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Abstract

Non-Abelian global strings are expected to form during the chiral phase transi-
tion. They have orientational zero modes in the internal space, associated with the
vector-like symmetry SU(N)L+R broken in the presence of strings. The interaction
among two parallel non-Abelian global strings is derived for general relative orien-
tational zero modes, giving a non-Abelian generalization of the Magnus force. It is
shown that when the orientations of the strings are the same, the repulsive force
reaches the maximum, whereas when the relative orientation becomes the maxi-
mum, no force exists between the strings. For the Abelian case we find a finite
volume correction to the known result. The marginal instability of the previously
known Abelian η′ strings is discussed.
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1 Introduction

Topological strings play very important roles in physics. Their study ranges from the
cosmic strings which are formed in the early universe [1] to the vortices in the condensed
matter physics i.e. Abrikosov flux tubes in type II superconductors, the superfluid vortices
in 4He and cold atoms, and so on. They are accompanied with the spontaneous symmetry
breaking at phase transitions. In high energy physics, topological strings appear in the
standard model, GUTs and other particle models [2]. In cosmology they had long been
the strong candidates for the formation of the galaxies and CMB fluctuations. Although
this possibility is now excluded, the study of cosmic strings is under the significant devel-
opments recently due to several reasons [3]. Depending on whether a broken symmetry is
global or local, strings are called global or local, respectively. In the early stage of devel-
opments, global cosmic strings were not focused because their energy is logarithmically
divergent. Later it was recognized that the divergence is not a problem because a finite
volume system or nearest strings give a natural infrared cutoff. Then their interaction,
reconnection (intercommutation) and formation of a network were extensively discussed
[4, 5, 6, 1].

One of the important recent developments concerns the non-Abelian strings. Here we
use the term “non-Abelian string” for a string which arises at the symmetry breaking
G → H for which the unbroken subgroup H is non-Abelian. Recently the non-Abelian
local/semi-local strings have been found in superstring theory [7] and in supersymmetric
QCD [8]. Since these strings are BPS i.e. at the critical coupling, no static force exists
and the so-called moduli matrix approach [9, 10] provides the most generic solutions and
their complete moduli space [11]. Their interaction, scattering and reconnection have been
studied in the moduli space approximation [12]. Non-Abelian semi-local strings have been
further studied [10, 13].

In contrast to these remarkable developments, the non-Abelian global strings have not
been so much investigated yet, as was so in the case of the Abelian global strings. De-
spite this, they are interesting for several reasons. First, different from the Abelian global
strings, the non-Abelian strings have the internal degrees of freedom which are called
orientation; the presence of a string breaks the symmetry H further H → H ′ and conse-
quently the zero modes corresponding to H/H ′ appear along the string. Then we have a
continuously infinite number of strings with the same tension which are parameterized by
this orientation, namely a point in H/H ′. The interaction among the strings with differ-
ent orientations is not trivial at all, which is the main issue of the present Letter. Second,
it was shown that non-Abelian global strings with domain walls indeed form during the
chiral phase transition in QCD [14] where the SU(N)L × SU(N)R(×ZN,A) symmetry is
broken to its diagonal subgroup SU(N)L+R where N indicates the number of flavors. In
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Ref. [14], they explicitly took into account the effect of anomaly.
Before the discovery of the non-Abelian global strings in QCD, it was already shown

that the Abelian global strings which are called the η′ strings may exist in the early uni-
verse [15]. When the temperature becomes very high, the chiral anomaly is not effective
[16]. It is because the instantons require both color electric and magnetic fields. But
the fluctuation of the electric field is suppressed at high temperature due to the Debye
screening. Therefore, if the temperature for the chiral phase transition is so high that the
U(1)A symmetry is effectively restored1, the Abelian strings arise during the spontaneous
symmetry breaking of this effective U(1)A symmetry due to the chiral condensate 〈q̄q〉,
where q(q̄) indicates the (anti)quark fields. The η′ strings become unstable as the tem-
perature decreases and the instanton effects become substantial. The authors in Ref. [18]
expected that they can be stable if they accompany three domain walls.

In this Letter, we consider non-Abelian global strings which arise during the chiral
phase transition when we can neglect the effect of the anomaly, which is just the case
considered in Refs. [15, 18]. We derive the interactions among the non-Abelian global
strings in the U(N)L × U(N)R linear σ model. There are lots of interesting questions
about the formation, evolution of the strings etc. As a first step, however, we consider the
interaction among the static two non-Abelian strings with various relative orientations
using the Abrikosov approximation. In section 2, the non-Abelian string solution with
general orientation is constructed in the U(N)L×U(N)R linear σ model. The interaction
among the static two non-Abelian strings is derived in section 3. In the case when the
orientations of two strings are the same the calculation reduces to that of two Abelian
strings. We find even for this case a finite-volume correction to the known result [4, 5, 6, 1].
We end in section 4 with conclusion and discussion.

