
ar
X

iv
:0

70
8.

40
96

v1
  [

he
p-

ph
] 

 3
0 

A
ug

 2
00

7

Non-Abelian Strings in High Density QCD:

Zero Modes and Interactions

November 5, 2018

Eiji Nakanoa∗, Muneto Nittab† and Taeko Matsuurac‡

a Department of Physics and Center for Theoretical Sciences, National Taiwan
University, Taipei 10617, Taiwan

b Department of Physics, Keio University, Hiyoshi, Yokohama, Kanagawa 223-8521,
Japan

c ECT*, Villa Tambosi, strada delle Tabarelle, 286, I 38050 Villazzano (TN), Italy

Abstract

The most fundamental strings in high density color superconductivity are the
non-Abelian semi-superfluid strings which have color gauge flux tube but behave as
superfluid vortices in the energetic point of view. We show that in addition to the
usual translational zero modes, these vortices have normalizable orientational zero
modes in the internal space, associated with the color-flavor locking symmetry bro-
ken in the presence of the strings. The interaction among two parallel non-Abelian
semi-superfluid strings is derived for general relative orientational zero modes to
show the universal repulsion. This implies that the previously known superfluid
vortices, formed by spontaneously broken U(1)B, are unstable to decay. Moreover,
our result proves the stability of color superconductors in the presence of external
color gauge fields.
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1 Introduction

Quark matter at high density is considered to exhibit color superconductivity [1].
There are lots of phases proposed in the color superconductivity and still there seems
no agreement on which is the true ground state [2]. However, when the quark chemical
potential becomes much larger than the strange quark mass µ ≫ ms, the color-flavor
locking (CFL) phase is expected to be realized [3]. In the CFL phase, the quark-quark
pairing breaks the symmetry of QCD such as G = U(1)B × SU(N)C × SU(N)F →
H = SU(N)C+F × ZN with N = 3, where U(1)B is a baryon number symmetry and
SU(N)C, SU(N)F and SU(N)C+F are color, flavor and the color-flavor locked symme-
tries, respectively. The breaking of U(1)B produces the superfluid vortices [4, 5] which
may play a role in the neutron star physics. It has been, however, shown in Ref. [6] that
they are not the fundamental strings in the color superconductivity. The most fundamen-
tal strings are then the semi-superfluid strings which are non-Abelian strings with color
gauge flux tube. A superfluid vortex in three flavor QCD can be topologically (and group-
theoretically) decomposed into three non-Abelian strings. It remains as a significant open
problem which is really energetically favored, three separated non-Abelian vortices or one
superfluid vortex as a bound state of them.

In general, non-Abelian strings are strings which arise for symmetry breaking G→ H
in which the unbroken subgroupH is non-Abelian. This kind of strings themselves attracts
lots of attention these several years. Recently the non-Abelian local strings have been
found in superstring theory [7] and in supersymmetric QCD [8]. For instance, they have
been used to show color confinement and non-Abelian duality in supersymmetric QCD
[9]. Since these strings are BPS, namely at critical coupling, there exists no static force
between them and therefore the moduli space is admitted. The most generic solutions
and their moduli space have been obtained [10] by introducing the method of the moduli
matrix [11, 12]. Dynamics of strings such as reconnection (intercommutation) of two
strings has been studied using the moduli space approximation [13]. Non-Abelian semi-
local strings have also been extensively studied [12, 14]. As for non-Abelian global strings,
there has been not so much work, but they may be generated during the chiral phase
transition in high temperature QCD [15, 16, 17].

