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Abstract

The analysis of stochastic loss networks has long been of interest in computer and

communications networks and is becoming important in the areas of service and

information systems. In traditional settings, computing the well known Erlang formula

for blocking probability in these systems becomes intractable for larger resource

capacities. Using compound point processes to capture stochastic variability in the

request process, we generalize existing models in this framework and derive simple

asymptotic expressions for blocking probabilities. In addition, we extend our model to

incorporate reserving resources in advance. Although asymptotic, our experiments show

an excellent match between derived formulas and simulationresults even for relatively

small resource capacities and relatively large values of blocking probabilities.
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1. Introduction

The problem of satisfying a stream of customer (user) requirements from resources of

finite capacities for some random processing time has long been present in many areas such

as telephone and communication networks, inventory control (rental industry) and, recently,

workforce management. For all of these applications, system dynamics can be described

as follows. Requests for resources arrive according to somepoint process in time. If there

are enough available (non-engaged) resources to satisfy their requirements at the moment of

arrival, required resources are committed for some random time that represents their processing

duration (holding time) after which they are released and become available to accommodate

future requests. In the case of insufficient amount of available resources at the moment of its

arrival, a request is lost. The previously described systemis usually referred to as aloss net-

work, and one of the commonly analyzed performance metrics is theblocking probability, i.e.,

probability that an incoming request is lost due to insufficient amount of available resources to

satisfy its requirements.

Loss networks with fixed resource requirements have been intensively analyzed in the con-

text of circuit-switched networks. Let requests require resources ofK <∞ different types for

some random generally distributed processing time with finite mean. Furthermore, assume that

requests belong toM different classes characterized by their resource requirements, processing

durations, arrival rates. Then, assuming that requests of different types arrive according to

mutually independent Poisson processes, by PASTA property([24]), blocking probabilityBl

of an incoming request of type1 ≤ l ≤ M is equal to the sum of probabilities of blocking

states forl type request and is computed using the generalized Erlang formula (e.g., see [15]),
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i.e.,

Bl = 1−G(C)−1G(C−Ael),

where

G(C) =





∑

n∈S(C)

M
∏

l=1

ρnl

l

nl!





and

S(C) := {n ∈ Z
M
+ : An ≤ C}, (1)

wheren = (n1, . . . , nM ) andC = (C1, . . . , CK). In the previous expressionsCk, 1 ≤ k ≤

K, is capacity of resource typek, A = [Akl] is aK ×M matrix, whereAkl represents the

amount of resources of type1 ≤ k ≤ K required by a request of type1 ≤ l ≤ M , andρl,

1 ≤ l ≤ M , represent traffic intensities ofl type requests (computed asρl = λl/µl, where

λl is the arrival rate ofl type requests and1/µl is the corresponding mean processing time).

Furthermore,el is aM dimensional vector with thelth component equal to one and the rest

equal to zero. In the case of a single resource type and a single request class with exponentially

distributed processing times, blocking probability was first expressed by Erlang in 1917 (see

[7]). Later on, it was shown that the Erlang formula holds under more general assumptions on

call holding time distributions (see [20]) and in the case ofPoisson arrivals with retrials (see

[4]). It is noteworthy to point out the difference between the Erlang loss network and a queue

with finite buffer. The two systems follow very different dynamics resulting in a different

behavior and, therefore, their analysis (e.g., see [12] and[2]).

It is easy to see that the cardinality of the state spaceS(C) in (1) increases exponentially in

the norm of vectorC, i.e., |C| ≡
∑K

i=1 |Ci|. It is shown in [18] that the calculation ofG(C)

is a ♯P -complete problem, which belongs to a class of problems thatare at least as hard as
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NP -complete problems. To this end, many approximation techniques for evaluating blocking

probabilities in large loss networks have been proposed. One of the most popular ones is

known as Erlang fixed point method. The main idea of this approximation is to assume that

deficiencies of different resource types happen independently. The application of the Erlang

fixed point method can be traced back as early as 50’s (e.g., see [23]). In [14], Kelly studied

the performance of the Erlang fixed point method and established its relation to a nonlinear

optimization problem. He also proved uniqueness of the fixedpoint and its asymptotic exact-

ness when resource capacities and arrival rates grow with the same rate (see [15]). Some of the

related practical aspects of Kelly’s analysis were investigated in [22]. The Erlang fixed point

method is further refined in [25]. There are also many other types of approximations such as

recursive algorithm in [13], or unified approach based on large deviations for all (light, critical

and heavy) traffic regimes in [8]. Overall, except from the bounds in [8], these methods make

use of the structural properties of the Erlang formula and, hence, largely rely on the Poisson

assumption for call arrivals. Another restriction of the above models is that the amount of

resource requirements are assumed to be fixed; in fact, it is assumed that they are(0, 1)

parameters in most of the cases considered. Meanwhile, we see in many applications that

resource requirements could be highly variable and their distributions possibly long-tailed; for

specific examples, see [10], [11] and [16]. Furthermore, more recently, loss networks models

have been applied in the context of workforce management applications (see [19]), where

requests behavior is even more volatile and extreme.

In this paper, we analyze loss networks that have renewal arrivals and random resource

requirements. In particular, we assume that request arrivals follow a compound renewal pro-

cess, with the corresponding holding times being arbitrarily distributed with finite mean, in-

dependent of each other and arrival points. In order to cope with variability in resource
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requirements, we model them as subexponential random variables. We obtain a simple and

explicit asymptotic expressions for blocking probabilities when capacities of resources grow.

For the case of a single resource loss network, we show that the stationary blocking probability

is approximately equal to the tail of the resource requirement distribution. In addition, we

extend our results to allow advance reservations of resources. Finally, we investigate gen-

eral (multiple resources and arbitrary topology) loss networks and show that the asymptotic

blocking probability behaves as the tail of the heaviest-tailed resource requirement. Although

asymptotic, our numerical experiments show an excellent accuracy of the derived formulas

even for relatively small capacities and relatively large values of blocking probabilities, sug-

gesting wide applicability of the obtained results.

Our paper is organized as follows. In Section 2, we introduceour model in the context of a

single resource type. Then, in Subsection 2.1, we state and prove our main result in Theorem

1, while in Subsection 2.2, we extend it to the case of advancereservations. Further extension

to the analysis of the stationary blocking probability in the case of general loss networks is

stated and proved in Theorem 2 of Section 3. Our simulation experiments for some specific

cases of arrival processes and resource requirements are presented in Section 4. Finally, we

conclude our paper in Section 5. A discussion and the proof ofexistence of the stationary

blocking probability is presented in the Appendix.