2 Non-Abelian global strings and orientations

Let us consider the chiral U(N)L × U(N)R linear σ model. We first introduce the N
by N matrix field Φij (i, j = 1 · · ·N) in order to parameterize the symmetry breaking.
This field belongs to [N, N̄ ] representation of SU(N)L×SU(N)R. Under the global chiral
symmetry G = SU(N)L × SU(N)R × U(1)A, Φ transforms as

Φ → eiαULΦU
†
R. (1)

where UL and UR are independent SU(N) matrices and eiα is the total U(1)A rotation.

1 This point is still controversial and is not settled yet. See Ref. [17], for example.
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The Lagrangian which is symmetric under G is

L = tr(~∂Φ†~∂Φ)−m2tr(Φ†Φ)− λ1(trΦ
†Φ)2 − λ2tr[(Φ

†Φ)2] (2)

up to quartic order in Φ. When m2 < 0, λ1 + λ2/N > 0, and λ2 > 0, the vacuum
expectation value

〈Φ〉 = v1 ≡ Φ0, v =
√

−m2/2(Nλ1 + λ2) (3)

breaks the symmetry G to H = SU(N)L+R×ZN and corresponding N2 Nambu-Goldstone
bosons appear. The action of H to 〈Φ〉 is 〈Φ〉 → eiαUL〈Φ〉U †

R with (eiα, UL, UR) =
(ω, ω−1U, U) : ω ∈ ZN , U ∈ SU(N). The coset space has the non-trivial first homotopy
group,

G

H
=
SU(N)× U(1)

ZN

= U(N) ⇒ π1 [U(N)] = Z, (4)

which develops both the non-Abelian as well as Abelian strings. Therefore, the non-
Abelian vortex strings we are studying here are topological objects contrary to the pion
string which is non-topological with π1 [SU(2)] = 0 [19].

We will consider the cylindrically symmetric string configuration along the z-axis. The
most fundamental string is the non-Abelian string which is generated by both SU(N) and
U(1) generators ofG. At large distance from the core of the fundamental string, the matrix
field Φ(θ) rotates as:

Φ(θ, r) = exp

(

i
θ

N

)

exp

(

−iTN2−1

√

N(N − 1)

N
θ

)

Φ(0, r)

= diag
(

eiθf(r), g(r), · · · , g(r), g(r)
)

⇒ diag
(

eiθ, 1, · · · , 1, 1
)

, (5)

where we have already taken v = 1 for simplicity, and Ta (a = 1, 2, · · ·N2 − 1) is the
generators of SU(N) in the fundamental representation which we normalize as Tr{TaTb} =
δab. The (N2 − 1)-th generator is TN2−1 = 1√

N(N−1)
diag(1 − N, · · · , 1, 1). Here θ is the

angular coordinate in the x-y plane and we set Φ(0, r) = Φ0. The full numerical solution
of the string with profile functions f(r) and g(r) is given in Ref. [24].

The string configuration breaks the symmetry H further as SU(N)L+R → SU(N −
1)L+R × U(1)L+R. Consequently the zero modes corresponding to

SU(N)L+R

SU(N − 1)L+R × U(1)L+R
≃ CPN−1 (6)
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appear along the string. Eq. (5) is in fact just one particular string among a continu-
ously infinite number of strings with the same tension which are parameterized by the
orientation, namely a point in CPN−1. We will explicitly construct the two string system
with general relative orientation in the next section.

Before going to the next section we discuss stability of our solutions here. Regarding
dynamical stability of non-Abelian strings, the scaling argument from the Derrick theorem
[20] can not be applied to the present case, because they are global strings whose energy
diverges in infinite size systems. They usually exist in finite size systems, as U(1) vortex
does in Helium superfluid, where the effect from boundary prevents vortex core from
collapsing. In this meaning, once a cutoff parameter has been introduced for spatial
boundary to make the total energy finite, a modified version of the Derrick theorem
makes sense, see e.g., [21]. In contrast to texture-like objects discussed in [21] where only
gradient energy terms are taken into consideration, our global string has a non-trivial
stable solution where gradient and potential energies are balanced with a finite cutoff Λ.
Also, there is an issue whether or not the global non-Abelian string solution is stiff against
small perturbations of diagonal elements into which a vortex solution is not embedded.
Here we would briefly show this stability: first introduce a small perturbation field ψ(r, t)
as g(r) → g(r) + ψ(r, t), and suppose that ψ(r, t) = e−iωtψ(r). Plugging this into the
equation of motion and linearizing it in ψ(r) lead to a Schrödinger-like equation. After a
normalization, we obtain

ψ′′ +
1

r
ψ′ +

[

1 + ω2 − 2κf 2(r)− 2 (κ(N − 1) + 1) 3g2(r)
]

