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Abstract

The analysis of stochastic loss networks has long been efeistt in computer and
communications networks and is becoming important in theasrof service and
information systems. In traditional settings, computihg tvell known Erlang formula
for blocking probability in these systems becomes inttaletefor larger resource
capacities. Using compound point processes to capturdagtc variability in the

request process, we generalize existing models in thiseinark and derive simple
asymptotic expressions for blocking probabilities. Initidd, we extend our model to
incorporate reserving resources in advance. Although pitin, our experiments show
an excellent match between derived formulas and simulaésults even for relatively

small resource capacities and relatively large valuesaifidbhg probabilities.
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1. Introduction

The problem of satisfying a stream of customer (user) requénts from resources of
finite capacities for some random processing time has loeg peesent in many areas such
as telephone and communication networks, inventory cb(reatal industry) and, recently,
workforce management. For all of these applications, syslgnamics can be described
as follows. Requests for resources arrive according to suong process in time. If there
are enough available (non-engaged) resources to satafyréfguirements at the moment of
arrival, required resources are committed for some randomthat represents their processing
duration (holding time) after which they are released amtblree available to accommodate
future requests. In the case of insufficient amount of alblEleesources at the moment of its
arrival, a request is lost. The previously described syssensually referred to aslass net-
work, and one of the commonly analyzed performance metrics islttking probability, i.e.,
probability that an incoming request is lost due to insudfitiamount of available resources to

satisfy its requirements.

Loss networks with fixed resource requirements have beensiviely analyzed in the con-
text of circuit-switched networks. Let requests requisoreces ofS’ < oo different types for
some random generally distributed processing time witkefimiean. Furthermore, assume that
requests belong td/ different classes characterized by their resource reqpaings, processing
durations, arrival rates. Then, assuming that requestsffefeht types arrive according to
mutually independent Poisson processes, by PASTA profedy), blocking probability;
of an incoming request of type < [ < M is equal to the sum of probabilities of blocking

states fol type request and is computed using the generalized Erlangifa (e.g., see [15]),
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ie.,
By =1-G(C)"'G(C - Ae)),
where
M o
_ l
o= > I o
nesS(C)l=1
and
S(C):={nezl:An<C}, (1)
wheren = (nq,...,ny) andC = (C4,...,Ck). In the previous expressiods;, 1 < k <

K, is capacity of resource typg A = [Ay] is aK x M matrix, whereAy; represents the
amount of resources of type< k < K required by a request of type< | < M, andp,,
1 <1 < M, represent traffic intensities éftype requests (computed as= \;/u;, where
A, is the arrival rate of type requests antl/y; is the corresponding mean processing time).
Furthermoreg, is a M dimensional vector with th&h component equal to one and the rest
equal to zero. In the case of a single resource type and a&siegliest class with exponentially
distributed processing times, blocking probability wastfexpressed by Erlang in 1917 (see
[7]). Later on, it was shown that the Erlang formula holdsemaore general assumptions on
call holding time distributions (see [20]) and in the casdofsson arrivals with retrials (see
[4]). Itis noteworthy to point out the difference betweee trlang loss network and a queue
with finite buffer. The two systems follow very different dymics resulting in a different
behavior and, therefore, their analysis (e.g., see [12]2hd

It is easy to see that the cardinality of the state sgH€®) in (1) increases exponentially in
the norm of vectoC, i.e.,|C| = Zfil |C;]. Itis shown in [18] that the calculation @#(C)

is a fP-complete problem, which belongs to a class of problemsahatt least as hard as
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N P-complete problems. To this end, many approximation tesples for evaluating blocking
probabilities in large loss networks have been proposede @rthe most popular ones is
known as Erlang fixed point method. The main idea of this agipration is to assume that
deficiencies of different resource types happen indepehyddrhe application of the Erlang
fixed point method can be traced back as early as 50’s (e@[288). In [14], Kelly studied
the performance of the Erlang fixed point method and estaddists relation to a nonlinear
optimization problem. He also proved uniqueness of the fp@dt and its asymptotic exact-
ness when resource capacities and arrival rates grow vétbeatime rate (see [15]). Some of the
related practical aspects of Kelly’'s analysis were ingedtid in [22]. The Erlang fixed point
method is further refined in [25]. There are also many othpes$yof approximations such as
recursive algorithm in [13], or unified approach based ogdateviations for all (light, critical
and heavy) traffic regimes in [8]. Overall, except from theibds in [8], these methods make
use of the structural properties of the Erlang formula amacle, largely rely on the Poisson
assumption for call arrivals. Another restriction of theoad models is that the amount of
resource requirements are assumed to be fixed; in fact, gssnaed that they ar@, 1)
parameters in most of the cases considered. Meanwhile, esgnsmany applications that
resource requirements could be highly variable and thetridutions possibly long-tailed; for
specific examples, see [10], [11] and [16]. Furthermore amecently, loss networks models
have been applied in the context of workforce managemeriicapipns (see [19]), where

requests behavior is even more volatile and extreme.