2. Systems with one resource type

Let requests for resources from a common resource pool of capacityC <∞ arrive at time

points{τn,−∞ < n < ∞} that represent a renewal process with rate0 < λ < ∞, i.e.,

E[τn − τn−1] = 1/λ. At each pointτn, Bn amount of resources is requested. If available
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capacity is less thanBn, this request is rejected (blocked); otherwise, it is accepted andBn

amount of resources will be occupied for the length of timeθn. Sequences{Bn} and{θn} of

i.i.d. random variables (r.v.) are assumed to be mutually independent and independent of the

arrival points{τn}; furthermoreEθn <∞ for all n. LetB andθ denote random variables that

represent{Bn}, {θn}, i.e.,P[B > x] = P[Bn > x],P[θ > y] = P[θn > y], for anyn ∈ Z,

x ≥ 0 andy ≥ 0.

In this paper, we assume thatB is a subexponential random variable, defined as follows

(e.g., see [9]):

Definition 1. Let {Xi} be a sequence of positive i.i.d. random variables with distribution

functionF such thatF (x) < 1 for all x > 0. Denote byF̄ (x) = 1 − F (x), x ≥ 1, the tail

of F and byF̄n∗ = 1 − Fn∗(x) = P[X1 + · · · +Xn > x] the tail of the n-fold convolution

of F . F is subexponential distribution function, denoted asF ∈ S, if one of the following

equivalent conditions holds:

• limx→∞
F̄n∗(x)
F̄ (x)

= n for some (all)n ≥ 2,

• limx→∞
P[X1+···+Xn>x]

P[max(X1,...,Xn)>x]
= 1 for some (all)n ≥ 2.

For a brief introduction to subexponential distributions the reader is referred to a recent

survey [9]. This class of distributions is fairly large and well known examples include regularly

varying (in particular Pareto), some Weibull, log-normal and ”almost” exponential distribu-

tions.

Next, letN (C)
n be the set of indicesi < n of resource requirements that arrive prior toτn,

are accepted, and arestill activeby timeτn. Furthermore, letN (C)
n , |N

(C)
n | be a cardinality

of setN (C)
n . Thus, the total amount of resourcesQ(C)

n that an arrival at timeτn finds engaged

can be expressed asQ(C)
n =

∑

i∈N (C)
n

Bi.
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Our goal in this paper is to estimate the stationary blockingprobability, i.e.,

P[Q(C)
n +Bn > C], (2)

for largeC. It can be shown that for the model introduced above there exists a unique stationary

distribution forQ(C)
n and, therefore, the quantity in (2) is well defined. The proofof this

result is based on constructing a Markov chain with general state space, of whichQ(C)
n is a

functional. Then, by using a discrete version of Theorem 1 from [20], we show that there exists

a unique stationary distribution for the constructed Markov chain (and, therefore,Q(C)
n ) which

is ergodic. Since this proof is not the main focus of this paper, we present it in the Appendix.

In this paper we use the following standard notation. For anytwo real functionsa(t) and

b(t) and fixedt0 ∈ R ∪ {∞}, let a(t) ∼ b(t) ast→ t0 denotelimt→t0 [a(t)/b(t)] = 1.

2.1. Blocking probability in a system with one resource type

In this section we estimate the stationary blocking probability P[Q
(C)
n +Bn > C] in a loss

network with a single resource pool when its capacityC grows large.

Theorem 1. Let {Bn,−∞ < n < ∞} be a sequence of subexponential random variables

with finite mean. Then, the stationary blocking probabilitysatisfies

P[Q(C)
n +Bn > C] ∼ P[B > C] as C → ∞. (3)

Proof: First, observe that a request will be lost if it requires morethan the total capacityC

and, therefore,

P[Q(C)
n +Bn > C] ≥ P[B > C] for all C > 0. (4)
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In order to prove the asymptotic upper bound forP[Q
(C)
n + Bn > C], we start by condi-

tioning on the size ofBn as

P[Q(C)
n +Bn > C] = P[Q(C)

n +Bn > C,Bn > C] + P[Q(C)
n +Bn > C,Bn ≤ C]

, I1 + I2. (5)

Note thatI1 is upper bounded byP[B > C]. Next, we prove thatI2 = o(P[B > C]) as

C → ∞. In view of the definition ofN (C)
n from above,

I2 = P





∑

i∈N (C)
n

Bi +Bn > C,Bn ≤ C



 . (6)

Observe that fori ∈ N
(C)
n , Bis are mutually dependent which makes direct analysis of the

expression in (6) complex. For that reason, we sample the original process of arrivals at points

τi at which the requested amount of resourcesBi is smaller or equal toC and observe another

system of unlimited capacity with the sampled arrivals. LetNn,s be a set of request indices

i < n that belong to the sampled process and are still active at timeτn, i.e.,

Ns,n = {i < n|Bi ≤ C, θi > τn − τi}.

Note that the sampled process is renewal as well with rateλP[B ≤ C]/P[B > C] and

that resource requirementsBi, i ∈ Ns,n, are mutually independent. Furthermore, since

N
(C)
n ⊂ Ns,n, we can upper boundI2 in (6) by the probability that the total amount of

required resources in a new system exceeds capacityC, i.e.,

I2 ≤ P





∑

i∈Ns,n

Bi +Bn > C,Bn ≤ C



 . (7)

Now, in view of the results derived in [6] for every integern and i.i.d. subexponential random

variablesB1, . . . , Bn, P[
∑n

i=1Bi > C] ∼ P[max(B1, B2, . . . , Bn) > C] asC → ∞,
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implying asymptotic relation

P

[

n
∑

i=1

Bi > C,Bi ≤ C for every1 ≤ i ≤ n

]

= o(P[B > C]) as C → ∞.

In order to show thatn can be replaced byNs,n in the above inequality, we need to integrate it

with respect to the density ofNs,n, i.e.,

P





∑

i∈Ns,n∪{n}
Bi > C,Bi ≤ C for everyi ∈ Ns,n ∪ {n}





=

∞
∑

k=0

P[Ns,n = k]P

[

k+1
∑

i=1

Bi > C,Bi ≤ C for everyi = 1, . . . , k + 1

]

.

