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Abstract.
We present optical to radio spectral energy distribution fitting of the host galaxies of four long

gamma-ray bursts: 980703, 000210, 000418 and 010222, whichwere detected at submillimetre
and/or radio wavelengths. We find that only very young starburst galaxy models are consistent with
the data having both blue optical colors and a pronounced submm emission. For each host we are
able to construct a model consistent with the short- and long-wavelength parts of the spectra. We
find galaxy ages ranging from 0.09 to 2.0 Gyrs and star formation rates ranging from 138 to 380
M⊙ yr−1.
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INTRODUCTION

Observations of gamma-ray burst (GRB) host galaxies have attracted a lot of interest
since the first interpretation of a constant extended sourceat a GRB position as the host
galaxy [1, 2]. A detailed description of the GRB environmentcan provide important
constraints on GRB physics [see 3, for a review] and can be used for statistical studies
of starburst galaxies.

The host galaxies of the long GRBs 000210, 000418 and 010222 are somewhat special
because they are the only hosts, among∼30 targeted by SCUBA [4], showing submil-
limetre emission. The hosts of GRBs 980703 and 000418 were also firmly detected at ra-
dio wavelengths [5, 6, 7] whereas those of GRBs 000210 and 010222 were only weakly
detected [7]. The host of GRB 010222 was also detected at millimetre wavelengths [8].
Both submillimetre and radio detections may indicate high star formation rates (SFRs),
of the order of several hundreds solar masses per year (M⊙ yr−1), if the whole emission
is powered by a starburst, namely by dust at submillimetre and by supernova remnants
at radio wavelengths. Moreover, a spectral energy distribution (SED) fitting applied only
to optical/near-infrared data agreed reasonably with starburst templates [9, 10, 11]. This
picture is consistent with the hypernova GRB model [12, 13].

However, the starburst scenario of GRB hosts is more complicated because, unlike
red, dusty, sturbursting submillimetre galaxies [14], GRBhosts have been found to
exhibit blue optical colors [9, 10, 15, 16]. The submillimetre/radio fluxes were also
underestimated by any SED template fitted to the optical data.

Mid-infrared Spitzer observations of the hosts of GRBs 980703 and 010222 could
not bridge the optical and submillimetre data and provide anexplanation of the unusual
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TABLE 1. Ages and total SFRs of GRB host galaxies. All four are young starbursts.

GRB
host z

Age∗

(Gyr)
SFR

(M⊙ yr−1) References

This work† Infrared Submm Radio

980703 0.97 2.0 179± 29 <24‡, <226§ <380 180± 25 [23], [17], [18], [7]
000210 0.85 0.3 138± 17 560± 165 90± 45 [24], [7]
000418 1.12 0.14 380± 46 690± 195 330± 75 [25], [7]
010222 1.48 0.09 366± 84 <130‡ 610± 100 300± 115 [26], [17], [7]

Arp 220¶ 0.02 13.0 580 [27], [20]

∗ Defined as the time since the beginning of the galaxy evolution.
† Errors are statistical at 1σ level calculated assuming that the template fits to the data.
‡ Based only on 24µm [17]
§ All photometric datapoints taken into account [18]
¶ The Arp 220 parameters given for the comparison.

SED behaviour and a clue on dust properties because only the former was detected in
the bluest 4.5µm Spitzer passband [17, 18].

In this contribution we attempt to find reasonable full SED fits for those four GRB
host galaxies and constrain their ages and SFRs. This approach seems to be a promising
tool to constrain the dust properties and the obscured star formation rates as shown, for
example, by Priddey et al. [19]. We use a cosmological model characterized byH0 = 70
km s−1 Mpc−1, ΩΛ = 0.7 andΩM = 0.3.

SED MODELLING

In order to model the SEDs of GRB hosts we used the GRASIL1 software described by
Silva et al. [20]. It is a numerical code that calculates the spectrum of a galaxy by means
of a radiative transfer method, applied to photons producedby a stellar population, and
reprocessed by dust. The importance of this model is the factthat it is self-consistent in
that it fulfills the principle of energy conservation between the energy absorbed by dust
in the UV/optical wavelengths and the energy re-emitted in the infrared.

Figure 1 shows that submm and radio emissions of the GRB hostsdiscussed here are
underestimated even for a template corresponding to the nearby ultraluminous infrared
galaxy (ULIRG) Arp 220 [20], which is also too red in the optical compared to GRB
hosts. This indicates the need for new empirical SED models,which are presented here.

We performed SED modelling investigating a wide range of GRASIL parameters (see
Michałowski [21] for a description) We scaled the SED templates to the datapoints and
chose those which resulted in acceptably smallχ2. Then we calculated the total SFRs
using the infrared luminosity, integrating between 8 and 1000 µm (rest frame), and
applying Kennicutt [22]: SFR(M⊙ yr−1) = 4.5 ·10−44L8−1000(erg s−1).