Different from Abelian strings, the distinct character of non-Abelian strings is their
internal degrees of freedom which are called orientation. In the case of generalized QCD
where the number of flavor equals to the number of flavor, the presence of a string breaks
the symmetry H further as SU(N)C+F → SU(N − 1)C+F × U(1)C+F. Consequently the
zero modes corresponding to

SU(N)C+F

SU(N − 1)C+F × U(1)C+F
≃ CPN−1 (1)
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appear along the string. Then we have a continuously infinite number of strings with the
same tension, which are parameterized by the orientation, namely a point in CPN−1. In
the case of local (global) non-Abelian strings, these orientational zero modes are (non-
)normalizable because the transformation fixes [8] (changes [16, 17]) the boundary con-
dition of the strings at infinity. In the case of semi-superfluid strings, it is, however, a
non-trivial problem whether orientations are normalizable or not, because U(1)B symme-
try is a global symmetry, unlike the case of local strings [8] where U(1)B is gauged.

In this Letter, we first show that orientational zero modes are in fact normalizable.
We then calculate the force among two non-Abelian semi-superfluid strings with general
orientations. We find that the static force is always repulsive and is 1/N of that be-
tween superfluid vortices. It does not depend on the orientations of the strings, which
is somewhat surprising because the static force between two global non-Abelian strings
does depend on the orientations [17]. Our result implies that a superfluid vortex of U(1)B
breaking found in Ref. [4, 5] is actually unstable to decay into N (three) non-Abelian
strings by repulsive force between them.

In the case of the usual superconductors, the interaction between two strings were im-
portant; the repulsion (attraction) between strings in type II (I) superconductors implies
their (in)stability in the presence of an external magnetic field. The universal repul-
sion found in this Letter ensures the stability of color superconductors in the presence of
external color gauge fields, regardless of whether they are of type I or II.

The construction of this Letter is the following. In section 2, we review the Ginzburg-
Landau Lagrangian which has generalized QCD symmetry G and the construction of single
non-Abelian string. In section 3, the non-Abelian string solution with general orientation
is constructed. The interaction among the static two non-Abelian strings with general
relative orientations is derived in section 4. We end in section 5 with conclusion and
discussion.

2 Non-Abelian semi-superfluid strings

Let us start from constructing the general form of the Ginzburg-Landau Lagrangian [18]
on the basis of the generalized QCD symmetry:

G = SU(N)C × SU(N)F × U(1)B, (2)

where we set the number of flavor equals to the number of flavor and SU(N)C is the
gauge symmetry. For this purpose, we first introduce an N by N matrix field Φαi (α, i =
1, · · · , N) where α(i) denote the color(flavor) indices. Φ belongs to [N,N ] representation
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of SU(N)C × SU(N)F. The symmetry G transforms the matrix field as

Φ → eiαUCΦU
t
F, (3)

where UC and UF are independent SU(N) matrices and eiα is a global U(1)B rotation
associated with the baryon number conservation.

In the case of color superconductivity, Φ field corresponds to the pairing gap; the
spin-zero pairing of the positive energy quarks in antisymmetric combinations of colors
and flavors [19]. In this case, we may write Φ as

Φαi ∼ ǫαβγǫijk〈ψTβ
j Cγ5ψ

γ
k 〉, (4)

where ψ is the quark field and we assumed that the ground state is the positive parity
state which would be determined by the instanton effect. Then the most general 3-d
Ginzburg-Landau Lagrangian up to O(Φ4) is:

L = tr(DΦ)†(DΦ)−m2tr(Φ†Φ)− λ1(trΦ
†Φ)2 − λ2tr

[

(Φ†Φ)2
]

− 1

4
F a
ijF

aij , (5)

where D ≡ ∂ − igsA
αTα is the covariant derivative for the color symmetry, and Ta (a =

1, 2, · · · , N2 − 1) are the generators of SU(N)C in the fundamental representation which
we normalize as Tr{TaTb} = δab. Here gs is the gauge coupling and F a

ij = ∂iA
a
j − ∂jA

a
i +

gsfabcA
b
iA

c
j is the field strength.1

Stability condition of vacua enforces λ1 + λ2/N > 0. When m2 < 0 and λ2 > 0, the
vacuum expectation value takes

〈Φ〉 = v1 ≡ Φ0, v =
√

−m2/2(Nλ1 + λ2), (6)

and the symmetry G is broken to H = SU(N)C+F × ZN . This condensation is called the
color-flavor locking (CFL) in the case of the color superconductivity. The action of H
on 〈Φ〉 is 〈Φ〉 → eiαUC〈Φ〉U t

F with (eiα, UC, U
t
F) = (ω, ω−1U, U †) : ω ∈ ZN , U ∈ SU(N).