Note that on the left hand side of the previous equation indexi can take negative values. Next,

due to the lemma stated by Kesten (see Lemma7, pp.149 of [3]), for anyǫ > 0 there exists a

positive constantK(ǫ) such that

P[
∑k

i=1 Bi > C,Bi ≤ C for every1 ≤ i ≤ k]

P[B > C]
≤

P[
∑k

i=1 Bi > C]

P[B > C]
≤ K(ǫ)(1 + ǫ)k,

for any integerk and all capacity valuesC < ∞. Then, since the probability generating

functionEzNs,n is finite for anyz ∈ C (see Theorem 1 in [21] and Theorem 5 in [17] for

the detailed proof), we have
∑∞
k=0 P[Ns,n = k](1 + ǫ)k < ∞. Therefore, by applying the

dominated convergence theorem, we conclude that

lim
C→∞

P

[

∑

i∈Ns,n
Bi +Bn > C,Bi ≤ C for everyi ∈ Ns,n ∪ {n}

]

P[B > C]

= lim
C→∞

∞
∑

k=0

P[Ns,n = k]P
[

∑k+1
i=1 Bi > C,Bi ≤ C for every1 ≤ i ≤ k + 1

]

P[B > C]

= 0, (8)

which in conjunction with (5) and (4), completes the proof ofthis theorem. ✸
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Remark: It may appear surprising that the performance of the loss network from above does

not depend on engagement durations, as long as they have finite mean. In addition, the result is

quite general and provides the asymptotic result for a large(subexponential) class of possible

resource requirement distributions.

2.2. Advance reservations

Using the result of Theorem 1 and observations from the previous remark, we extend the

loss networks model to allow requests to become effective with some delay with respect to

the moments of their arrivals. In particular, a request thatarrives at timeτn and requiresBn

amount of resources for some random timeθn starting from the momentτn+Dn is accepted if

previously admitted resource requirements allow that; otherwise, it is rejected. In other words,

a request arriving atτn is lost if at any moment of time in interval(τn +Dn, τn +Dn + θn)

the total amount of active requirements requested prior toτn exceedsC − Bn. First, note

thatBn > C implies the loss ofnth request and, therefore, it is straightforward to conclude

that the blocking probability in the system with advance reservations can be lower bounded by

P[B > C].

Next, we discuss the idea behind proving the upper bound on the blocking probabilities.

By applying sample path arguments one can show that, at any moment of time, the amount of

active resources in the previously described system with advance reservations can be bounded

from above by the amount of active resources in another system of unlimited capacity, without

advance reservations, with resource holding timesDn + θn for everyn, and with requests

for resources being sampled from the original process{Bn} whenever the corresponding

requirements are less or equal toC. Equivalently, the blocking probability in the system with
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advance reservations can be bounded from above by

P







∑

i∈N (C)
s,n (θ+D)

Bi +Bn > C






,

whereN (C)
s,n (θ + D) is a set of request indicesi < n that are active at timeτn, whose

requirements are less or equal toC and holding times last throughout the interval(τi, τi +

Di + θi), assuming that there is an unlimited resource capacity.

Finally, by using the previous discussion, the properties of {Bn}, {θn} and{τn} as intro-

duced at the beginning of this section, assuming that reservation times{Dn}, EDn < ∞, are

i.i.d. and independent from{Bn}, {θn} and{τn}, and applying the identical arguments as in

the proof of Theorem 1, we obtain the following result:

Corollary 1. The blocking probability in the system with advance reservations approaches

P[B > C] asC → ∞.

3. Acquiring resources of different types (loss networks case)

Assume that there areK ∈ N resource types with capacitiesC1, . . . , CK . Again, requests

arrive at{τn,−∞ < n <∞}, which represent a renewal process with rate0 < λ = 1/E[τ1−

τ0] < ∞. There areM < ∞ request types and, given an arrival, the request is of typel,

1 ≤ l ≤ M , with probability pl, p1 + · · · + pM = 1, independent from{τn}. We will

use random variablesJn ∈ {1, 2, . . . ,M} to denote the type of the request arriving atτn.

Furthermore, letB(Jn,1)
n , . . . , B

(Jn,K)
n represent amounts of required resources of each type

at timeτn and letθ(Jn)
n , Eθ(Jn)

n < ∞, be the corresponding random duration. We assume

that sequences{(B(Jn,1)
n , . . . , B

(Jn,K)
n )}, {θ

(Jn)
n } are mutually independent and independent

from {τn}. Given the event{Jn = l}, resource requirementsB(l,i)
n , 1 ≤ i ≤ K, are mutually
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independent nonnegative random variables drawn from distributionsFl,i, 1 ≤ i ≤ K; if a

request does not require resources of typei thenB(l,i)
n = 0 a.s.,−∞ < n < ∞. Only if

there is enough capacity available, the request arriving attime τn will be accepted and all of

the engaged resources will be occupied for the duration ofθ
(Jn)
n ; otherwise, the request is

rejected.

Our goal is to estimate the blocking probability in a system described above. Define

Q
(1)
n , . . . , Q

(K)
n to be amounts of resources of each type that a request arriving at timeτn

finds engaged. Note thatQ(i)
n , 1 ≤ i ≤ K, are mutually dependent and, as pointed out in the

Introduction, it is hard to compute the blocking probability of this system explicitly. Using

analogous arguments as in the case of a single resource type (see the Appendix), one can show

that the stationary distribution ofQ(i)
n , 1 ≤ i ≤ K, exists. Probability that the request arriving

at timeτn is blocked equals to

P[∪1≤i≤K{Q(i)
n +B(Jn,i)

n > Ci}], (9)

and our goal again is to estimate its value asminiCi grows large.

Asymptotic estimates derived in this section hold under thefollowing assumption:

Assumptions:For each resource type1 ≤ i ≤ K, letLi andHi be two disjoint sets of request

types (|Li ∪Hi| =M ) satisfying:

• Assume that there exists at least one resource type that is accessed by subexponentially

distributed resource requirements, which implies|Hi| > 0 for some1 ≤ i ≤ K;

• For everyl ∈ Hi 6= ∅, there exists a subexponential distributionFi ∈ S such that

F̄l,i(x) ∼ cl,iF̄i(x) asx→ ∞ with cl,i > 0;
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• There exists a subexponential random variableL ∈ S that satisfies

P[L > x] ≥ max
1≤i≤K,l∈Li

P[B(Jn,i)
n > x|Jn = l] for all x > 0,

andP[L > x] = o(F̄i(x)) asx→ ∞ for all i ∈ {j|Hj 6= ∅}.

