ m(r = 0) < 0 irrespective

of the value of m4r, and region (E) of P6 (which has −1 ≤ m6 < 2|β|/(2|β| −
√

3))
is stable for m6r < −1. If we can find a function f(Φ) which takes us from P5(0) to
either of these points then this would represent a valid trajectory for cosmic evolution.

In Figure 2 we show possible trajectories on the (r,m) plane for a Class V model.
Consider the case when P5(0) is connected to P4 by a straight line. We require the
slope of this line to be between 0 and -1 so that it can intersect the m-axis between 0
and -1. The resulting equation for the m(r) curve that we are looking for is,

m = − 1
n

(1 + r) (72)
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Figure 2. Class V models of scalar-tensor theories on the (r,m) plane. The
solid line with a slope of -1 is the critical line m = −r − 1 and the dashed curves
are possible trajectories for a Class V model. The point P5(0) (−1, 0) is the
starting saddle matter dominated point, with the triangles around it representing
the forbidden direction regions. The m(r) curve for a Class V model intersects
either the m-axis between 0 and -1 corresponding to the point P4, or the critical
line in region (E) of point P6, to get a stable accelerated epoch.

where n > 1. Combining (72) with (17), (28) and (56), the resulting second-order
differential equation in f(Φ) gives solutions for Class V models of the form,

f(Φ) = a(Φ
n−1

n + b)
n

n−1 (73)

where a and b are constants, and a > 0. This gives,

r = − Φ
Φ + bΦ1/n

(74)

In order to have the correct sequence of matter domination and acceleration we need
r to be increasing with time, i.e. dr/da > 0. Using Φ̇ < 0 and ȧ > 0 this corresponds
to b > 0 (here dots denote derivatives with physical time in the JF). In f(R) theories,
Φ̇ < 0 represents a curvature, R, that decreases with time consistent with observations.

The above form of f(Φ) can be used to calculate the mass of the scalar field Φ in
these scalar-tensor theories [45],

m2
φ = Ṽ,φφ|φ=0 =

4β2

3

(
dΦ
dF

+ Φ− 4f(Φ)
)

(75)

For large values of Φ, b > 0 corresponds to m2
φ < 0. Thus this simple f(Φ) leads

to scalar fields with imaginary mass. If we have some general curve joining P5(0) and
P4 we can break it up into an infinite number of straight lines with at least some being
of the form of the above f(Φ) (with slope between -1 and 0) and again argue that it
would lead to an imaginary mass for the scalar field. A transition from P5(0) to region
(E) of P6 will similarly need an imaginary mass scalar field because this transition
also goes in the direction of increasing r with a negative value of m. Hence Class
V have a matter dominated era followed by an accelerated epoch with weff > −1,
but relate to theories with imaginary scalar field masses in the Einstein frame. In
the specfic case of f(R) models this translates to imaginary mass scalar fields arising
when fRR < 0 - see Refs. [85, 86] for details.
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4.5. Criteria for viable models with saddle acceleration

Till now we have only studied viable cosmologies which go from a saddle matter
dominated era to a stable accelerated universe. Even though we know that dark
energy is the dominant component today we can not be sure of what the future holds.
Therefore it may be possible that acceleration is not a permanent feature of our
universe [87].

We first consider acceleration that is stable on the subspace z̃ = rỹ, on which
saddle point CDM attractors are stable, where r (and hence m) is constant. The
evolution equations written earlier reduce to,

x̃′ = β[1− x̃2 − (1 + r)ỹ] + 2β(2 + r)ỹ − 3
2
x̃[1− x̃2 + (1 + r)ỹ] (76)

ỹ′ = − 4βrx̃ỹ
(

1
m

)
− 8βx̃ỹ + 3ỹ[1 + x̃2 − (1 + r)ỹ] (77)

where r = −(1 + m). The solutions of these evolution equations are the points P2,
P3, P5, P6, and P7. Since m is now constant, the points P1 and P4 are just special
cases of P6 with m = ±1.