The coset space G/H ≃ U(N) has the non-trivial first homotopy group π1[U(N)] ≃ Z,
which develops non-Abelian as well as Abelian strings. In the vacua, only U(1)B Nambu-
Goldstone boson remains massless with the rests Higgssed. From now on, we will take
v = 1 for simplicity.

Here we concentrate on the most fundamental string out of which all the other string
configurations are made, and it actually has the lowest energy configuration with a non-
trivial loop. Since the common element ZN of SU(N)C,F and U(1)B provides the warp

1 Throughout this Letter we do not consider the electro-magnetic (EM) symmetry for simplicity. The
EM group U(1)EM is a subgroup of the flavor symmetry SU(N)F and explicitly breaks SU(N)F. The
zero modes found in this Letter are thus massive through the EM interaction.

4



points to make the non-trivial loops therein, the fundamental string (non-Abelian string)
is generated by both SU(N)C,F and U(1)B generators.

To make this statement clear, we consider the cylindrically symmetric string config-
uration along the z-axis. In the polar coordinates (ρ, θ) in the x-y plane, an isolated
fundamental string has the form

Φ(θ, ρ) = exp

(

i
θ

N

)

exp

(

−iTN2−1

√

N(N − 1)

N
θ

)

diag (f(ρ), g(ρ), · · · , g(ρ))

= diag(eiθf, g, · · · , g) (7)

We take the basis so that the (N2 − 1)-th generator is TN2−1 = 1√
N(N−1)

diag(1 −
N, 1, · · · , 1). f and g are functions of ρ, and f(0) = 0 and f(∞) = g(∞) = 1 at
boundaries. At sufficiently large distance from the core, ρ ≫ λ where λ ≡ m−1 is the
coherence length, the profile of the string is well described by

Φ(θ, ρ) ≃ diag(eiθ, 1, · · · , 1) for ρ≫ λ. (8)

From Eq. (7), one can see that the non-trivial loop must be made from both generators
of SU(N) and U(1)B. Although from topological reason we could use either SU(N)C or
SU(N)F or both of them for SU(N), the energy consideration forces us to use the gauge
symmetry SU(N)C to minimize the energy of the covariant derivative term. Therefore,
we use both global U(1)B and local SU(N)C symmetries to construct the string. The
name semi-superfluid originates this fact.

The gauge fields associated with the string is determined by minimizing the kinetic
energy as much as they can. Note that, different from local strings, the covariant derivative
term does not vanish at infinity but it is finite, which makes the energy of the string
logarithmically divergent as the system size is infinite, just like superfluid vortices. Given
Eq. (8), the form of the gauge field can be deduced as:

AN2−1
θ =

ξh(ρ)

gsρ
, (9)

and the other components of the gauge field vanish. Here the gauge field only has non-
zero component for θ direction, which we have denoted as Aθ. The function h(ρ) satisfies
h(∞) = 1 at boundary. A constant ξ should be determined so as to minimize the kinetic
energy density Fkin at infinity:

Fkin = tr |DΦ|2 = tr

∣

∣

∣

∣

(

1

ρ

∂

∂θ
− igsA

N2−1
θ TN2−1

)

Φ

∣

∣

∣

∣

2

=
1

ρ2





(

ξ +

√

N − 1

N

)2

+
1

N



 , (10)

5



and its minimization is achieved at

ξ = −
√

N − 1

N
. (11)