Remark: In the preceding assumptions, we require the resource requirement distributions to

be asymptotically comparable. For each1 ≤ i ≤ K,Hi contains tail dominant subexponential

distributions that are asymptotically proportional to each other. On the other hand, the only

assumption imposed on the distributions inLi, 1 ≤ i ≤ K, is that there is a subexponential

tail that asymptotically dominates them. This asymptotic tail comparability is necessary for

our main result to hold. In particular, these conditions areextensively used in (16) - (21) of the

proof of Theorem 2.

Next, we prove the following lemma that investigates summations of random variables with

different tail distributions.

Lemma 1. Suppose thatXi, 1 ≤ i ≤ n, are independent random variables with correspond-

ing tail distributionsF̄i(x), 1 ≤ i ≤ n. If there existsF ∈ S such thatF̄i(x) ∼ ciF̄ (x) as

x → ∞ with ci ≥ 0, 1 ≤ i ≤ n, and
∑n

i=1 ci > 0, then the following asymptotic relation

holds:

P

[

n
∑

i=1

Xi > x,Xi ≤ x, 1 ≤ i ≤ n

]

= o(F̄ (x)) as x→ ∞. (10)

Proof: Note that

P

[

n
∑

i=1

Xi > x

]

= P

[

n
∑

i=1

Xi > x,Xi ≤ x, 1 ≤ i ≤ n

]

+ P

[

n
∑

i=1

Xi > x,∪ni=1{Xi > x}

]

.

Then, the previous expression,∪ni=1{Xi > x} ⊂ {
∑n

i=1Xi > x}, independence ofXis, as

well as Lemmas 4.2 and 4.5 of [1], imply (10). ✸
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First, we estimate the asymptotic lower bound for the expression in (9). By using our model

assumptions,{B(Jn,i)
n > Ci} ⊂ {Q

(i)
n +B

(Jn,i)
n > Ci} and independence, we obtain

P[∪1≤i≤K{Q(i)
n +B(Jn,i)

n > Ci}] ≥ P[∪1≤i≤K{B(Jn,i)
n > Ci}] ∼

K
∑

i=1

∑

l∈Hi

plF̄l,i(Ci),

(11)

asmini Ci → ∞.

Next, we estimate the asymptotic upper bound for the expression in (9). Using the union

bound yields

P[∪1≤i≤K{Q(i)
n +B(Jn,i)

n > Ci}] ≤
K
∑

i=1

P[Q(i)
n +B(Jn,i)

n > Ci]. (12)

Similarly as in (7) of Theorem 1, for each resource1 ≤ i ≤ K,

P[Q(i)
n +B(Jn,i)

n > Ci] ≤ P







∑

l∈Li

∑

j∈N (l,Ci)
s,n

B
(l,i)
j +

∑

l∈Hi

∑

j∈N (l,Ci)
s,n

B
(l,i)
j +B(Jn,i)

n > Ci






,

(13)

whereN (l,Ci)
s,n , 1 ≤ l ≤M , are sets of indicesj < n defined as

N (l,Ci)
s,n , {j < n|Jj = l, B

(l,i)
j ≤ Ci, θ

(l)
j > τn − τj}.

In the previous expressions we bounded the amount of allocated resources that are active

at time τn by the corresponding quantity in another system of infinite capacity where the

corresponding request process is sampled from the original{B
(Jn,i)
n }, 1 ≤ i ≤ K, whenever

the corresponding requirements are less than or equal toCi, 1 ≤ i ≤ K.

In the rest of the proof, we derive an asymptotic estimate forthe expression in (13). After

conditioning on{N (1,Ci)
s,n = n1, . . . , N

(M,Ci)
s,n = nM} (N (l,Ci)

s,n , |N
(l,Ci)
s,n |, 1 ≤ l ≤ M ), we
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obtain

P[Q(i)
n +B(Jn,i)

n > Ci]

≤
∑

0≤n1,...,nM<∞
P[N (1,Ci)

s,n = n1, . . . , N
(M,Ci)
s,n = nM ]

× P





∑

l∈Hi

nl
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

nl
∑

j=1

B
(l,i)
(j) + B(Jn,i)

n > Ci, B
(l,i)
(j) ≤ Ci, 1 ≤ j ≤ nl, 1 ≤ l ≤M



 ,

(14)

whereB(l,i)
(j)

d
= B

(l,i)
k , k ∈ N

(l,Ci)
s,n , j = 1, . . . , nl, are independent replicas of requests in

N
(l,Ci)
s,n . Next, after conditioning on{Jn = m}, m = 1, . . . ,M , and then onB(m,i)

n being

smaller or larger thanCi, we can further upper bound the conditional blocking probability in

(14) as

P





∑

l∈Hi

nl
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

nl
∑

j=1

B
(l,i)
(j) +B(Jn,i)

n > Ci, B
(l,i)
(j) ≤ Ci, 1 ≤ j ≤ nl, 1 ≤ l ≤M



 ≤

M
∑

m=1

pmP





∑

l∈Hi

nl
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

nl
∑

j=1

B
(l,i)
(j) +B(m,i)

n > Ci, B
(l,i)
(j) ≤ Ci, 1 ≤ j ≤ nl, 1 ≤ l ≤M ,B(m,i)

n ≤ Ci





+
M
∑

m=1

pmP[B(m,i)
n > Ci]. (15)

Thus, the probabilities in the first term on the right hand side of the previous expression can be

expressed in the form

P





∑

l∈Hi

n′
l

∑

j=1

B
(l,i)
(j) +

∑

l∈Li

n′
l

∑

j=1

B
(l,i)
(j) > Ci, B

(l,i)
(j) ≤ Ci, 1 ≤ j ≤ n′

l, 1 ≤ l ≤M



 , (16)

wheren′
l = nl for l 6= m andn′

l = nl + 1 for l = m.