For |β| ≤ 1/2 we see that the only points that can be accelerated are P5 and P6.
It can be shown that P5 is not stable (even on the subspace z̃ = rỹ) in the regions
that it is accelerated. The point P6

(
2β(−1+m)

3m , 4β2−8β2m+m2(−9+4β2)
9m3

)
has Ωm = 0,

an effective equation of state,

−8β2 + 20β2m+m2(9− 12β2)
3m[−4β2 +m(−3 + 4β2)]

, (78)

and its eigenvalues are given by the first two in (71),

−4β2 + 8β2m6 +m2
6(9− 4β2)

m6[−4β2 +m6(−3 + 4β2)]
,
−8β2 + 12β2m6 +m2

6(9− 4β2)
m6[−4β2 +m6(−3 + 4β2)]

(79)

P6 is accelerated (weff < −1/3) and stable on the subspace z̃ = rỹ in the following
three regions:

(A) m6 < 2|β|/(2|β| −
√

3): weff > −1
(B) 4β2/(4β2 − 3) < m6 < 0: weff � −1
(C) m6 > 2|β|/(2|β|+

√
3): weff > −1 for m6 < 1, and weff . −1 for m6 ≥ 1

Notice that there is no condition on m6r, therefore there is no forbidden direction
region around P6. The first graph in Figure 3 shows a possible trajectory of the m(r)
curve, connecting P5(0) to either of the regions (A) and (C). We can also connect
to the region (B) of P6. It is likely that all scalar-tensor theories which connect to
the regions (A) and (B) are tachyonic because of reasons discussed earlier (since they
have negative values of m and are moving in the direction of increasing r). This only
leaves region (C) to be a viable cosmology. Theories which connect P5(0) to region
(C) of P6 are therefore possible models for the evolution of the universe from a saddle
matter dominated era to a saddle accelerated expansion.

On a general subspace (away from z̃ = rỹ) the point P4 admits acceleration for
|β| <

√
3/4, not compatible with f(R) theories, that gives rise to a second saddle

acceleration attractor. If we consider positive values of m(r = 0) then we see that
the third eigenvalue in (70) is positive but the first two are still negative. Thus P4
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Figure 3. Scalar-tensor theories which lead to a saddle accelerated expansion of
the universe. The solid line with a slope of -1 is the critical line m = −r − 1 and
the dashed curves are possible trajectories for a scalar-tensor theory. The point
P5(0) (−1, 0) is the starting saddle matter dominated point, with the triangles
around it representing the forbidden direction regions. In the first graph the m(r)
curve connects the matter dominated point to one of the three accelerated regions
(A, B or C) of the point P6. The accelerated expansion is stable on the subspace
z̃ = rỹ. In the second graph the m(r) curve connects the matter dominated point
to the point P4 on m(r = 0) > 0 which gives a period of, potentially transient,
acceleration.

with m(r = 0) > 0 represents saddle acceleration on such a subspace, for |β| <
√

3/4.
The second graph in Figure 3 shows a possible trajectory from the matter dominated
point P5(0) to the saddle acceleration point P4.

5. Conclusions

In this paper we have established the dynamical attractor behavior in scalar-tensor
theories of dark energy, presenting a complete, consistent picture of evolution in both
the Einstein and Jordan frames. We discuss critical points for the dynamical evolution
and show how in the two frames the stability matrices for these points are related by
a similarity transformation.

We carry out a general analysis for values of the coupling β in |β| ≤ 1/2, and
find that there are five classes of evolutionary behavior, of which four classes are
qualitatively similar to those for f(R) gravity. The fifth class only exists for values of
β in the range |β| <

√
3/4, i.e. it is not present for f(R) gravity. This class of models

has a standard matter dominated phase followed by acceleration with weff > −1, but
for stable acceleration seems to always have tachyonic scalar fields.

We then relax the condition of a stable accelerated universe and study transitions
from the allowed MDE to a saddle accelerated universe, again for |β| ≤ 1/2. We
find that on the subspace z̃ = rỹ (r = constant), which contains the suitable MDE,
the point P6 is accelerated and gives evolution without tachyonic scalar fields if
m6 > 2|β|/(2|β| +

√
3). This class of behavior is qualitatively true also for f(R)

theories (β = 1/2). In addition there is a possibility of going from the MDE to the
saddle non-phantom acceleration point P4, only open to |β| <

√
3/4. Therefore if we

allow the current accelerated expansion of the universe to be temporary then there
are a much broader variety of f(R) and F (Φ)R theories that are dynamically valid.
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Our results open up interesting questions about broader dark energy theories. In
particular, in this paper we have used a particular form of the potential in the EF
given by Eq. (18) appropriate for a wide class of theories, including f(R) theories, in
which the Jordan frame action has no scalar potential. It will be interesting to see
the implications of using a more general form of the potential.
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