In this paper, we analyze loss networks that have renewahtrand random resource
requirements. In particular, we assume that request &rfighow a compound renewal pro-
cess, with the corresponding holding times being arbliyralistributed with finite mean, in-

dependent of each other and arrival points. In order to cople variability in resource
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requirements, we model them as subexponential randombi@sia\We obtain a simple and
explicit asymptotic expressions for blocking probalsltivhen capacities of resources grow.
For the case of a single resource loss network, we show thataétionary blocking probability
is approximately equal to the tail of the resource requimgnaistribution. In addition, we
extend our results to allow advance reservations of ressur€&inally, we investigate gen-
eral (multiple resources and arbitrary topology) loss imeks and show that the asymptotic
blocking probability behaves as the tail of the heaviedédaresource requirement. Although
asymptotic, our numerical experiments show an excellectiracy of the derived formulas
even for relatively small capacities and relatively largéues of blocking probabilities, sug-

gesting wide applicability of the obtained results.

Our paper is organized as follows. In Section 2, we introdugemodel in the context of a
single resource type. Then, in Subsection 2.1, we state i@ve pur main result in Theorem
1, while in Subsection 2.2, we extend it to the case of adveesrrvations. Further extension
to the analysis of the stationary blocking probability i ttase of general loss networks is
stated and proved in Theorem 2 of Section 3. Our simulatigrements for some specific
cases of arrival processes and resource requirementsesenped in Section 4. Finally, we
conclude our paper in Section 5. A discussion and the proeiistence of the stationary

blocking probability is presented in the Appendix.

2. Systems with one resource type

Let requests for resources from a common resource pool aefitgyd’ < oo arrive at time
points{r,, —oc0 < n < oo} that represent a renewal process with fate. A < oo, i.e.,

E[r, — Tn—1] = 1/A. At each pointr,,, B,, amount of resources is requested. If available
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capacity is less tham,,, this request is rejected (blocked); otherwise, it is ateg@andB,,
amount of resources will be occupied for the length of tipeSequence$B,, } and{6,,} of
i.i.d. random variables (r.v.) are assumed to be mutuatlgfrendent and independent of the
arrival points{r, }; furthermoreké,, < oo for all n. Let B andf denote random variables that
represen{ B, }, {0}, i.e.,P[B > z] = P[B,, > z|,P[# > y] = P[#,, > y], for anyn € Z,
x> 0andy > 0.

In this paper, we assume thBtis a subexponential random variable, defined as follows

(e.g., see [9)]):

Definition 1. Let {X;} be a sequence of positive i.i.d. random variables with idistion
function F such thatF(z) < 1 for all z > 0. Denote byF(z) = 1 — F(z), « > 1, the talil
of F and byF™ =1 — F™*(z) = P[X; + --- + X,, > z] the tail of the n-fold convolution
of F. Fis subexponential distribution function, denotedrass S, if one of the following

equivalent conditions holds:

o lim, .. F;(S”) = n for some (alljn > 2,
o lim, o P[ﬂil(}.{ﬁ()?;ﬂw} = 1 for some (allyn > 2.

For a brief introduction to subexponential distributiohs treader is referred to a recent
survey [9]. This class of distributions is fairly large andilknown examples include regularly
varying (in particular Pareto), some Weibull, log-normatdalmost” exponential distribu-
tions.

Next, letAV{“ be the set of indices < n of resource requirements that arrive priofrtg
are accepted, and as#ll activeby timer,,. Furthermore, IeN,(ZC) = |N,§C)| be a cardinality
of set\V{“). Thus, the total amount of resourc@éc) that an arrival at time;, finds engaged

can be expressed ﬁc) = Zier) B;.
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Our goal in this paper is to estimate the stationary blockirapability, i.e.,

PR + B, > C], (@)

forlargeC'. 1t can be shown that for the model introduced above thest®aiunique stationary
distribution forQSLC) and, therefore, the quantity in (2) is well defined. The probthis
result is based on constructing a Markov chain with gendedé space, of whicb)ﬁlc) is a
functional. Then, by using a discrete version of Theorenoiff20], we show that there exists
a unique stationary distribution for the constructed Mar&oain (and, thereforé}%c)) which

is ergodic. Since this proof is not the main focus of this pawe present it in the Appendix.

In this paper we use the following standard notation. Fortamyreal functions:(¢) and

b(t) and fixedty € RU {oo}, leta(t) ~ b(t) ast — to denoteim, ., [a(t)/b(t)] = 1.

2.1. Blocking probability in a system with one resource type

In this section we estimate the stationary blocking prolitgip| %C) + B, > C]inaloss

network with a single resource pool when its capa€ltgrows large.

Theorem 1. Let {B,,, —00 < n < oo} be a sequence of subexponential random variables

with finite mean. Then, the stationary blocking probab#igfisfies

P[Q'®) + B, > C] ~P[B > C] as C — . 3)

Proof: First, observe that a request will be lost if it requires mibr@n the total capacity’

and, therefore,

PR + B, > C] > P[B > C] forall C > 0. 4)
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In order to prove the asymptotic upper bound]]’t@@%c) + B,, > C], we start by condi-

tioning on the size oB,, as

P[Q®) + B, > C] = P[Q'®) + B, > C, B, > C] + P[Q'“) + B, > C, B, < (]

A1+ I (5)

Note thatl; is upper bounded bP[B > C]. Next, we prove thafs = o(P[B > C]) as
C — 0. In view of the definition of\;\”’ from above,

IL=P| Y Bi+B,>CB,<C|. (6)

ie N

Observe that foi € Nrgc), B;s are mutually dependent which makes direct analysis of the
expression in (6) complex. For that reason, we sample tiggnatiprocess of arrivals at points
7; at which the requested amount of resourBg$s smaller or equal t@' and observe another
system of unlimited capacity with the sampled arrivals. Mgt; be a set of request indices

i < n that belong to the sampled process and are still active atrim.e.,
Ns,n = {Z < 7’L|BZ < C, 91' > Ty — Ti}.