Next, in order to estimate the asymptotic upper bound of the term in (16), Assumptions

enable us to distinguish between two cases: (i)Hi = ∅ or
∑

l∈Hi
n′
l = 0, and (ii)Hi 6= ∅ and

∑

l∈Hi
n′
l > 0.
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(i): If Hi = ∅ or
∑

l∈Hi
n′
l = 0, we have that probability in (15) can be upper bounded as

P





∑

l∈Li

n′

l
∑

j=1

B
(l,i)
(j) > Ci



 ≤ P





∑

l∈Li

n′

l
∑

j=1

L
(l,i)
(j) > Ci



 ,

where in the inequality above we used Assumptions and introducedL(l,i)
(j) to be independent

r.v.s equal in distribution toL. Hence, sinceL(l,i)
(j) are subexponential, we obtain

lim
Ci→∞

P

[

∑

l∈Li

∑n′

l

j=1 B
(l,i)
(j) > Ci

]

P[L > Ci]
≤

∑

l∈Li

n′
l. (17)

(ii): If Hi 6= ∅ and
∑

l∈Hi
n′
l > 0, using Assumptions and Lemma 1, we derive the following

asymptotic upper bound

P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

n′

l
∑

j=1

B
(l,i)
(j) > Ci, B

(l,i)
(j) ≤ Ci, 1 ≤ j ≤ n′

l, 1 ≤ l ≤M



 = o(F̄i(Ci)),

(18)

asCi → ∞.

Thus, in (16)-(18) we obtained upper bounds and their asymptotic estimates for the con-

ditional blocking probabilities in the first term of (15) that hold for any finite nonnegative

integersn1, . . . , nM . Thus, in view of (14), in order to estimate an asymptotic upper bound of

P[Q
(i)
n + B

(Jn,i)
n > Ci], we need to integrate probabilities in (16) with respect to densities

of r.v.sN (l,Ci)
s,n , l = 1, . . . ,M . In this regard, note that in the case whereHi 6= ∅, by

Assumptions, the term in (16) can be upper bounded as

P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

n′

l
∑

j=1

B
(l,i)
(j) > Ci, B

(l,i)
(j) ≤ Ci, 1 ≤ j ≤ n′

l, 1 ≤ l ≤M





≤ P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

n′

l
∑

j=1

L
(l,i)
(j) > Ci



 , (19)

where, as before,L(l,i)
(j) are independent r.v.s equal in distribution toL. Furthermore, since

P[L > x] = o(F̄i(x)) asx → ∞, there exists a large enough finite integerH such that
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P[L > x] ≤ HF̄i(x) for all x ≥ 0. Therefore, for anyx ≥ 0, one can write

P[L > x] ≤ HF̄i(x) = P

[

∪1≤r≤H{B̂(i)
r > x}

]

≤ P

[

H
∑

r=1

B̂(i)
r > x

]

, (20)

whereB̂(i)
r , 1 ≤ r ≤ H , are independent r.v.s having cumulative distribution function Fi.

Now, in view of (20), each of random variablesL(l,i)
(j) in (19) can be stochastically upper

bounded by a random variable that is equal in distribution to
∑H

r=1 B̂
(i)
r . Thus, if we introduce

Yj , j ≥ 1, to be independent r.v.s equal in distribution to
∑H

r=1 B̂
(i)
r , we obtain

P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

n′

l
∑

j=1

L
(l,i)
(j) > Ci



 ≤ P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

P

l∈Li
n′
l

∑

j=1

Yj > Ci



 ,

which in conjunction with point (b) of Lemma 4.2 in [1] implies that for anyǫ > 0 there exist

a finite constantKǫ such that

P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

∑

l∈Li

n′

l
∑

j=1

L
(l,i)
(j) > Ci



 ≤ P





∑

l∈Hi

n′

l
∑

j=1

B
(l,i)
(j) +

P

l∈Li
n′

l
∑

j=1

Yj > Ci





≤ Kǫ(1 + ǫ)
P

l∈Hi
n′
l+

P

l∈Li
n′
l F̄i(Ci), (21)

for anyCi < ∞. Similarly, in cases whereHi = ∅, we could apply the stochastic dominance

B
(l,i)
(j)

d

≤ L
(l,i)
(j) , l ∈ Li, whereL(l,i)

(j) are, as before, independent subexponential random

variables equal in distribution toL. Then, by Kesten’s lemma (see Lemma 7 on page 149

of [3]), the analogous bound to the one in (21) follows.

Finally, since (21) bounds uniformly probabilities in (16)for all Ci < ∞ andn′
l, 1 ≤ l ≤

M , in conjunction with (15), (14),N (l,Ci)
s,n ≤ N

(l,∞)
n a.s. and existence ofEzN

(l,∞)
n for all

z ∈ C, 1 ≤ l ≤ M , (see Theorem 1 in [21] and Theorem 5 in [17]), one can apply the

dominated convergence theorem and conclude

lim
Ci→∞

P[Q
(i)
n +B

(Jn,i)
n > Ci]

∑

l∈Hi
plF̄l,i(Ci)

≤ 1[Hi 6= ∅].

Next, by adding asymptotic estimates for all1 ≤ i ≤ K, in conjunction with (11), we complete

the proof of the following result:
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Theorem 2. For the request model introduced in this section, under the conditions imposed

by Assumptions, the stationary blocking probability for general loss networks satisfies

P[∪1≤i≤K{Q(i)
n +B(Jn,i)

n > Ci}] ∼
K
∑

i=1

∑

l∈Hi

plcl,iF̄i(Ci) as min
i
Ci → ∞.

4. Numerical examples

In this section, with two simulation experiments, we demonstrate the accuracy of our

asymptotic formulas, proved in Theorems 1 and 2. Our goal is to show that even though

our results are asymptotic, the derived estimates match experiments with high accuracy even

for systems with finite support demand distributions and moderately large capacities.

In each experiment, in order for the system to reach stationarity, we let the first108 arrivals

to be a warm-up time. By repeating many experiments, we observe that longer warm-up times

do not lead to improved results. Then, we count the number of blocked requests among next

109 arrivals. In both of the experiments below, measurements are conducted for capacities

C = 500 + 100j, 0 ≤ j ≤ 9, where the starting value ofC = 500 is set to be slightly larger

than the effective systems loadλE[θn]E[Bn]. Simulation results are presented by symbol “o”

in Figures 1 and 2, while our approximations, estimates obtained in Theorems 1 and 2, are the

solid lines on the same figures. Note that in order to emphasize the difference and to observe a

range of blocking probabilities we are trying to estimate, we present base10 logarithm of the

obtained values.