1 http://web.pd.astro.it/granato/grasil/grasil.html

http://web.pd.astro.it/granato/grasil/grasil.html
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FIGURE 1. SEDs of GRB hosts. Solid lines: the young starburst galaxy models calculated using
GRASIL and consistent with the data. Dotted lines: Arp 220 model [from 20]. Squares: detections with
errors, in most cases, smaller than the size of the symbols. Arrows: 3σ upper limits (values marked at the
base). Hashed columns mark the wavelengths corresponding to optical/near infrared filters, mid-infrared
Spitzer filters, SCUBA submillimetre bands and the radio domain. Data are from: optical/near-infrared:
Gorosabel et al. [9, 10], Vreeswijk et al. [15], Galama et al.[16], Sokolov et al. [28]; mid-infrared: Le
Floc’h et al. [17], Castro Cerón et al. [18]; submillimetre:our reduction of archival SCUBA data, Tanvir
et al. [4]; radio: Berger et al. [6, 7], Frail et al. [8], Sagaret al. [29]



RESULTS AND DISCUSSION

For each host we were able to construct an SED that fitted the data reasonably well. The
corresponding ages of the galaxies and the SFRs are presented in Table 1 and fits are
shown in Figure 1.

All the galaxies discussed are young (ages less than 2 Gyrs).Here, the age of a galaxy
was defined as the time since the beginning of its evolution, when the stellar population
starts to build up. The bigger the difference between optical and submillimetre fluxes,
the lower the needed age was. This is because a younger galaxyhas more stars still
embedded in molecular clouds, so optical light is weaker anddust emission stronger.

The construction of the SEDs assuming low ages for the galaxies was therefore the
way to take into account both significant submillimetre/radio emission and the blue
optical colors of GRB hosts. In young galaxies there are, on one hand, lots of young, hot,
blue stars, because they have not finished their lives yet. Hence the total optical spectrum
of the galaxy is blue. On the other hand, the majority of the stars still resides in dense
molecular clouds, so a significant part of the energy is absorbed and re-emitted. This
increases the dust emission. GRBs reside in molecular clouds and it was found that gas
column densities derived fromX -ray afterglows in a sample of 8 GRBs (including GRB
980703, discussed here) were in the range corresponding to the column densities of giant
molecular clouds in the Milky Way [30]. A similar conclusionfor high-redshift GRBs
was recently drawn by Jakobsson et al. [31] by means of modelling Lyα absorption
features.

Based on SEDs fitted to optical data, Gorosabel et al. [9, 10] and Christensen et al.
[11] derived the ages of the starbursts in the hosts of GRBs 980703, 000210, 000418.
Our estimates are at most a factor of two larger. Given that wecalculated the time from
the beginning of the galaxy evolution, not the beginning of the starburst, our values agree
with those derived by these authors. Sokolov et al. [28] derived ages of both old stellar
populations and starbursts. Our estimation for GRB 980703 agrees with the age of the
old component, which is conceptually closer to our definition of the galaxy age.

Table 1 also presents the SFRs derived from the SED fits. They are all high, of
the order of several hundreds solar masses per year. Statistical 1σ errors, calculated
assuming that the model represents the data, are also given in Table 1. On top of that,
one should add the 30% uncertainty of the relation between infrared luminosities and
SFRs [22].

In Table 1 our SFR estimations are compared with those derived using three other SFR
indicators: mid-infrared, submillimetre and radio emission. Our results are consistent
with radio-derived SFRs [7]. This is because the calibration of SFR to radio flux requires
choosing only two parameters [a normalization factor and a spectral index, see 32],
which are relatively well constrained. Our values also agree with the upper limits derived
by Castro Cerón et al. [18] using the template of Arp 220. Thisapproach appears to
be more self-consistent and reliable than analysing only 24µm datapoints, which is
strongly dependent on the unknown shape of the infrared partof SED. For example,
this method applied by Le Floc’h et al. [17] gave upper limitsinconsistent with our
results. Finally, Berger et al. [7] obtained higher SFRs based on submm alone.

The mid-infrared (5µm< λ < 40µm) shape of the SEDs was not constrained due to
a lack of targeted observations or detections. Hence, all SEDs shown on Figure 1 have



different mid-infrared behaviour depending on type, mixture and sizes of dust grains
used. Any data in this region would be useful to learn more about the dust properties in
these galaxies.

This work provides strong evidence that some GRB hosts are young starbursts. We
have proposed an explanation why they have both blue opticalcolors and significant sub-
millimetre emission unlike red, dusty submillimetre galaxies [14]. The SED approach is
self-consistent and makes use of all the data available. Theresearch presented here will
be continued to build up a larger galaxy sample analysed in this way. Other properties of
the host galaxies, the robustness of the technique and a moreaccurate treatment of the
errors are discussed in Michałowski et al. [33, 34].
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