Note that the sampled process is renewal as well with x&&B < C]|/P[B > (] and
that resource requirements;, i € N, ,, are mutually independent. Furthermore, since
J\/ﬁc) C N, we can upper bound, in (6) by the probability that the total amount of
required resources in a new system exceeds capagite.,
L<P| Y Bi+B,>CB,<C|. (7)
i€Ns n
Now, in view of the results derived in [6] for every integeand i.i.d. subexponential random

variablesBy, ..., B,, P[>." ; B; > C] ~ Pmax(B;,Bs,...,B,) > C] asC — oo,
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implying asymptotic relation

P ZBi>C,Bi§C’forevery1§i§n =o(P[B > C]) as C — oo.
=1

In order to show that can be replaced b¥; ,, in the above inequality, we need to integrate it

with respect to the density d¥ ,,, i.e.,

P Z B; > C,B; < Cforeveryi € N, U{n}

iENs,nU{n}
%) k+1
= Z]P’[Nsm = kP ZBi >C,B; <Cforeveryi=1,....,k+1]|.
k=0 =1

Note that on the left hand side of the previous equation index take negative values. Next,
due to the lemma stated by Kesten (see Leninp149 of [3]), for anye > 0 there exists a

positive constani (¢) such that

P[>, B; > C,B; < Cforeveryl < i < k]
P[B > C]

gMZiJﬂ>q<K@m+qh

PB>C] —

for any integerk and all capacity value§’ < oco. Then, since the probability generating
functionEz™= is finite for anyz € C (see Theorem 1 in [21] and Theorem 5 in [17] for
the detailed proof), we havg ;~, P[N,.» = k|(1 + €)¥ < co. Therefore, by applying the

dominated convergence theorem, we conclude that

P [ZieNs _Bi+ B, >C,B; < Cforeveryi € N, U {n}}
lim :

C—o0 P[B > C]

o & PN, = K]P [Zf;l B; > C,B; < Cforeveryl <i<k+ 1}
:ﬁﬁho P[B > C]
=0, 8

which in conjunction with (5) and (4), completes the prooftag theorem. O
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Remark: It may appear surprising that the performance of the lossaré&tfrom above does
not depend on engagement durations, as long as they haeati@én. In addition, the result is
quite general and provides the asymptotic result for a lésgbexponential) class of possible

resource requirement distributions.

2.2. Advance reservations

Using the result of Theorem 1 and observations from the pusviemark, we extend the
loss networks model to allow requests to become effectitk some delay with respect to
the moments of their arrivals. In particular, a request #raves at timer,, and requires3,,
amount of resources for some random tifyestarting from the moment, + D,, is accepted if
previously admitted resource requirements allow thagwtise, it is rejected. In other words,
a request arriving at, is lost if at any moment of time in intervét,, + D,,, 7, + Dy, + 60,,)
the total amount of active requirements requested priat, texceedC — B,,. First, note
that B,, > C implies the loss ofith request and, therefore, it is straightforward to conelud
that the blocking probability in the system with advancereations can be lower bounded by

P[B > C].

Next, we discuss the idea behind proving the upper bound emlicking probabilities.
By applying sample path arguments one can show that, at anyemiof time, the amount of
active resources in the previously described system witarack reservations can be bounded
from above by the amount of active resources in anothermsysteinlimited capacity, without
advance reservations, with resource holding tifgs—+ 6,, for everyn, and with requests
for resources being sampled from the original procgBs} whenever the corresponding

requirements are less or equakto Equivalently, the blocking probability in the system with
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advance reservations can be bounded from above by

P Z B;+ B, >C|,
ieN{S) (0+D)

WhereNs(fl) (0 + D) is a set of request indices < n that are active at time,,, whose
requirements are less or equal@and holding times last throughout the interyal, 7; +
D; + 6;), assuming that there is an unlimited resource capacity.

Finally, by using the previous discussion, the propertfe§®, }, {6,,} and{r,} as intro-
duced at the beginning of this section, assuming that resentimes{ D, }, ED,, < oo, are
i.i.d. and independent froiB,, }, {6,,} and{r,}, and applying the identical arguments as in

the proof of Theorem 1, we obtain the following result:

Corollary 1. The blocking probability in the system with advance resiona approaches

P[B > C]asC — oc.

3. Acquiring resources of different types (loss networks cse)

Assume that there atE € N resource types with capaciti€g, . . ., Cx. Again, requests
arrive at{7,, —oo < n < oo}, which represent a renewal process with fate A\ = 1/E[r; —
79) < oo. There areM < oo request types and, given an arrival, the request is of type
1 <1 < M, with probabilityp;, p1 + --- + pas = 1, independent fron{,,}. We will
use random variableg, € {1,2,..., M} to denote the type of the request arrivingrat
Furthermore, IeIB,(LJ"’l), ceey B,(LJ"’K) represent amounts of required resources of each type
at timer,, and letol), B0 < o, be the corresponding random duration. We assume
that sequence@(B,(;]"’l), ce B,(;]"’K))}, {953")} are mutually independent and independent

from {7,,}. Given the even{.J,, = [}, resource requirement®"”, 1 < i < K, are mutually
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independent nonnegative random variables drawn fromiloligions £; ;, 1 < i < K if a

request does not require resources of typleenB,(f’i) =0as.,—o0 < n < oo. Onlyif
there is enough capacity available, the request arrivirigreg 7,, will be accepted and all of
the engaged resources will be occupied for the duratiofi;6f; otherwise, the request is

rejected.