The kinetic energy then becomes Fkin = 1
Nρ2

, which is 1/N of that of the global U(1)B
string [4]. Thus, at large distance over the penetration depth λv ≡ m−1

g ∼ g−1
s v−1, the

gauge field configuration becomes

igsA
N2−1
θ TN2−1 ≃ − i

Nρ

(

1−N 0
0 1N−1

)

for ρ≫ λv. (12)

The numerical solution of f , g, and h for the semi-superfluid string in the color-flavor
locked phase is found in Ref. [6], where the color and electro-magnetic fields are mixed
and only one of their linear combinations is relevant for flux.

3 Internal space and color gauge transformation

Before going ahead, it is instructive to clarify the internal space of the string. The presence
of the string (7) breaks the symmetry H further to SU(N)C+F → SU(N−1)C+F×U(1)C+F.
The internal space corresponds to the coset space (1). Zero modes parameterizing the
space (1) appear along the string, i.e, Eq. (8) denotes just one particular string of a
continuously infinite number of strings with the same string tension (flux energy) which
are parameterized by the orientation in the CPN−1. Unlike the case of global strings
[16, 17] these zero modes are normalizable as seen below.

Here we consider a fundamental string with general orientation in the internal space.
We first take the fundamental string Eq. (7) as a reference string φ0,

φ0 = diag(eiθf, g, · · · , g, g). (13)

Then the string φ with general orientation inCPN−1 relative to the reference string should
be obtained by SU(N)C+F transformation to φ0. However, there are some redundancies
in this transformation, i.e., only an SU(2)C+F (⊂ SU(N)C+F) rotation is enough to be
considered for relative orientation to φ0 without loss of generality. This corresponds to
a CP 1 submanifold in the whole CPN−1. Furthermore, since any regular color-gauge
transformation does not change the physical situation, we omit SU(2)C rotation to φ0 for
the moment. Thus we transform φ0 by an element UF of flavor SU(2)F:

φ = φ0U
t
F =





(

eiθf 0
0 g

)

u−1
F 0

0 g1N−2



 =





(

eiθaf eiθbf
−b∗g a∗g

)

0

0 g1N−2



 , (14)
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where uF ≡
(

a∗ −b
b∗ a

)

(with |a|2 + |b|2 = 1) is an element of SU(2)F. This is a

general expression for the fundamental string. However, as will be shown below, the
flavor-rotated string configuration (14) can be transformed either back to the original
form φ ≃ diag(eiθ, 1, · · · , 1), or to the form φ ≃ diag(1, eiθ, 1, · · · , 1) with fully opposite
orientation, at a region away from the centre of strings, by use of a twisted color-gauge
transformation.

Any color gauge transformation keeps the physical situation unchanged if they are
regular. Here we implement a twisted color transformation of SU(2)C, given by

uC(θ, ρ) =

(

a∗ −beiθF (ρ)

b∗e−iθF (ρ) a

)

(15)

with F (ρ) being an arbitrary regular function with boundary conditions F (0) = 0 and
F (∞) = 1. The former condition has been imposed to make the transformation regular
at the center of string. This is possible because of π1[SU(2)C] = 0. The upper left 2× 2
minor matrix of φ in (14) is transformed to

uC(ρ, θ)

(

eiθaf eiθbf
−b∗g a∗g

)

=

(

|a|2feiθ + |b|2geiθF a∗b
[

−eiθF + feiθ
]

ab∗
[

−1 + fei(1−F )θ
]

|a|2g + |b|2fei(1−F )θ

)

≃
(

eiθ 0
0 1

)

for ρ≫ λ. (16)

This result means φ ≃ φ0 for ρ≫ λ. Also, the fully opposite orientation can be obtained
by another color-gauge transformation,

(

e−iθF (ρ) 0
0 eiθF (ρ)

)

uC

(

feiθ 0
0 g

)

u−1
F ≃

(

1 0
0 eiθ

)

for ρ≫ λ. (17)

Note that one cannot change the topological number by use of this kind of regular gauge
transformations. We thus have seen that spatial infinity of the string configurations is
the same and does not depend on the orientational zero modes. This implies that the
orientational zero modes are normalizable, unlike the case of global strings [16, 17].