ψ = 0. (7)

We solve an eigenvalue problem for ω2 with the boundary condition ψ′(0) = ψ′(Λ) = 0.
If all the eigenvalues of ω2 are positive for given κ and N , the string solution is stable.
1) In the case of κ = 0 (the critical coupling), f(r) and g(r) are decoupled and it is
immediately found that g(r) = 1/2, and then ψ′′ + 1

r
ψ′ + [1 + ω2 − 6g(r)2]ψ = 0. The

Bessel function gives the solution and only positive ω2’s satisfy the boundary condition.
2) The case of κ 6= 0 is more complicated. After the substitution of the full solutions for
f(r) and g(r) numerically obtained in Ref. [24], for instance for κ = 0.2 and N = 3, we
found ω2 = 1.9851 as the lowest eigen value. We thus see that the non-Abelian string
solutions are dynamically stable as expected from the topology arguments. The complete
analysis on the stability is beyond the scope of the present paper.

In the situation that the U(1)A symmetry in our Lagrangian is gauged, our non-
Abelian strings become semi-local strings (with finite energy) [22], then dynamical sta-
bility mechanism by Hindmarsh [23], which is related to magnitudes between gauge and
scalar couplings, might work even in infinite size systems. Although the vortex solution
discussed in [23] is not topological, Hindmarsh has also mentioned the instability arising
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Figure 1: Configuration of two global strings with interval d = 2a in polar coordinate
(ρ, θ).

from small fluctuation of the solution. But this is not our present case with global U(1)A.

3 Interaction between two strings

Now we consider the interaction among arbitrary two strings. Let us place two strings φ1,2

parallel along the z-axis with the separation 2a in the x-y plane. For definiteness those
positions are (ρ, θ) = (a, 0) and (a, π) as in Fig. 1 where (ρ, θ) are the polar coordinates
in the x-y plane. As the orientation in the internal space CPN−1 in (6) is concerned, only
the relative orientation matters. Let us take the reference string φ1 as in Eq. (5):

φ1 = diag(eiθ1 , 1, · · · , 1, 1). (8)

Then starting from the same orientation with φ1 in (8), the most general orientation (6)
for the second string φ2 is obtained by acting SU(N)L+R on it. However as far as two
string interaction is concerned, only an SU(2)L+R(⊂ SU(N)L+R) rotation is enough to be
considered without loss of generality. (This corresponds to considering a CP 1 submanifold
inside the whole CPN−1.) We thus have

φ2 =





g

(

eiθ2 0
0 1

)

g−1 0

0 1N−2



 ,

where g is an element of SU(2):

g = cos
(α

2

)

12 + i~n · ~σ sin
(α

2

)

(9)

with ~σ = (σ1, σ2, σ3) the Pauli matrices and ~n a unit three vector. Since the rotation by
σ3 does not change the relative orientation between φ1 and φ2, nz is fixed to 0. If we
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define β by

eiβ = nx − iny, (10)

then α and β parameterize CP 1 ≃ S2. Consequently, φ2 is simplified as

φ2 =





(

eiθ2 cos2
(

α
2

)

+ sin2
(

α
2

)

i
2
(1− eiθ2)eiβ sinα

− i
2
(1− eiθ2)e−iβ sinα cos2

(

α
2

)

+ eiθ2 sin2
(

α
2

)

)

0

0 1N−2



 . (11)

For α = 0 the orientations of the two strings become the same, and the problem is reduced
to the one of the Abelian strings [5, 6]. φ1,2 becomes an anti-string by changing the sign
of θ1,2.

Let us now calculate the interaction among two parallel non-Abelian (anti-)strings
with general orientations in the internal space. The interaction energy density of the
two string system is obtained by subtracting two individual string energies from the total
configuration energy:

F (ρ, θ, a, α) = tr
(

|∂Φtot|2 − |∂φ1|2 − |∂φ2|2
)

, (12)

where Φtot is the total string configuration and we have used the fact that for sufficiently
large value of a the potential energies can be approximated by V (Φtot) = V (φ1) = V (φ2) =
0. We employ the Abrikosov ansatz for the configuration where

Φtot = φ1φ2 or φ2φ1. (13)

We see that either ansatz gives the same result, so we do not have to worry about the
ordering of the matrices.2 Further, for simplicity, φ1,2 and Φtot are approximated to their
values at spatial infinity, Eqs. (8, 11). This approximation is justified when the interval of
the strings is much longer than the coherence length (the transverse size of strings [24]):

a≫ m−1. (14)

Then Eq. (12) is simplified and we get:

F (ρ, θ, a, α) = ±(1 + cosα)

( −a2 + ρ2

a4 + ρ4 − 2a2ρ2 cos(2θ)

)

. (15)

2 One can show that tr∂(φ1φ2)∂(φ1φ2) = tr∂(φ2φ1)∂(φ2φ1) up to reparameterization of g and coor-
dinates.
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Figure 2: Dependence of the force between two non-Abelian strings on the separation
d = 2a for several α.