Our goal is to estimate the blocking probability in a systeesatibed above. Define

511), ceey QSIK) to be amounts of resources of each type that a request ar@titime 7,
finds engaged. Note thé}Sf), 1 < i < K, are mutually dependent and, as pointed out in the
Introduction, it is hard to compute the blocking probakilitf this system explicitly. Using
analogous arguments as in the case of a single resourcesggthe Appendix), one can show
that the stationary distribution «iﬁf), 1 < i < K, exists. Probability that the request arriving

at timer,, is blocked equals to

P[UlgigK{Qg) + BSLJ"’i) > Cy}l, 9

and our goal again is to estimate its valuewds; C; grows large.

Asymptotic estimates derived in this section hold underftfiewing assumption:

Assumptions: For each resource tyfde< i < K, let£; andH; be two disjoint sets of request

types (£; U H;| = M) satisfying:

e Assume that there exists at least one resource type thatéssex by subexponentially

distributed resource requirements, which imp|igs| > 0 for somel < i < K;;

e For everyl € H; # (, there exists a subexponential distributibn € S such that

Fii(z) ~ ¢ F;(x) asz — oo with ¢;; > 0;
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e There exists a subexponential random varidble S that satisfies

P[L > 2] > max P[BY") > z|J, =] forallz >0,
1<i<K,leL;

andP[L > z] = o(F;(z)) asz — oo for alli € {j|H; # 0}.

Remark: In the preceding assumptions, we require the resourcerezgant distributions to
be asymptotically comparable. For edck i < K, H; contains tail dominant subexponential
distributions that are asymptotically proportional to leather. On the other hand, the only
assumption imposed on the distributionsdpn 1 < ¢ < K, is that there is a subexponential
tail that asymptotically dominates them. This asymptatit comparability is necessary for
our main result to hold. In particular, these conditionsextensively used in (16) - (21) of the
proof of Theorem 2.

Next, we prove the following lemma that investigates suniomatof random variables with

different tail distributions.

Lemma 1. Suppose thak;,1 < i < n, are independent random variables with correspond-
ing tail distributionsF;(z), 1 < i < n. If there existsF’ € S such thatF;(z) ~ ¢;F(z) as

r — oo Withe; > 0,1 < i < n, andZ?zl ¢; > 0, then the following asymptotic relation
holds:

PlZXi>$,XiS$,1SiSN‘|—O(F(SC)) as x — oo. (20)

i=1

Proof: Note that

ZXi > I,U?:l{Xi > :Z?} .

=1

+P

]P’lgn:Xi>x] —]P’[Xn:Xi>x,Xi§x,1§i§n

i=1 i=1

Then, the previous expression_, {X; > =z} C {3}, X; > z}, independence ok;s, as

well as Lemmas 4.2 and 4.5 of [1], imply (10). O
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First, we estimate the asymptotic lower bound for the exgioesn (9). By using our model

assumptions{B,(;]"’i) > Ci} C {ng) + B > C;} and independence, we obtain

K
PlUicici{QF) + B > Ci}] 2 Pluicick {BY™) > CY ~ Y Y miFia(C),
1=11eH,;
(11)

asmin; C; — oo.

Next, we estimate the asymptotic upper bound for the exjpnreds (9). Using the union

bound yields

K
P[UlgigK{QS) + Bg{]""i) > CZ}] < ZP[QS) + B,(l‘]""i) > Ci]. (12)
=1

Similarly as in (7) of Theorem 1, for each resouicg i < K,

PO+ BY >l <P | Y B4 Y S B 4B s o
lel; jGNg(,l;Lci) leH,; jGNs(,L%LCi)
(13)
Wherej\/s(f;lc”, 1 <1 < M, are sets of indiceg < n defined as

NEED 2 (5 <n|g; =1, B8 < 0;,60 > 1, — 73}

s,m

In the previous expressions we bounded the amount of aidcasources that are active
at time 7,, by the corresponding quantity in another system of infinapacity where the
corresponding request process is sampled from the ori@ﬁ%ﬂ"’i)}, 1 <i < K, whenever

the corresponding requirements are less than or equgltb< i < K.

In the rest of the proof, we derive an asymptotic estimateéHferexpression in (13). After

conditioning on{N§,17;Ci) =n,..., S%’Ci) =num} (Nﬁfhci) = |N§f;lci)|, 1 <1< M), we
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obtain

P[QY + BY9 > ¢)]

< Z PIN{LED) = ny, . NOECD =y

0<ny,...,np <00

ny ny
<B| Y B LY B+ B > LB < Cut< < <i< M),
leH; j=1 leL; j=1

(14)
WhereB((;’)i) 4 B,(f’i), k e Ns(,l;lci), j =1,...,n are independent replicas of requests in
s(f;lci). Next, after conditioning oq.J,, = m}, m = 1,..., M, and then o™ being
smaller or larger than';, we can further upper bound the conditional blocking praligitin
(14) as

ny ny
PSS DB+ Y B 4 B > 0 B <t << m<i< M <
leH; j=1 leL; j=1

M ny ng
S B | XSS 33 B 4 B > 0 B <Gt <5< w1 <1< M B <G
m=1

leH; j=1 leL; j=1
M .
+ Y puP[BIY > C. (15)
m=1

Thus, the probabilities in the first term on the right han@ ifithe previous expression can be
expressed in the form
d (1,9) u (1,9) (1,9)
2 5T 2 . !/
P ZZB(j) +ZZB(j) >0y, B <Cp1<j<mj1<I<M|, (16)
leH; j=1 leL; j=1

wheren; = n; for I # m andn) = n; + 1fori =m.