In conclusion, all semi-superfluid strings with general orientation are equivalent to
each other away from the core. In other words, strings rotated by the flavor SU(2)F
revert to the first fundamental string given by Eq. (8) via the color gauge transformation
at much longer distances than the coherence length. This fact makes the problem of the
static long range force between two strings significantly simple.
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Figure 1: Configuration of two semi-superfluid strings with interval 2a in the polar coor-
dinates (ρ, θ). ρ1,2 is distance from string φ1,2, and θ1,2 is angle around it.

4 Interaction between two strings

Here we consider the interaction between arbitrary two strings named φ1 and φ2. These
strings are placed at (ρ, θ) = (a, π) and (a, 0) in parallel along the z-axis, see Fig. 1. We
eventually go for the expression of a long range static force between two strings, which is
valid if string are sufficiently separated. The situation we consider is sorted out as follows:

• The interval between strings is much larger than both the coherence length and the
penetration depth: a≫ λ(= m−1), λv(= g−1

s v−1).

• The first string φ1 is approximated everywhere by the asymptotic profile (8): φ1 =
diag

(

eiθ1 , 1, · · · , 1
)

. The second string φ2 has the profile (14) with general orientation
relative to φ1. At large distance of our interest, however, it is equivalent to the
reference string configuration (8): φ2 ≃ diag

(

eiθ2 , 1, · · · , 1
)

. φ1,2 becomes an anti-
string by changing the signs of θ1,2.

• The total profile of the two string system is given by the Abrikosov ansatz: Φtot =
φ1φ2 and Aθ

tot = Aθ
1 + Aθ

2. The first ansatz does not depend on the ordering of the
matrices because the second string transforms to diagonal at large distance as shown
in Sec. 3.2 Aθ

1,2 is the gauge field configuration (12) accompanied with the single
string system of φ1,2. For an anti-string, Aθ

1,2 changes the signs.

Now we are ready to evaluate the interaction between two parallel non-Abelian strings
with general orientations in the internal space. In order to obtain the static force between
them, we first calculate the interaction energy density of the two string system, which is
obtained by subtracting two individual string energies from the total configuration energy.

2 One can easily show that the twisted color transformation also works to make a product (13) × (14)
as φ1 × φ2 diagonalized at large distance.
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According to the above situation, the interaction energy density is given as

F (ρ, θ, a) ≃ tr
(

|DΦtot|2 − |Dφ1|2 − |Dφ2|2
)

= ± 2

N

[ −a2 + ρ2

a4 + ρ4 − 2a2ρ2 cos(2θ)

]

, (18)

where we have used the fact that V (Φtot) = V (φ1) = V (φ2) = 0 and F a
ijF

aij = 0 at
large distance [20]. Here and below, the upper(lower) sign indicates the quantity for
string-string(string-anti-string) configuration.

The tension, the energy of the string per unit length, is obtained by integrating the
energy density over the x-y plane,

E(a, L) = ±
∫ L

0

dρ

∫ 2π

0

dθρF (ρ, θ, a) = ±2π

N

[

− ln 4− 2 ln a+ ln
(

a2 + L2
)]

, (19)

where the IR cutoff L is introduced to make the integral finite. The force between the
two strings are then obtained by differentiating E by the interval:

f(a, L) = ∓ ∂E

2∂a
= ±2π

N

(

1

a
− a

a2 + L2

)

≃ ± 2π

Na
, (20)

where the last expression is for a ≪ L → ∞. We can see that the force is repul-
sive(attractive) for string-string(anti-string-string) configuration. The overall factors 1/N
in Eqs. (18)–(20) are attributed to the fact that the tension of the fundamental non-
Abelian string is reduced by 1/N compared to the usual Abelian string, then leading to
1/N erosion in magnitude of the force.