Example 1Consider the case of a single resource type of capacityC. Let requests for resources

arrive at Poisson time points with rateλ = 1. In addition, we assume that engagement

durations are exponentially distributed with mean1/µ = 1. Next, let request requirements

Bn be drawn from a finite support distribution, whereP[Bn = i] = 0.3
i1.5

, 1 ≤ i ≤ 1999, and
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P[Bn = 2000] = 1−P[Bn < 2000] (power law distribution). Effective load in this example is

λE[θn]E[Bn] ≈ 485.8. Experimental results are presented in Figure 1. Even though we start

measuring rejections at capacities that are slightly larger than the mean requirement value, our

approximationP[Bn > C] is very close to experimental results. In particular, the relative

approximation error is less than1% for C = 500, and for capacity values larger or equal to

C = 1400 this error is less than0.3%.

500 600 700 800 900 1000 1100 1200 1300 1400
−0.635

−0.63

−0.625

−0.62

−0.615

−0.61

−0.605

resource capacity C

lo
g 10

[lo
ss

 p
ro

ba
bi

lit
y]

approximation formula
simulation

FIGURE 1: Illustration for Example 1

Example 2 In this example, we consider the case of two resource and two request types.

Furthermore, we assume that resource capacities are the sameC = C1 = C2. The frequencies

of requests of types 1 and 2 arep1 = 0.3 andp2 = 0.7 respectively. Assume that the arrival

points are separated by a fixed, unit length of time, i.e.,τn−τn−1 = 1 for all n. Type1 request

durations satisfyθ(1)i ∼ exp(4) and type 2 request holding times are drawn from the uniform

distribution on[0, 40], i.e., θ(2)i ∼ Unif([0, 40]). Resource requirements corresponding to

engagements of type 1 are distributed asP[B1,1 = 1] = 0.8, P[B1,1 = i] = 0.15e−
√
i,

2 ≤ i ≤ 1999 andP[B1,1 = 2000] = 1 − P[B1,1 < 2000] for the type 1 resources, and
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P[B1,2 = 50] = 1 for type 2 resources. Requests of type 2 require resources according to

P[B2,1 = i] = geomi−1(1 − geom), 1 ≤ i ≤ 1999, P[B2,1 = 2000] = 1− P[B2,1 < 2000],

wheregeom = 0.6 for resources of type 1, andP[B2,2 = i] = 0.3
i1.5

, 1 ≤ i ≤ 1999, P[B2,2 =

2000] = 1 − P[B2,2 < 2000] for type 2 resources. Our asymptotic results suggest that the

blocking probability should be characterized by the heaviest tailed demand distributions. The

results of this experiment are presented in Figure 2. As in the previous case, we obtain a very

accurate agreement between our approximation and the simulation. The relative approximation

error in this case does not exceed2% and is getting smaller as resource capacities grow.
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< 2%
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FIGURE 2: Illustration for Example 2

Remark: (i) We would like to point out that the accuracy of experimental results directly

depends on the approximation errors (7) and (18), dependingon the simulated scenarios. These

errors highly depend on the tail properties of the resource requirements distributions. More

specifically, under fairly general assumptions, the heavier the dominant tail of the resource

requirement distribution is, the smaller would be the relative approximation error. For detailed

explanations, a reader is referred to Section 1.3.2 of [5]. (ii) Note that our main results
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estimate the stationary blocking probability and, as we commented earlier, are indifferent

to distributional properties of holding times. For that reason, as long as one can claim that

the measurements are conducted in stationarity, the transience should not affect experimental

results.

5. Concluding remarks

In this paper, we consider loss networks with reusable resources and finite resource ca-

pacities and estimate the probability that a request is rejected due to insufficient amount of

resources at points of their arrivals. Assuming a renewal process of request arrivals, subex-

ponential resource requirements and generally distributed activity durations, we show that the

asymptotic blocking probability for a wide class of analyzed systems can be fully estimated

using resource requirement distribution, independent from other system’s properties. In par-

ticular, we show that the blocking probability behaves as the asymptotically dominant tail of

the resource requirement distribution.

The model we study can be applied to a wide range of applications. Historically, loss

networks (in particular, Erlang loss networks) are widely used for modeling communication

networks. Later, through the development of new services applications such as workforce man-

agement with similar modeling properties, the importance of accurately estimating blocking

probabilities of general loss networks has become significant. In this regard, we investigate

loss networks with various request types and possibly highly variable random amounts of

required resources. In addition, we research the possibility of incorporating random advance

reservations for incoming requests. These results should be of great interest to an emerging

research community. Although our results are intended mainly for qualitative purposes, nu-
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merical examples demonstrate an excellent match between derived formulas and simulated

systems performance, hence strongly suggesting their application.

Appendix

In this section we prove the existence of the stationary blocking probabilities in (2). Using

the model description from Section 2, we observe the system at the moments of request

arrivals. Then, we define a discrete time processXn , (N
(C)
n , Bi, Ei, i = 1, 2, · · · , N

(C)
0,n ),

whereEis represent times that elapsed in processing requests in thesystem by timeτn;

furthermore,N (C)
0,n is the number of active requests at the moment ofnth arrival. Note that

{Xn}n≥0 is a discrete time Markov chain with state spaceΩ , N0 × ℓ∞ × ℓ∞, whereℓ∞

denotes the Banach space of the infinite sequence of real numbers equipped with the supreme

norm; letω0 ∈ Ω denote the state with no active requests. We start observingthe system at the

momentτ0 of 0th arrival and denote the initial state byX0 = (N0, B0
i , E

0
i , i = 1, . . . , N0)

drawn from some arbitrary distributionP0, whereEB0
i < ∞, Eθ0i < ∞. Next, defineF to

be the Borel field ofΩ, and letPn(x0, A), x0 ∈ Ω, A ∈ F , represent a transition probability

of the Markov chainXn into setA in timen, starting from statex0. LetPn be the probability

distribution ofXn.

Now, in order to prove the existence of a unique stationary distribution for the Markov

chain{Xn}, we use a discrete version of Theorem 1 in [20], which we statenext for reasons

of completeness.