Next, in order to estimate the asymptotic upper bound of énen tin (16), Assumptions
enable us to distinguish between two casesH(i)= ) or >*,,, n; = 0, and (i) H; # () and

ZlEHi TL; > 0.
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():1f H;,=0or > 1en, M = 0, we have that probability in (15) can be upper bounded as

PSS al ol <p | T3 i a,

lel; j=1 lel; j=1

where in the inequality above we used Assumptions and iutredLElj’;) to be independent

r.v.s equal in distribution td.. Hence, sincégz’)i) are subexponential, we obtain

- [Zlea Z B lz) > C}

i < 7. 17
Ci—00 [L > Cz] - lezL‘:» i (17)

(i) If H; #0 and) ;4 7 > 0, using Assumptions and Lemma 1, we derive the following
asymptotic upper bound
S 3B+ S B> 0 B <Gl <5 <al 1 1S M| =o€
leH; j=1 lel; j=1
(18)
asC; — oo.

Thus, in (16)-(18) we obtained upper bounds and their asytiepestimates for the con-
ditional blocking probabilities in the first term of (15) thiaold for any finite nonnegative
integersny, ..., na. Thus, in view of (14), in order to estimate an asymptoticardmund of
]P’[QS) + B > C;], we need to integrate probabilities in (16) with respect ¢osities
of rv.s NS;F?‘), I = 1,...,M. In this regard, note that in the case whéfge # 0, by

Assumptions, the term in (16) can be upper bounded as

ZZB“>+ZZB<W>Q, Bl <Cii1<j<n,1<I<M

leH; j=1 leL; j=1
n; n;
(1,9) (1,3) _
<SP D BG + 2> LG > Cif s (19)
leH; j=1 leL; j=1

where, as beforeL(l %) are independent r.v.s equal in distributionfto Furthermore, since

P[L > 2] = o(F;(z)) as® — oo, there exists a large enough finite integérsuch that
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P[L > z] < HF;(x) forall z > 0. Therefore, for anyg > 0, one can write

H

> BY > x] , (20)

r=1

P[L > 2] < HF,(z) =P [Ulgrgﬂ{éﬁ“ > x}] <P

Whereéﬁi), 1 < r < H, are independent r.v.s having cumulative distributioncfion F;.
Now, in view of (20), each of random variablé%’)i) in (19) can be stochastically upper
bounded by a random variable that is equal in distributiop{d , B Thus, if we introduce

Y;, i > 1, to be independentr.v.s equal in distributionE@)f':1 Bﬁi), we obtain

’
Zzeﬁi ny

no "o "o
SO SETES AR ELIDUD oL D o AN

leH; j=1 lel; j=1 leH; j=1

which in conjunction with point (b) of Lemma 4.2 in [1] imp#ehat for any > 0 there exist

a finite constanf(, such that

"2 nf "2 Zleﬂi ";
(1,3) (L,9) . (L,9) : .
PIY X B +2 D Ly > G| <P|\D> > By + 2 Y > G
i=

leH,; j=1 leL; j=1 leH; j=1

< K (1+e)>ew " Riee M E (), (21)

for anyC; < co. Similarly, in cases wherg/; = (), we could apply the stochastic dominance
B((;.’)i) % Lg;) l € L;, WhereLg.’;) are, as before, independent subexponential random
variables equal in distribution té. Then, by Kesten’s lemma (see Lemma 7 on page 149
of [3]), the analogous bound to the one in (21) follows.

Finally, since (21) bounds uniformly probabilities in (16} all C; < oo andnj, 1 <[ <
M, in conjunction with (15), (14)N§f;10i) < N> a.s. and existence @V for all
z € C,1 <1 < M, (see Theorem 1 in [21] and Theorem 5 in [17]), one can apmy th

dominated convergence theorem and conclude

e Pl W4+ B > ¢
Cimoo Y ieqy, DiF1i(Ch)

Next, by adding asymptotic estimates forialk 7 < K, in conjunction with (11), we complete

< 1[H; # 0.

the proof of the following result:
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Theorem 2. For the request model introduced in this section, under thred@tions imposed
by Assumptions, the stationary blocking probability fongel loss networks satisfies
K

P[UlgigK{QS) + BSLJ"’i) > CZ}] ~ Z Z plcl,iFi(Ci) as Injn C; — oo.
1=11eH;

4. Numerical examples

In this section, with two simulation experiments, we dent@is the accuracy of our
asymptotic formulas, proved in Theorems 1 and 2. Our goab ishbw that even though
our results are asymptotic, the derived estimates matcerempnts with high accuracy even

for systems with finite support demand distributions and enatly large capacities.