Note that our result does not depend on whether the superconductivity is of type I or
II. This has an important meaning in the case of color superconductivity since although
the perturbation theory indicates the color superconductivity is of type I for whole den-
sity regime [21], the most fundamental strings, semi-superfluid strings, can be stable at
any density regime where CFL realizes. This result also implies that the global U(1)B
superfluid strings Φ ≃ diag(eiθ, · · · , eiθ) found in Ref. [4, 5] as well as the M2 strings
Φ ≃ diag(1, e−iθ, e−iθ) ≃ (e2iθ, 1, 1) suggested in Ref. [6] are unstable to decay into N or 2
semi-superfluid strings, respectively. It contrasts to the case of global non-Abelian strings
[17], where the U(1) Abelian string is marginally unstable, i.e., no force exists between
two strings with opposite orientations.

From all the above arguments we conclude that there exists the long range force be-
tween two semi-superfluid strings, which is independent of the orientations in the internal
space, and the sign of the force is determined by the difference in their topological charges.
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5 Discussion and Outlook

In this Letter, we have considered the interaction between two non-Abelian semi-superfluid
strings in the system which has generalized QCD symmetry, SU(N)C×SU(N)F×U(1)B,
using the Abrikosov approximation. This approximation is justified for the case where the
strings are far apart. In case of a short interval, however, where the string cores overlaps:
a ∼ λ, λv, the present treatment might not be applicable to describe a fine structure
of the force. In such a case the Abrikosov ansatz for Φtot we have employed might be
suspicious, since amplitude functions f and g veer away from the unity near the core,
and arbitrary orientation in the internal space made by flavor SU(2)F rotation generates
off-diagonal parts in the string configuration. It means that two strings do not commute:
[φ1, φ2] 6= 0. However our conclusion of the instability of U(1)B strings (or the stability of
color superconductors) is unchanged. Even if the short range force is attractive a U(1)B
string will decay by long range repulsion through classical large fluctuations, thermal
fluctuations or the quantum tunnelling effect.

As applications of our results to the compact star physics, the universal repulsion
implies that the lattice structure of many-string system may be obtained during the
rapid cooling of the protoneutron stars or in response to the external electro-magnetic
field and/or the rotation. This might have impacts on observables such as the pulsar
glitch phenomenon. It is, however, still an open question how the strings terminate at
the interface between the color superconductor in the core and the surrounding nuclear
matter.

Another interesting issue is how the non-Abelian string releases or interacts with
the Nambu-Goldstone bosons corresponding to the global U(1)B breaking as well as the
leptons, quarks, mesons etc which exist in the neutron star. The former may be described
using the two index antisymmetric tensor representation in which the Kalb-Ramond action
appropriately describes the string [22]. Interaction between strings and other topological
solitons is also interesting to be explored. It has been shown in Ref. [23] that U(1)A
domain walls appear when the anomalous U(1)A is spontaneously broken. Fundamental
quarks appear as Skyrmions (called qualitons) in the CFL phase [24]. Interaction of
non-Abelian strings and these objects remains an open problem.

When the density is decreased, the various kinds of phases may appear due to the
strange quark mass and the electric neutrality conditions; 2SC, dSC, uSC, gluonic phase,
meson condensed phases, gapless phases, FFLO etc. There might appear new topological
objects in these phases [25, 26]. In particular, it has been shown in Ref. [25] that there
appear K-strings, drum vorton and domain walls in one of meson condensed phases, the
CFL + K0 phase. Our work should be applied to the interaction of these strings.

NOTE: The non-Abelian strings discussed in a recent paper [27] are completely differ-
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ent from our strings appearing in high density QCD. Their strings are local strings with
gauged U(1)B and are essentially the same with [7, 8].
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