Theorem: A Markov chain homogeneous in time has a unique stationary distribution which

is ergodic if, for anyǫ > 0, there exists a measurable setS, a probability distributionR in Ω,

andn1 >, k > 0,K > 0 such that



Asymptotic Blocking Probabilities in the Loss Networks with Subexponential Demands 23

• kR(A) ≤ Pn1(x,A) for all pointsx ∈ S and measurable setsA ⊂ S; for any initial

distributionP0 there existsn0 such that for anyn ≥ n0

• Pn(S) ≥ 1− ǫ,

• Pn(A) ≤ KR(A) + ǫ for all measurable setsA ⊂ S.

Proof: The proof follows identical arguments as in [20] translatedinto discrete setting.

Next, we need to show that Theorem 1 holds for the process investigated in this paper;

in particular, we will consider a common resource pool case.The proof follows the similar

reasoning as in Theorems 4 and 5 of [20].

Define setS(ψ, β, δ) as

S(ψ, β, δ) , {N
(C)
0,n ≤ ψ, 0 ≤ Bi ≤ β, 0 ≤ Ei ≤ δ, i ∈ N

(C)
0,n }

for some positive finite constantsψ, β, δ.

Now, we show that for anyǫ > 0, there existsS(ψ, β, δ) ⊂ Ω such that for any initial

distributionP0 there existsn0 such that for alln ≥ n0

Pn(S(ψ, β, δ)) ≥ 1− ǫ. (22)

Note that

Pn(S̄(ψ, β, δ)) ≤ P[∪
i∈N (C)

0,n
{θi > δ}, N

(C)
0,n ≤ ψ] + P[∪

i∈N (C)
0,n

{Bi > β}, N
(C)
0,n ≤ ψ] + P[N

(C)
0,n > ψ]

≤ ψP[θi > δ] + ψP[Bi > β] + P[N (C)
a,n +N0

0,n > ψ], (23)

whereN (C)
a,n represents the number of active requests atτn that originated fromn arrivals at

τ0, . . . τn−1, and the rest of active requests atτn, N0
0,n = N

(C)
0,n − N

(C)
a,n are those that were
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active at the initial pointτ0 and are still processed at the moment ofnth arrival. Next, since

P[N (C)
a,n +N0

0,n > ψ] ≤ P

[

N (C)
a,n >

ψ

2

]

+ P

[

N0
0,n >

ψ

2

]

≤ P

[

N (∞)
n >

ψ

2

]

+ P





N0
∑

i=1

1[θ0i > τn − τ0] >
ψ

2





≤ P

[

N (∞)
n >

ψ

2

]

+

∞
∑

m=0

P[N0 = m]P

[

m
∑

i=1

1[θ0i > (1− ǫ1)nE[τ1 − τ0]] >
ψ

2

]

+ P[τn − τ0 < (1− ǫ1)nE[τ1 − τ0]], (24)

where in the previous inequalities0 < ǫ1 < 1 is an arbitrary constant and we usedN (∞)
n ≥

N
(C)
a,n a.s., whereN (∞)

n is defined as in the proof of Theorem 1.

Now, we prove that there existsψ = ψ0 large enough such that (24) is bounded byǫ/3. By

definition ofN (∞)
n in Section 2 and Little’s formula,EN (∞)

n <∞ and, therefore,

lim
ψ→∞

P

[

N (∞) >
ψ

2

]

→ 0, (25)

uniformly for alln > 0. Next, note that1[θ0i > (1− ǫ1)nE[τ1− τ0]] ≤ 1[θ0i > (1− ǫ1)E[τ1 −

τ0]] a.s., and that for any fixedm,

P

[

m
∑

i=1

1[θ0i > (1 − ǫ1)nE[τ1 − τ0]] >
ψ

2

]

≤ P

[

m
∑

i=1

1[θ0i > (1− ǫ1)E[τ1 − τ0]] >
ψ

2

]

↓ 0 as ψ → ∞,

which by the monotone convergence theorem implies that the second term in (24) satisfies

lim
ψ→∞

∞
∑

m=0

P[N0 = m]P

[

m
∑

i=1

1[θ0i > (1− ǫ1)nE[τ1 − τ0]] >
ψ

2

]

= 0, (26)

uniformly for all n > 0. Finally, by the Weak Law of Large Numbers, for alln large enough,

P[τn − τ0 ≤ (1− ǫ1)nE[τ1 − τ0]] ≤ ǫ/9. (27)

Thus, the previous conclusion in conjunction with (26), (25) and (24) implies that for an
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arbitrary0 < ǫ < 1, there existn0 <∞ andψ0 <∞ large enough such that for alln ≥ n0

P

[

N (∞) >
ψ0

2

]

≤
ǫ

9
and

∞
∑

m=0

P[N0 = m]P

[

m
∑

i=1

1[θ0i > (1− ǫ1)nE[τ1 − τ0]] >
ψ0

2

]

≤
ǫ

9
.

(28)

Now, sinceEBi <∞, Eθi <∞, there existβ0, δ0, such that

P[Bi > β0] ≤
ǫ

3ψ0
and P[θi > δ0] ≤

ǫ

3ψ0
.

Thus, the previous expressions in conjunction with (28), (27) and (23) imply that for all large

enoughn ≥ n0 inequality (22) holds for a chosen setS(ψ0, β0, δ0).

Next, we show that there existsn1 > 0 andk > 0 such that for all pointsx ∈ S(ψ0, β0, δ0)

and measurable setsA ⊂ S(ψ0, β0, δ0), the following inequality holds

Pn1(x,A) ≥ kR(A). (29)

Let Fθ(u) denote a cumulative distribution function of a random duration θ, i.e.,P[θ ≤ u].