In each experiment, in order for the system to reach statiignave let the firstl0® arrivals
to be a warm-up time. By repeating many experiments, we gbdkat longer warm-up times
do not lead to improved results. Then, we count the numbelozkbd requests among next
10° arrivals. In both of the experiments below, measurememtscanducted for capacities
C =500+ 1004,0 < j <9, where the starting value @f = 500 is set to be slightly larger
than the effective systems load[d,,]E[B,]. Simulation results are presented by symbol “0”
in Figures 1 and 2, while our approximations, estimatesiobtbhin Theorems 1 and 2, are the
solid lines on the same figures. Note that in order to empbalsedifference and to observe a
range of blocking probabilities we are trying to estimate, prvesent bast) logarithm of the

obtained values.

Example 1Consider the case of a single resource type of capétityet requests for resources
arrive at Poisson time points with rafe = 1. In addition, we assume that engagement
durations are exponentially distributed with melgh. = 1. Next, let request requirements

B,, be drawn from a finite support distribution, whé?gB,, = i| = 3—% 1 <4 <1999, and
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P[B,, = 2000] = 1—-P[B,, < 2000] (power law distribution). Effective load in this example is
ME[0,)E[B,] =~ 485.8. Experimental results are presented in Figure 1. Even thawgstart
measuring rejections at capacities that are slightly latfign the mean requirement value, our
approximationP[B,, > (] is very close to experimental results. In particular, thatiee
approximation error is less thar for C = 500, and for capacity values larger or equal to

C = 1400 this error is less tha®.3%.

-0.605

approximation formula

-o61p O simulation

-0.615

-0.62f o

Ioglo[loss probability]

-0.625

-0.63 o

Q

~0.635 . . . . . . . .
500 600 700 800 900 1000 1100 1200 1300 1400

resource capacity C

FIGURE 1: lllustration for Example 1

Example 2 In this example, we consider the case of two resource and éguoest types.
Furthermore, we assume that resource capacities are tlesanC;, = Cs. The frequencies

of requests of types 1 and 2 gre = 0.3 andp2 = 0.7 respectively. Assume that the arrival
points are separated by a fixed, unit length of time, 1,e-; 7,,_1 = 1 for all n. Typel request
durations satisfﬁz(l) ~ exp(4) and type 2 request holding times are drawn from the uniform
distribution onl0, 40], i.e., 9§2) ~ Unif(]0,40]). Resource requirements corresponding to
engagements of type 1 are distributedPd®8'? = 1] = 0.8, P[BY! = i] = 0.15¢~ V3,

2 < i <1999 andP[B"! = 2000] = 1 — P[B! < 2000] for the type 1 resources, and
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P[B2? = 50] = 1 for type 2 resources. Requests of type 2 require resourcesdicg to
P[B*! = i] = geom'~1(1 — geom), 1 < i < 1999, P[B*! = 2000] = 1 — P[B*! < 2000],
wheregeom = 0.6 for resources of type 1, ar{B?? = ] = 32,1 < i < 1999, P[B*? =
2000] = 1 — P[B%2 < 2000] for type 2 resources. Our asymptotic results suggest tieat th
blocking probability should be characterized by the hestiziled demand distributions. The
results of this experiment are presented in Figure 2. Asamptievious case, we obtain a very

accurate agreement between our approximation and theatiomul The relative approximation

error in this case does not exce®d and is getting smaller as resource capacities grow.

-0.71

-0.72 asymptotic formula

O simulation
-0.73r

-0.74

-0.75

<29
-0.76 2%

difference

Iog10 [loss probability]
O

-0.77r

-0.78

~0.79 . . . . . . . .
500 600 700 800 900 1000 1100 1200 1300 1400
resource capacity C

FIGURE 2: lllustration for Example 2

Remark: (i) We would like to point out that the accuracy of experimanesults directly
depends on the approximation errors (7) and (18), depeditize simulated scenarios. These
errors highly depend on the tail properties of the resoueggirements distributions. More
specifically, under fairly general assumptions, the heavie dominant tail of the resource
requirement distribution is, the smaller would be the reéedpproximation error. For detailed

explanations, a reader is referred to Section 1.3.2 of [3). Note that our main results
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estimate the stationary blocking probability and, as we memted earlier, are indifferent
to distributional properties of holding times. For thatsen, as long as one can claim that
the measurements are conducted in stationarity, the éracsishould not affect experimental

results.

5. Concluding remarks

In this paper, we consider loss networks with reusable messuand finite resource ca-
pacities and estimate the probability that a request istegjedue to insufficient amount of
resources at points of their arrivals. Assuming a renewatgss of request arrivals, subex-
ponential resource requirements and generally distribaitéivity durations, we show that the
asymptotic blocking probability for a wide class of analgzystems can be fully estimated
using resource requirement distribution, independemhfother system’s properties. In par-
ticular, we show that the blocking probability behaves a&sabymptotically dominant tail of

the resource requirement distribution.

The model we study can be applied to a wide range of applitstidHistorically, loss
networks (in particular, Erlang loss networks) are wideded for modeling communication
networks. Later, through the development of new servicpBagiions such as workforce man-
agement with similar modeling properties, the importancaczurately estimating blocking
probabilities of general loss networks has become sigmificln this regard, we investigate
loss networks with various request types and possibly hightiable random amounts of
required resources. In addition, we research the podgibilincorporating random advance
reservations for incoming requests. These results shaulof great interest to an emerging

research community. Although our results are intended m&m qualitative purposes, nu-
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merical examples demonstrate an excellent match betwedreddormulas and simulated

systems performance, hence strongly suggesting theiicatiph.