Here and below, the upper(lower) sign corresponds to the interaction energy density for
the string-string (string-anti-string) configuration. For α = 0, F reduces to that of Abelian
global strings [5, 6]. However in contrast to the results in Refs. [5, 6], we have got the θ
dependent interaction energy density which reaches the maximum (minimum) at θ = 0, π
when ρ > a (ρ < a) for string-string configuration. The θ dependence gives a correction
to [5, 6] for the Abelian case (α = 0).

The (sum of) tension, the energy of the strings per unit length, is obtained by inte-
grating the energy density over the x-y plane:

E(a, α, L) = ±
∫ L

0

dρ

∫ 2π

0

dθρF (ρ, θ, a)

= ±π(1 + cosα)
[

− ln 4− 2 ln a+ ln
(

a2 + L2
)]

, (16)

where the IR cutoff L is introduced to make the integral finite. The force between the
two (anti-)strings are then obtained by differentiating E by the interval:

f(a, α, L) = ∓ ∂E

2∂a
= ±(1 + cosα)

(

π

a
− πa

a2 + L2

)

≃ ±(1 + cosα)
π

a
, (17)

where the last expression is for a ≪ L → ∞. This is just the force between two Abelian
(anti-)strings known as the Magnus force, multiplied by (1 + cosα)/2. We can see that
when the orientation of the strings are the same (α = 0) the repulsive(attractive) force
reaches the maximum and is the same as that between Abelian global string and (anti-)
string [5, 6], where the second term in the middle equation gives a finite-volume (finite
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L) correction to [5, 6]. On the other hand, when the relative orientation becomes the
maximum (α = π), no force exists between the strings. Note that although the most
stable configuration is given by the strings with the maximum relative angle (α = π), it is
not possible for the strings to change α because it is non-normalizable and must be fixed
by the boundary condition at infinity. This change is possible only if strings emit infinite
number of Nambu-Goldstone bosons α in CPN−1.

So far we have considered the case of the strings in infinite region where the relative
orientation α is non-normalizable and is fixed. However α becomes a normalizable mode in
a finite volume (finite L) which is realistic in experiments such as the heavy-ion collider. In
such a case, the force among orientations of two strings can be considered. The interaction
energy (16) shows a repulsive force exists between aligned orientations of two strings. The
stable configuration is for α = π where two orientations are anti-aligned. Therefore we
conclude that they behave like antiferromagnet.

4 Discussion

In this Letter, we have considered the interactions among two non-Abelian strings in
U(N)L ×U(N)R linear σ model. This model also has an Abelian string solution [15, 18],
the η′ string. However, it is not the fundamental string and is made of N non-Abelian
strings:

Φ(θ) = diag(eiθ, · · · , eiθ, eiθ)
∼ diag(eiθ, · · · , 1, 1)× diag(1, eiθ, · · · , 1)× · · · × diag(1, 1, · · · , eiθ). (18)

There are no force among any of these non-Abelian strings, which indicates that the η′

string is marginally unstable to decay into N non-Abelian strings. No binding energy
implies that they decay with arbitrary momentum or by fluctuations. This result holds
in the presence of the chiral anomaly at lower temperatures; the Abelian string with
N domain walls will decay into N non-Abelian strings, where each is attached by one
domain wall. In that case, the instability increases since once the Abelian string decays,
the domain wall pulls the string away to infinity. Therefore we do not have a cosmological
domain wall problem.

The same type of the non-Abelian strings also appear in the low energy theory of
supersymmetric QCD [8] and in the high density QCD (color superconductors) [25] as
fundamental strings. In these cases, the strings accompany the gauge fields which may
change the interaction among them. The case of strings in color superconductors is
reported [26] in which the universal repulsion is found unlike the case of global strings in
this Letter.
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Another interesting issue is how the non-Abelian strings emit or interact with the
Nambu-Goldstone bosons (the pions and the η′ meson). In the case of global U(1) strings,
this can be described by using the two index antisymmetric tensor fields of the Kalb-
Ramond action [27]. The non-Abelian tensor fields [28] may be suitable to describe the
non-Abelian case.

Thermal effect was studied for non-Abelian local and semi-local vortices [29]. Finite
temperature effect is important to study strings at a collider or in the early universe.

The inclusion of the bare quark mass would be a next step. If the quark mass enters
in the theory, the chiral symmetry becomes not intact. Then a new topological object
would appear where strings with different orientations are separated by bead-like solitons.
Also, the ring-shaped string may appear. We remain the study of these new topological
objects as a future work.
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