Furthermore, select a small positive numberη such that for some chosen∆ > δ0, Fθ(∆) −

Fθ(δ0) = η > 0. Next, for anyn1

Pn1(x,A) ≥ P1(x, ω0)Pn2 (ω0, A), (30)

wheren2 = n1 − 1. Letx = (m, b1, . . . , bm, e1, . . . , em) ∈ S(ψ0, β0, δ0). Then,

P1(x, ω0) ≥ P[τ1 − τ0 ≥ ∆, all m requests depart in(τ0, τ1)]

=

∫ ∞

∆

m
∏

i=1

Fθ(u + ei)− Fθ(ei)

1− Fθ(ei)
dFa(u), (31)

whereFa(u) represents cumulative inter arrival distribution of a renewal process{τn}, i.e.,

Fa(u) = P[τ1 − τ0 ≤ u]. Now, by applying lower bound

Fθ(u+ ei)− Fθ(ei)

1− Fθ(ei)
≥ Fθ(∆) − Fθ(δ0) = η
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in (31) we obtain

P1(x, ω0) ≥ ηmP[τ1 − τ0 > ∆] ≥ ηψ0(1− Fa(∆)). (32)

Next, we derive a lower bound forPn2(ω0, A) for somen2 large enough such that

P[τn2 − τ0 > δ] ≥ 1−
ǫ

2
. (33)

Note that the condition imposed onn2 in (33) is possible due to the Weak Law of Large

Numbers, since for anyǫ > 0 and alln2 large enough withδ0 < (1− ǫ)E[τn2 − τ0],

P[τn2 − τ0 > δ0] ≥ P[τn2 − τ0 > (1 − ǫ)E[τn2 − τ0]] ≥ 1−
ǫ

2
,

Next, pick anyx′ = (m′, e′1, . . . , e
′
m′ , b′1, . . . , b

′
m′) ∈ A where, without loss of generality, we

assume thate′1 ≥ e′2 ≥ · · · ≥ e′m′ . Definex′ + dx′ , (m′, e′1 + de′1, . . . , e
′
m′ + de′m′ , b′1 +

db′1, . . . , b
′
m′ + db′m′) wherede′1, · · · , de

′
m′ , db′1, · · · , db

′
m′ are infinitesimal elements. Then,

the transition probability into state(x′, x′ + dx′) starting fromω0 can be bounded by the

probability of the event that there are exactlym′ arrivals prior toτn2 whose arrival times are

determined bye′1, · · · , e
′
m′ , whose resource requirements are in(b′1, b

′
1+db

′
1), · · · , (b

′
m′ , b′m′+

db′m′), and where the rest ofn2 − m′ arrivals are rejected since their requirements exceed

capacityC. Therefore,

Pn2(ω0, (x
′, x′ + dx′)) ≥







m′

∏

j=1

P[θj > e′j ]P[Bj ∈ (b′j , b
′
j + db′j)]







P[B1 > C]n2−m′

× P





⋃

I







i2−1
∑

j=i1

Yj ∈ (e′1 − e′2, e
′
1 − e′2 + de′1), · · ·

n2−1
∑

j=im′

Yj ∈ (e′m′ , e′m′ + de′m′)











≥ P[B1 > C]n2







m′

∏

j=1

P[θj > e′j]P[Bj ∈ (b′j , b
′
j + db′j)]







× P





⋃

I







i2−1
∑

j=i1

Yj ∈ (e′1 − e′2, e
′
1 − e′2 + de′1), . . . ,

n2−1
∑

j=im′

Yj ∈ (e′m′ , e′m′ + de′m′)









 ,
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whereI , {0 ≤ i1 < i2 < · · · < im′ ≤ n2 − 1} andYj are i.i.d. random variables equal

in distribution to inter-arrival times of the renewal process{τn}, i.e.,Yj
d
= τj+1 − τj . Now

denote

r(m′, e′1, . . . , e
′
m′ , b′1, · · · , b

′
m′) ,







m′

∏

j=1

P[θj > e′j ]P[Bj ∈ (b′j , b
′
j + db′j)]







× P





⋃

I







i2−1
∑

j=i1

Yj ∈ (e′1 − e′2, e
′
1 − e′2 + de′1), . . . ,

n2−1
∑

j=im′

Yj ∈ (e′m′ , e′m′ + de′m′)









 ,

(34)

and define probability distribution

R(A) , V

∫

x′∈A
r(m′, e′1, . . . , e

′
m′ , b′1, . . . , b

′
m′), (35)

whereV is a normalization constant. Note thatR(A) is well-defined since

∞
∑

m′=0

∫

∞>e′1>···>e′
m′>0

∫ ∞

b′1,...,b
′

m′≥0

r(m′, e′1, . . . , e
′
m′ , b′1, . . . b

′
m′)

≤ P[N
(C)
0,n ≤ ψ0](Eθ1)

ψ0 + P[N
(C)
0,n > ψ0]

≤ P[N
(C)
0,n ≤ ψ0](Eθ1)

ψ0 + P[N (∞)
n > ψ0] <∞.

The previous inequalities, in conjunction with (34), (32) and (30) imply that

Pn2+1(x,A) ≥ ηψ0(1 − Fa(∆))P[B1 > C]n2V−1R(A). (36)

Finally, it is left to show that there existsK > 0 such that for every initial distributionP0,

for all n large and for any measurable setA ⊂ S(ψ0, β0, δ0)

Pn(A) ≤ KR(A) + ǫ.
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By (33), for alln ≥ n2

Pn(A) ≤ P[Xn ∈ A, τn − τ0 > δ0] + P[τn − τ0 ≤ δ0]

≤ P[Xn ∈ A, τn − τ0 > δ0] + ǫ/2

≤

∫

x′∈A







m′

∏

j=1

P[θj > e′j]P[Bj ∈ (b′j , b
′
j + db′j)]







×P





⋃

I







i2−1
∑

j=i1

Yj ∈ (e′1 − e′2, e
′
1 − e′2 + de′1), . . . ,

n2−1
∑

j=im′

Yj ∈ (e′m′ , e′m′ + de′m′)









+ ǫ

=

∫

x′∈A
r(m′, e′1, . . . , e

′
m′ , b′1, . . . , b

′
m′) + ǫ,

where the second inequality follows from the fact that requests that are active atτn must occur

in the previousδ0 length of time that are captured inn2 renewal intervals[τn−n2 , τn−n2+1), . . . , [τn−1, τn)

with significant probability (greater than1 − ǫ/2). Thus, after applying definition (35), we

obtain that for alln large

Pn(A) ≤ V−1R(A) + ǫ,

which, in conjunction with (36) and (22), implies that the processXn satisfies conditions of

the theorem stated at the beginning of this section. Thus, there exists a unique stationary dis-

tribution for the Markov chainXn. Therefore, sinceQ(C)
n defined in Section 2 is a functional

of the processXn, it has a unique stationary distribution as well implying the existence of the

stationary blocking probability.

✸
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