Appendix

In this section we prove the existence of the stationarykitarprobabilities in (2). Using
the model description from Section 2, we observe the systetheamoments of request
arrivals. Then, we define a discrete time prock¥ss2 (N,(LC),Bi,EZ-,z' =1,2,--- ,Néi)),
where E;s represent times that elapsed in processing requests isystem by timer,;
furthermore,NéSl) is the number of active requests at the momenttbfarrival. Note that
{X,}n>0 is a discrete time Markov chain with state spateét Ny x (o, X {o, Wherel,,
denotes the Banach space of the infinite sequence of realeraraguipped with the supreme
norm; letw, € €2 denote the state with no active requests. We start obsetivéngystem at the
momentr, of Oth arrival and denote the initial state B§y = (N°, BY, E?,i = 1,...,N?)
drawn from some arbitrary distributioRy, whereEBY < oo, Ef? < co. Next, defineF to
be the Borel field of2, and letP, (zo, A), o € Q, A € F, represent a transition probability
of the Markov chainX,, into setA in timen, starting from state,. Let P,, be the probability

distribution of X,,.

Now, in order to prove the existence of a unique stationasyribution for the Markov
chain{X,}, we use a discrete version of Theorem 1 in [20], which we stet for reasons

of completeness.

Theorem: A Markov chain homogeneous in time has a unique stationatyilolition which
is ergodic if, for anye > 0, there exists a measurable seta probability distribution® in €2,

andn; >,k > 0, K > 0 such that
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e kR(A) < P,,(z, A) for all pointsz € S and measurable sets C S; for any initial
distribution P, there exists, such that for any, > ny
e P(S)>1—k¢,

e P,(A) < KR(A) + € for all measurable setd C S.

Proof: The proof follows identical arguments as in [20] transldted discrete setting.

Next, we need to show that Theorem 1 holds for the processtigated in this paper;
in particular, we will consider a common resource pool caBee proof follows the similar

reasoning as in Theorems 4 and 5 of [20].

Define setS(¢, 3, 0) as
S, 8,8) £ (N§7) < 0,0 < Bi <0< B < 6,0 € N5}

for some positive finite constangs 3, .

Now, we show that for any > 0, there existsS(y, 5,d) C 2 such that for any initial

distribution P, there existg: such that for alh > ny
Note that

Pu(S(1,8,0)) < PlU, o {6 > 83, Ngo) < 6]+ PIU, oo {Bi > B}, Noy) < 0]+ PINGS,) > ]

< YP[6; > 6] + YP(B; > B + P[NG) + NG, > ¢, (23)
whereN,g,Cn) represents the number of active requests,ahat originated fronn arrivals at

To, - - Tn—1, @and the rest of active requestsrat N&n = Néi) — écn) are those that were
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active at the initial point, and are still processed at the momenttif arrival. Next, since

1=1 2
<P |:N7(IOO) > %:| =+ i ]P’[NO = m]]P) [il[@? > (1 — 61)7’LE[T1 — To]] > %
m=0 =1
+ P, — 10 < (1 — e1)nE[r — 70]], (24)

where in the previous inequaliti@s< ¢; < 1 is an arbitrary constant and we usbfé[m) >
Né%) a.s., whereV\>® is defined as in the proof of Theorem 1.
Now, we prove that there exists= 1, large enough such that (24) is boundedpy. By

definition ofofo) in Section 2 and Little’s formuIdEN,(fo) < oo and, therefore,

lim P [N("O) > 9} -0, (25)
P—00 2

uniformly for alln > 0. Next, note that [¢? > (1 —e;)nE[r1 —7o]] < 1[69 > (1 —€1)E[ry —

70]] a.s., and that for any fixeah,

P Xm:l[t?-o > (1 —e1)nE[r — 10]] > 4 <P il[@-o > (1 —e)E[n — 10]] > i 10 asy — o0
=1 ' 2 a =1 ' 2 ’

which by the monotone convergence theorem implies thatebersl term in (24) satisfies

wli_r)lgo > PN = m]P [Z 1169 > (1 — e1)nE[r — 70]] > %1 =0, (26)
m=0 i=1

uniformly for all n» > 0. Finally, by the Weak Law of Large Numbers, for allarge enough,
Pl — 70 < (1 — €1)nE[ry — 10]] < €/9. (27)

Thus, the previous conclusion in conjunction with (26),)(2Bd (24) implies that for an
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arbitrary0 < € < 1, there existyy < oo andiyy < oo large enough such that for all > ng

00) - Yo € - o o
P [N( ) > 7] <5 and mz::OIP’[NO = m|P ;ueg > (1—e)nE[rn —7)] > = | <

Now, sinceEB; < oo, Ef; < oo, there exist3y, dg, such that

€ €
P[B; > < — and P[f; > 6y < —.
Bi> ol = 55, 0=l = 55,

Thus, the previous expressions in conjunction with (28§) &nhd (23) imply that for all large
enoughn > ng inequality (22) holds for a chosen s&{y, S0, do)-
Next, we show that there exists > 0 andk > 0 such that for all points € S(¢o, B0, do)

and measurable sets C S(vy, 5o, do), the following inequality holds
P, (z,A) > kR(A). (29)

Let Fy(u) denote a cumulative distribution function of a random dora#, i.e., P[0 < u].
Furthermore, select a small positive numpesuch that for some chosek > 6y, Fp(A) —

Fy(80) = n > 0. Next, for anyn,
Py, (z,A) = Pi(x,wo) P, (wo, A), (30)
whereny =ny — 1. Letz = (m, b1,...,bm,€1,...,em) € S(¥o, o, do). Then,
Pi(z,wo) > Pl — 10 > A, all m requests depart ifrg, 71 )]

. B Fo(u+e;) —F@(ei) "

where F,, (u) represents cumulative inter arrival distribution of a neakprocessr,}, i.e.,

F,(u) =P[r; — 10 < ul]. Now, by applying lower bound

Fyp(u+e;) — Fo(e;) B
= Fo(er) > Fo(A) = Fy(do) = n
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in (31) we obtain
Py (z,w0) > n™Plr — 1 > A] > n¥o(1 — F,(A)). (32)
Next, we derive a lower bound fd,,, (wg, 4) for somen, large enough such that
th—m>ﬂ21—§ (33)

Note that the condition imposed oy in (33) is possible due to the Weak Law of Large

Numbers, since for any> 0 and alln, large enough witldy < (1 — €)E[r,,, — 7o),

P[Tng —T0 > 50] > ]P)[Tfm —T0 > (1 - E)E[Tnz - TO]] >1-

)

N

bi,...,b..,) € Awhere, without loss of generality, we

»Ym/

Next, pick anyz’ = (m’, ¢/, ...

s Eons
assume that] > e > ... > e/ ,. Definex’ +da’ £ (m/, e} +de,... e, +del , b} +

dby, ... b, +db. ) wherede},--- ,del ., dby,--- ,dbl,, areinfinitesimal elements. Then,
the transition probability into stater’, 2’ + da’) starting fromw, can be bounded by the
probability of the event that there are exactly arrivals prior tor,,, whose arrival times are

whose resource requirements arébin by +db ), - - -, (b),,,, 0., +

/9 Ym

determined by, - - -

’ m/'

db.,), and where the rest of, — m’ arrivals are rejected since their requirements exceed

capacityC. Therefore,

7770

Py (wo, (a2 +da')) > { T Bl6; > ¢} JPIB; € (8,0, +db})] 3 P[By > )=
j=1

i2—1 ng—1

U ZYG — ey, el — ey +deh), ZYG ey ey +del))

Jj=i1 J=lpt

P[B; > C]™ HP9>e<B€WU+%W

7770

i2—1 no—1

U ZYG —eh, €] — ey + del), ZYE ey +den) |

Jj=t1 J=lm,
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wherel £ {0 <1 <ig < -+ < iy < ng— 1} andy; are i.i.d. random variables equal

in distribution to inter-arrival times of the renewal presér, }, i.e.,Y; = Tj+1 — Tj. NOw

denote
r(m’, ey, ... el by, b)) = H [0; > e ]P[B; € (b}, + db})]
j=1
i2—1 ng—1
XPU ZYG el — ey, el — e +de)), ZYG e e +del ) ,
I Jj=u1 J=1p,r
(34)
and define probability distribution
A)év/ T(mlaellv"'v mvblla"'v ;n’)v (35)
/€A
whereV is a normalization constant. Note thiatA) is well-defined since
Z/ / r(m’ ey, ... e b, b))
m/—=qJoo>e > >el ;>0 Jb,.b >0
< PINGS) < wo] (BO1)™ + P[NSS) > vo)
< PINSS) < o](Efy )% + PN > 1] < oc.
The previous inequalities, in conjunction with (34), (3Bpg30) imply that
Poyi1(z, A) > 0¥ (1 — F,(A)P[B; > C]"2 V™I R(A). (36)

Finally, it is left to show that there exis#s > 0 such that for every initial distributio#),

for all n large and for any measurable setC S(vy, 5o, do)

Po(A) < KR(A) +e.
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By (33), for alln > no

Pn(A) < P[Xn S AaTn —To > 50] +P[Tﬂ — 70 < 50]
<P[X,€AT,—T0>d]+e/2

5 0+ dbY)]

71770

< [1P0; > €pB; € (b
j=1

iz—l n2—1

xP U ZYj6(6'1—6'2,6’1—6'2+de'1),..., Z Y; € (e ey +del) v | +e
I

Jj=i1 j:iyn/

/ / / / /
:/ r(m',el, ... e, by, ...,0 ) +e,
z’'€A

where the second inequality follows from the fact that resgsithat are active at, must occur
in the previous, length of time that are capturedsin renewal interval$r, —n,, Tn—ny+1)s - - - 5 [Tn—1,Tn)
with significant probability (greater thah— ¢/2). Thus, after applying definition (35), we

obtain that for all large

Po(A) < VIR(A) + e,

which, in conjunction with (36) and (22), implies that thepessX,, satisfies conditions of
the theorem stated at the beginning of this section. Thesetbxists a unique stationary dis-
tribution for the Markov chainX,,. Therefore, sian%c) defined in Section 2 is a functional
of the process(,,, it has a unique stationary distribution as well implying #xistence of the

stationary blocking probability.
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